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Quantum superposition principle and gravitational collapse: Scattering times for spherical shells
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A quantum theory of spherically symmetric thin shells of null dust and their gravitational field is
studied. In Nucl. Phys. B603, 555 (2001), it has been shown how superpositions of quantum states with
different geometries can lead to a solution of the singularity problem and black hole information paradox:
the shells bounce and re-expand and the evolution is unitary. The corresponding scattering times will be
defined in the present paper. To this aim, a spherical mirror of radius Rm is introduced. The classical
formula for scattering times of the shell reflected from the mirror is extended to quantum theory. The
scattering times and their spreads are calculated. They have a regular limit for Rm ! 0 and they reveal a
resonance at Em � c4Rm=2G. Except for the resonance, they are roughly of the order of the time the light
needs to cross the flat space distance between the observer and the mirror. Some ideas are discussed of
how the construction of the quantum theory could be changed so that the scattering times become
considerably longer.
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I. INTRODUCTION

The most important and difficult problems of the rela-
tivistic theory of gravitational collapse are the singularities
(see, e.g., Ref. [1]) and the black hole information paradox
(Ref. [2]). In fact, there are some ideas around of how both
the singularities and information losses in gravitational
collapse could be avoided. An example is a pioneer work
by Sacharov Ref. [3] in 60’s assuming 1) that the equation
of state for very dense matter is p � �� < 0 so that its
stress-energy tensor is equivalent to a ‘‘cosmological’’
term, and 2) that the collapsed stuff will be concentrated
in a small, roughly stationary, very massive but everywhere
regular piece of matter with this equation of state. The
space-time geometry is mostly assumed to be classical and
to obey classical Einstein’s equations everywhere: there
seem to be no need for quantum gravity. The singularity
theorems of Ref. [1] are not applicable because of the large
negative pressure. For more detail and further develop-
ments see Ref. [4].

Another proposal, which does not require exotic states
of matter but exploits the superposition principle of quan-
tum theory instead, is described in Refs. [5–7]. Let us
quickly summarize what was shown and what remained
unclear there. In this way, we introduce and motivate what
will be done in the present paper.

The collapsing matter was represented by a spherically
symmetric self-gravitating thin shell of null dust. There
were no other sources of gravity and the space-time had a
regular center. This was considered as a toy model of black
hole creation. From the state of the shell at a spacelike 3-
surface that intersects the regular center and the shell, the
gravitational field can be completely determined by the
constraints everywhere along the 3-surface. This was used
to reduce the total action to variables that described just the
state of the shell (Ref. [5]).

In the quantum theory (Refs. [6,7]), a self-adjoint ex-
tension of the shell Hamiltonian (depending only on the
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shell state variables) was chosen such that shell wave
packets were formed by linear combinations of in and
outgoing states and vanished at the center. In this sense,
the singularity was removed.

In principle, the quantum geometry around the shell
ought to be determined by the state of the shell. The
problem was that the naive straightforward calculation
depended of the foliation along which the metric had to
be determined, and the resulting geometry itself was, un-
like in the classical theory, strongly dependent on it. This
was interpreted in a more general way as a failure of gauge-
dependent methods in quantum gravity, which lead in turn
to search for some manifestly gauge-independent methods.

Still, the nature of the quantum horizon resulting in each
quantum evolution of the shell could be investigated in
rough terms. It turned out that it was a linear combination
of states with black- and white-hole Schwarzschild hori-
zons. This was related to the fact that an ingoing shell
creates a black hole horizon, while an outgoing one creates
a white-hole horizon outside of it. Thus, the intriguing
result that the shells with a sufficiently high energy could
cross their Schwarzschild radius in both directions could be
naturally explained. This kind of quantum horizon was
called gray horizon in Ref. [6]. It is a superposition of
black- and white-hole Schwarzschild horizons because the
state of the shell is a superposition of in and outgoing
motions. Now, the in and outgoing states are related by
the time reversal, as are the white- and black hole horizons.
Thus, the time reversal seems to play some role here.

This role has to do with time-reversal properties of
Schwarzschild geometry, which are rather subtle. If the
Schwarzschild radial coordinate R is larger than
Schwarzschild radius 2M, M being the mass parameter
of the Schwarzschild solution, the geometry is locally
time-reversal invariant: for any chosen point with R>
2M, there is a time-reversal map that is an isometry of
the space-time and does not move the point. This is not true
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for most points with R � 2M. It follows, e.g., that a con-
tracting spherically symmetric source of massM can create
the same geometry outside as the same source that ex-
pands, as long as the geometry is observed outside of 2M.
The same is true for stationary axisymmetric black hole
space-times such as Kerr’s, only the time reversal is to be
accompanied by an additional reversal of the azimuthal
coordinate.

This qualitative argument implies that quantum geome-
try, whatever it might be, will differ strongly from the
classical one if:
(1) it
s (spherically symmetric) source is a superposition
of in and outgoing states,
(2) th
e source gets under its Schwarzschild radius and

(3) w
e measure the geometry under the Schwarzschild

radius of the source.

On the other hand, there seems to be no reason why the
quantum geometry outside the Schwarzschild radius had to
differ much from the classical one if the first two condi-
tions hold. Thus, our quantum superposition idea need not
contradict existence and observed properties of black hole
like objects, because these properties are in any case
theoretically calculated from the classical geometry out-
side their horizons.

This is, however, only a speculation; one ought to cal-
culate the quantum geometry of the bouncing shell to prove
the statement. Such calculations are very difficult.
Problems begin already at the observation that we do not
even know how this quantum geometry is defined: it seems
that no gauge-invariant definition of it is known. The effect
of different gauge choices is large in quantum gravity. Its
full extent does not seem to be adequately and sufficiently
realized, although it is easy to assess. The gauge fixing in
general relativity can be understood as point to point
identification of manifolds with nonisometric geometries.
As an example, consider the average metric of, say, two
different space-times with the same topology. This notion
is not well-defined (even in the classical physics), unless
the two manifolds are identified point by point. The result-
ing value of the average depends on the identification so
that, for some, it need not even be a Lorentzian metric (see
also Ref. [8]).

The aim of the present work is more modest: We choose
a particular measurable property of the geometry and try to
calculate it. It must be gauge-invariant because it is mea-
surable but it need not contain information enough so that
all measurable properties of the geometry are determined
by it. Which quantity we choose? In Refs. [6,7], the
quantum shell was shown to contract from an asymptoti-
cally flat region, bounce and expand again into the same
asymptotically flat region. Hence, it must be possible for
one and the same observer in this region to meet the shell
first in its contracting and later in its expanding phase. He
can measure the time between the two events; it is the so-
called scattering time of the quantum shell. That is the
quantity we are going to calculate.
064025
Although the scattering time contains only a small
amount of information about the quantum geometry, it is
important. For example, if the scattering time is too short,
the existence of the gray horizon will also be short, and
nothing much can happen in its neighborhood to be ob-
served as ‘‘the black hole properties’’. If, however, the shell
will come out only after many thousands of years, or if its
scattering time is even larger than the age of the Universe,
then the black hole object created by it would last long
enough to act in its neighborhood as a black hole and to be
observed. To calculate this simple quantity has turned out
to be still surprisingly difficult. In calculations based on a
gauge fixing, a foliation of all space-times with ingoing
and outgoing shells is to be prescribed. Depending on this
choice, the scattering time can take any real value!

This is not the only difficulty. The time delay (see
Refs. [9,10]) often used in quantum scattering theory to
define the duration of a scattering process is infinite for
long-ranged potential like the Coulomb or the gravitational
one. While there exists a regularization of the time evolu-
tion dependent on the fixed central charge for the Coulomb
potential (Ref. [11]) that renders the time delay finite
(Ref. [12]), it does not work in the gravitational case
because here the role of the ’central charge’ is played by
the energy of the shell which is not fixed but depends on the
state. Since a state-dependent regularization does not make
much sense, one has to abandon the hope to define the time
delay in an analogous way as it was possible in Coulomb
scattering.

The problem is even worse:, for example, the sojourn
time (Ref. [9]), which is finite for finite regions also in the
case of long-range potentials, cannot be properly defined.
The definition of the sojourn time is based on a time
average, where the time integrated over is the Minkowski
time in flat space-time. In the curved shell space-time it is
not clear which ’time’ should be chosen and an appropriate
time coordinate could depend on the shell’s energy, turning
it into an operator in the quantum theory. Problems then
arise with a sensible definition of the sojourn time because
of noncommuting operators. All these difficulties can be
thought of as a scattering theory version of the so-called
problem of time in quantum gravity (cf. Refs. [13,14]).
That’s why we make a more modest approach by defining
the scattering time already on the classical level and turn it
into an operator in a suitable quantum theory.

Any measurable classical geometrical property can be
expressed in terms of Dirac observables and ‘‘quantized’’
by choosing some factor ordering of the corresponding
operators. However, the scattering time is not such a prop-
erty because no classical shell bounces and re-expands but
just disappears in the black hole it creates.

The method that will be adopted in the present work
(after quite a number of different approaches have been
attempted unsuccessfully) is as follows. First, we shall
modify the model by introducing a spherical mirror of
-2
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FIG. 1 (color online). Penrose-like diagram of the space-time
�M. The shaded region lies inside the mirror with the radius R �
Rm. The ingoing-shell trajectory defined by Y � V � v starts at
past lightlike infinity I�, becomes an outgoing-shell trajectory
X � U � u at the mirror and ends up at future lightlike infinity
I�. The region outside the shell is denoted by E, that inside the
outgoing (ingoing) shell by F��F��. The arrows show the
directions in which the double-null coordinates U and V (or X
and Y ) increase.
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radius Rm. Then even a classical shell will be reflected by
the mirror and there will be a gauge-invariant classical
formula for the scattering time. However, a classical shell
will be reflected to the asymptotic region from which it has
come only if its energy E is smaller than the critical energy

Em �
Rmc

4

2G
:

Emc
�2 is the mass whose Schwarzschild radius coincides

with the radius of the mirror. A shell with E< Em will not
cross its own Schwarzschild radius anywhere on its way to
the mirror. Its classical scattering time will diverge if its
energy approaches Em.

Second, it will turn out that the average scattering time
in the quantum theory does not diverge if the expected
energy of the shell approaches Em, but has only a finite
peak, as if there was a resonance. One can then extend the
quantum theory in an obvious way to cover energies larger
than Em. Third, we take the limit Rm ! 0 in such an
extended theory and assume that the resulting theory gives
the valid description of the quantum collapse without the
mirror.

The plan of the paper is as follows. In Sec. II, all
solutions with the reflected shell are found. A complete
set of Dirac observables is chosen and symmetries in the
space of solutions are listed. Then the classical formula for
the scattering time is derived. Sec. III summarizes relevant
notions and equations of the Hamiltonian formalism for
null shells from Louko, Whiting and Friedman paper [15]
(LWF). In Sec. IV, the two LWF actions, one for in and the
other for the outgoing shells are unified and the action is
modified to include the mirror and shell reflections. The
mirror is considered as a formal boundary represented by
some boundary conditions. This allows some freedom of
how the shell is reflected especially in the quantum theory.
Boundary conditions for the gravitational field and the
shell at the mirror of the classical version of the theory
are chosen such that the desired solutions result. Section V
uses the method of Refs. [5,16] to reduce the action to the
Dirac observables. In this way, the Poisson algebra of the
observables is determined. The observables are the energy
E of the shell and its canonical conjugate v, which is the
asymptotic advanced time of the ingoing shell.

This algebra forms a starting point for the construction
of the quantum mechanics in Sec. VI. We postulate a
natural cutoff Eo on energies that may be used in the
scattering states; it is the energy that would create a hori-
zon at the radius Ro of the observer. In such a way, the
energy is not only positive but also bound from above. This
makes it possible to find self-adjoint extensions of v. The
spectrum of v is then discrete but as dense as indistinguish-
able from a continuous one. The scattering times and the
times at which the observer meets the shell are turned to
operators after the classical formulas are extended for all
scattering energies in Sec. VII. The expected values and
064025
the spreads of these operators are calculated in Sec. VII A
for eigenstates of v. They are all finite though the classical
formula has a singularity and they are independent of (the
eigenvalue of) v. Section VII B studies the energy depen-
dence of the scattering time and its spread using simple box
wave packets. Two kinds of phenomena are found. First,
the scattering times have a narrow peak at the critical
energy Em (where the classical formula has a singularity).
This looks like a ‘‘resonance’’. Second, if the energy
increases beyond about 0.1 Eo, the scattering time reaches
another maximum and then begins to decrease eventually
falling under zero near Eo. This is due to the changes of
geometry near the observer created by the huge energy of
the shell so that the scattering theory method ceases to be
applicable. Section VIII discusses our results and methods
in some broader contexts.

This paper is based on Ref. [17]
II. THE MODEL

We consider a self-gravitating, spherically symmetric
and infinitesimally thin shell such as in Ref. [5]. Unlike
Ref. [5], however, we introduce a spherical ideal mirror of
radius Rm so that the shell and the mirror are cocentric. The
shell scatters at the mirror as depicted in Fig. 1.

If such a shell of finite momentum is reflected at the
mirror, the finite change of its momentum must result
-3
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within an infinitesimal time interval. This requires the
mirror to bear infinite force, an idealization similar to the
whole notion of a thin shell, and it must be understood only
as a limiting case of a regular system.

We shall view the mirror just as a boundary conditions at
R � Rm and consider only the part of the space-time that
lies outside of the mirror. The conditions will be such that
no energy and momentum can cross the boundary, and that
the mass of the mirror is zero. It will be specified more
precisely later. Logically, we define the solutions first, and
only then infer the corresponding boundary conditions
from it.

In the present section, we construct and discuss the space
of solutions for the system that we have introduced in the
previous paragraph. The space of solutions for a single
shell without the mirror is already well-known (cf. e.g.
Ref. [5]). Also the case of multiple shells has been dis-
cussed in the literature, Ref. [16]. Any solution with a
reflected shell can be constructed by cutting and pasting
together one solution with an ingoing and one with an
outgoing shell. These can be taken over from Ref. [5].

In Ref. [5], the outgoing-shell space-time is described in
the double-null (DN) coordinates U and V. The metric has
everywhere the form

ds2 � �A�dUdV � R2
�d�2; (1)

where d�2 is the line element of a unite sphere. Outside
the shell, �1<U < u,

A� �
1

��f�� exp���f���
V � u
4M�

exp
�
V �U
4M�

�
; (2)

R� � 2M���f��; (3)

f� �
�
V � u
4M�

� 1
�

exp
�
V �U
4M�

�
; (4)

where ��x� is the function inverse to ��1�x� � �x� 1�ex.
Metric (1) describes Schwarzschild geometry with the
mass parameter M� related to the outgoing-shell energy
E� by M� � Gc�4E�. Inside the shell, u < U < V,

A� � 1; R� �
V �U

2
; (5)

it is Minkowski space-time. Metric (1) is continuous across
the shell, U � u. The parameters M� and u have been
chosen in Ref. [5] as coordinates in the space of outgoing-
shell solutions.

The ingoing-shell space-time, given in the DN coordi-
nates X and Y, has the metric

ds2 � �A�dXdY � R
2
�d�2: (6)

Outside the shell, v < Y <1,

A� �
1

��f�� exp���f���
v� X
4M�

exp
�
Y � X
4M�

�
; (7)
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R� � 2M���f��; (8)

f� �
�
v� X
4M�

� 1
�

exp
�
Y � X
4M�

�
; (9)

M� being the Schwarzschild mass parameter related to the
ingoing-shell energy E�. Inside the shell X < Y < v,

A� � 1; R� �
Y � X

2
:

This is again flat space-time. The parameters M� and v
play the role of coordinates in the corresponding space of
solutions.

An important property is that the solution determined by
the parameters M� and u is isometric to that with M� and
v if M� � M�. The isometry is described by the relations

U� u � v� Y; V � u � v� X (10)

and will be called time reversal.
So much about the description of the solutions in

Ref. [5]. Let us now cut the outgoing-shell space-time
along the curve R � Rm inside the shell. The coordinate
V of the intersection of this cut with the shell, U � u, is

V0 � u� 2Rm: (11)

Our cut continues outside the shell along V � V0. Finally,
we throw away everything inside the cut (see Fig. 2).

For the construction, the assumption is crucial that R�
increases with decreasing U along the part of the cut that
lies outside the shell, reaching eventually R� � 1. This
can only be true if Rm is larger than the Schwarzschild
radius of the shell,

Rm > 2M�; (12)

or

E� <Em; (13)

the critical energy (defined in the Introduction).
Similarly, we cut the ingoing-shell space-time at R �

Rm inside the shell until the cut reaches the shell at

X0 � v� 2Rm; (14)

and then proceed with the cut along X � X0 outside the
shell and throw everything away that lies inside the cut (cf.
Figure 2). Let us further choose the parameters M� and v
as follows:

M� � M� � M; (15)

v � V0: (16)

This implies first that the outgoing null surface X � X0 is
diverging, R� increasing with Y along it. Second,
Eqs. (14), (16), and (11) imply

v � u� 2Rm (17)

and
-4
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FIG. 2 (color online). The diagram on the right hand side
displays the Penrose diagram of the outgoing Ref. [5] shell
space-time. The shell trajectory is given by U � u. The shaded
region is cut out and glued with the corresponding shaded region
taken from the ingoing space-time on the left hand side. Here,
the shell trajectory is given by Y � v. The rectangles outside of
the shell are isometric.
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X0 � u: (18)

Also, the geometries of the two cutout space-times are
isometric in the patches outside the shells, that is, respec-
tively, in U 2 ��1; u�, V 2 �v;1� and X 2 ��1; u�,
Y 2 �v;1� and can be pasted together there by the map

X � v� 4M�
��
v� u

4M
� 1

�
exp

�
v�U

4M

��
; (19)

Y � u� 4M ln
���1�V�u4M �
v�u
4M � 1

�
; (20)

resulting in the region E of Fig. 1. One easily verifies that
the map is an isometry and that the corresponding bounda-
ries cover each other.

In this way, we obtain solutions in which the outgoing
shell crosses the ingoing one at R � Rm. All such solutions
064025
are described by just two parameters,M and u (orM and v,
u and v being related by Eq. (17)). This defines the space of
solutions of our system. Each solution is given in two
coordinate patches. This will not lead to any problems
later, and the fact that the coordinates of the patches
coincide with the coordinates chosen in Ref. [5] will enable
us to use directly many results of Ref. [5] without need for
extra calculations.

In the space of solutions, we find the following
symmetries.

The time shift.—This is the map

U�U��; V�V��; X�X��; Y�Y��;

(21)

for any real �. The solution obtained in this way from the
solution with parameters u, v, M and Rm corresponds to
the change of the parameters

u�u��; v�v��; M�M; Rm �Rm: (22)

The dilatation.—The map is defined by point shift

U�U=�; V�V=�; X�X=�; Y�Y=�;

and metric deformation

g�� � �2g��:

We obtain the solution with changed parameters

u � �u; v � �v; M � �M; Rm � �Rm:

The most interesting question for the present paper is
how long it takes till a shell returns to an observer at a fixed
radius Ro: the so-called scattering time s�Ro�. The segment
of the observer trajectory that is bounded by the two
intersections of the shell with it lies inside each of the
two patches. Let us calculate it in the coordinates U and V.

The trajectory must satisfy the equation R��U;V� � Ro;
Eqs. (3) and (4) give

U � V � 2Ro � 4M ln
�
V � u� 4M
2Ro � 4M

�
:

We also obtain from Eqs. (2) and (3)

f� � ��1

�
Ro
2M

�
and

A� �
�
1�

2M
Ro

�
V � u

V � u� 4M
:

The boundaries of the segment contain the crossing of the
ingoing shell at V � v and that of the outgoing one at U �
u, where V � u� 2Ro � v� 2Rm � 2Ro, according to
Eq. (17). Then,

s�Ro� �
Z v�2Ro�2Rm

v
dV

��������������
A�

dU
dV

s
;

-5
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and we obtain easily

s�Ro� �

�����������������
1�

2M
Ro

s �
2�Ro � Rm� � 4M ln

�
Ro � 2M
Rm � 2M

��
:

(23)

Here, the first factor transforms Schwarzschild time into
the proper time of the observer. The first term in the
brackets is the flat-space-time scattering time (the velocity
of light is set to 1) and the second term is another correc-
tion to it. Observe that this correction diverges if the energy
of the shell approaches the critical energy Em.

Another gauge-invariant quantity is the proper time
measured by the observer when the shell is passing him,
s��Ro� for the outgoing and s��Ro� for the ingoing shell.
We have, of course

s�Ro� � s��Ro� � s��Ro�: (24)

The time s��Ro� coincides with the flat-space-time
inertial-system time T of this event. Inside the ingoing
shell, this time is related to X and Y by

T �
X� Y

2
;

the shell runs along the curve Y � v and the radius satisfies

R �
�X� Y

2
;

hence

s��Ro� � v� Ro: (25)

The other passing time, s��Ro�, can then be obtained by
Eq. (24).
III. CANONICAL ACTION

We are going to describe a canonical formalism for the
dynamics of the reflected shells. We start from LWF action
[15] and modify it so that it describes both in and outgoing
shells; we also replace the falloff conditions at the internal
infinity or the boundary conditions at the regular center by
the boundary conditions appropriate at the mirror.

Let us first summarize the relevant equations of the LWF
paper. The space-time geometry is given by the Arnowitt-
Deser-Misner (ADM) metric

ds2 � �N2dt2 ��2�d�� N�dt�2 � R2d�2; (26)

where N;N�;�; R are functions of t and �; N;� and R are
positive. ���� and R��� are canonical coordinates of the
gravitational field while P���� and PR��� are their con-
jugate momenta. The shell history is denoted by � � r�t�
and p is the momentum conjugate to �. A quantity Q
evaluated at the shell will be denoted by Q�r�.
Derivatives with respect to � are abbreviated by a prime,
Q0, those with respect to t by an overdot, _Q.
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Including the null shell, the Hamiltonian bulk action
reads

S��
Z
dt
�
p _r�

Z
R
d��P�

_��PR _R�NH �N�H ��

�
;

(27)

where the constraint functions are given by

H �
�P2

�

2R2 �
P�PR
R
�
RR00

�
�
RR0�0

�2 �
R02

2�
�

�

2

�
�p
�
���� r�; (28)

which is the so-called super-Hamiltonian, and

H � � PRR
0 � P0��� p���� r� (29)

(the supermomentum) and where N, N� are Lagrange
multipliers. The variable � takes on two values, �1 for
the in and �1 for the outgoing shell, and it holds that � �
sgn�p�. Thus, LWF action is, in fact, a set of two indepen-
dent actions, each valid for one of the two possible mo-
tions. The functionsN;N�; R;� are to be smooth functions
of � everywhere, except at the shell, where they are only
continuous and may have finite jumps in their first deriva-
tives. Also the conjugate momenta PR; P� are smooth
except at the shell, where they have finite discontinuities.
The most singular contributions come from the explicit
matter delta-terms in the constraints and the implicit delta-
functions appearing in R00 and P0�.

Variation of the action with respect to the canonical
variables and the Lagrange multipliers yields the dynami-
cal,

_� � N
�
�P�

R2 �
PR
R

�
� �N���0; (30)

_R � �
NP�

R
� N�R0; (31)

_P� �
N
2

�
�
P2

�

R2 �

�
R0

�

�
2
� 1�

2�p

�2 ���� r�
�

�
N0RR0

�2 � N�P0�; (32)

_PR � N
�

�P2
�

R3 �
P�PR
R2 �

�
R0

�

�
0
�
�

�
N0R
�

�
0

� �N�PR�
0;

(33)

_r �
�N�r�
��r�

� N��r�; (34)

_p � p
�
N� �

�N
�

�
0

�r�; (35)
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and the constraint equations

H � 0; H � � 0: (36)

The possible occurrence of surface terms has not been
taken into account yet, but we will do it after having
imposed the falloff conditions on the metric variables at
the infinity �! 1, that have been given by Ref. [15] and
Kuchař [18]:

��t; �� 	 1�
M
�
�O�j�j�1�	�; (37)

R�t; �� 	 j�j �O�j�j�	�; (38)

P��t; �� 	 O�j�j�	�; (39)

PR�t; �� 	 O�j�j�1�	�; (40)

N�t; �� 	 N1 �O�j�j
�	�; (41)

N��t; �� 	 O�j�j�	�; (42)

where M and N1 are functions of t, and where 	 2 �0; 1�.
For a solution, the function M�t� becomes constant and
coincides with our parameter M. With these falloff con-
ditions the asymptotic region (�! 1) is asymptotically
flat.N1 is the rate at which the asymptotic Minkowski time
T1 evolves with respect to the coordinate time t. The
variation of the term NRR0�0=�2 in the super-
Hamiltonian constraint �NH with respect to � leads to
the nonvanishing surface term (cf. Ref. [18])

N1 lim
�!1

�
RR0

�2 ��
�
� N1�M: (43)

The surface term (43) can be canceled by adding the so-
called ADM boundary term (see also Ref. [19]) to the bulk
action:

S1 � �
Z
dt�N1E1�: (44)
IV. REMOVING � AND INTRODUCING THE
MIRROR

Our action has to describe both in and outgoing motions
of the shell without this options being predetermined by a
chosen value of the variable �. This is easy to arrange by
replacing � by sgn�p�. For example, in Eq. (28) � appears
in the combination �p, and we just write jpj. The origin of
the absolute value here is simply that it is to be the energy
of the shell, and the energy E of zero-rest-mass particles

and shells is jpj instead of
������������������
p2 ��2

p
. The range of p must

be extended to �1;1� and the sign of p will follow
automatically from the equations of motions and the initial
and boundary conditions.
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At the mirror, the geometry of the solutions is flat
similarly as at the infinity and we can choose the boundary
conditions on the geometry there by assuming that the
foliation at the mirror is special in an analogous way to
that at the infinity.

We first suppose that the parameter � assumes the fixed
value Rm at the mirror,

�jm � Rm; (45)

and that the foliation is orthogonal to the mirror:

N�jm � 0: (46)

The lapse function can be left arbitrary,

Njm � Nm�t� �
dT
dt
; (47)

where T is the Minkowski time at the mirror. Finally, we
require that � coincide with R to the first order inclusively:

R0jm � 1; (48)

so that

�jm � 1: (49)

The modified LWF action reads:

S �
Z
dt
�
p _r� N1E1 �

Z 1
�m
d��P�

_�� PR _R� NH

� N�H ��

�
; (50)

where the super-Hamiltonian is:

H �
�P2

�

2R2 �
P�PR
R
�
RR00

�
�
RR0�0

�2 �
R02

2�
�

�

2

�
jpj
�
���� r�; (51)

The other terms are identical to those in the LWF action.
Varying the action (50) with respect to the canonical
variables leads to the new surface term Bm from the mirror:

Bm �
�
NR
�
�R0 �

NRR0

�2 ���
N0R
�

�R� N�PR�R

� N���P�

�
���m

: (52)

Inserting Eqs. (45)–(49) into Eq. (52) yields that the
boundary term from the mirror vanishes:

Bm � 0:

From Eqs. (45)–(49) and Eq. (31), it also follows that the
so-called mass function Ref. [15],

M �
R
2

�
1�

�
R0

�

�
2
�

�
P�

R

�
2
�
: (53)

vanishes at the mirror,
-7
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FIG. 3. Schematic diagram of the trajectory of the shell bounc-
ing at the mirror at the radius R � Rm. Three embedding hyper-
surfaces � are drawn. �1intersects the ingoing shell, �2 the
outgoing one. �3 goes through the point where the shell hits the
mirror.
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M m � 0; (54)

so that the mass of the mirror is zero as required.
Even with vanishing surface terms Bm, the variation of

the action (50) does not lead to the correct equations of
motion yet. An additional boundary condition has to be
imposed in order that the shell is really reflected at the
mirror and does not pass through it unhindered. To incor-
porate the reflection, the total momentum of the shell at the
mirror must be zero:

lim
t!tm�

p�t� � lim
t!tm�

p�t� � 0; (55)

where tm is the time of the intersection between the shell
and the mirror. This means also that the absolute value of
the momentum of the shell does not change, when the shell
is reflected by the mirror, and the energy is conserved.

The action (50) with the modified constraint (51), falloff
conditions (37), (38), (29), and (40)–(42), the boundary
conditions (45)–(49) and (55), as well as the requirements
of continuity constitute a complete system determining the
evolution so that our space of solutions results. This can be
seen as follows.

Outside the mirror, our equations of motion are equiva-
lent to LWF equations except possibly for the explicit
requirement that sgn�p� is constant, which we have not
imposed. However, this also follows from the LWF equa-
tions of motion. As is shown in Ref. [15], these equations
imply that the solution around the shell coincides with
Schwarzschild space-time with different mass parameters
M� and M�. The difference M� �M� is related to jpj
and to the choice of the radial parameter � at the shell via
Eq. (A2a) of Ref. [15]:

jpj � �R�r��R0�r�; (56)

� meaning the jump across the shell. It follows that jpj
cannot vanish, if � satisfies the conditions of regularity,
i.e., if everywhere jR0j> 	, where 	 is some positive
number. As for the sign of p, Eq. (A2b) of Ref. [15] reads

p � ���r��P��r�: (57)

Since p cannot vanish and is equal to a jump of quantities
that must evolve continuously to both sides of the shell, it
cannot change sign along the shell motion outside the
mirror.

At the mirror, however, Eqs. (56) and (57) lose their
meaning because there is no inside of the shell to calculate
the jump. There, the evolution must be prescribed by hand,
and this is done by Eq. (55). It is compatible with jpj
changing smoothly and being nonzero, and so it entails
that the sign of r must change through the reflection.

V. REDUCTION

We reduce the action (50) using the same methods as in
the case without mirror. The shell’s trajectory results from
glueing together an in and an outgoing one at the mirror, in
064025
contrast to the system without mirror, where the shell is
either in or outgoing. Thus, in our case, it depends on
where the embedding hyper-surface � lies, which part of
the shell’s trajectory it intersects. � can even go through
the point where the shell hits the mirror. Figure 3 shows the
three possible cases for the embedding hyper-surface.

For the reduction of the action and for its expression in
terms of the Dirac observables, it is not important, which
hyper-surface we choose. It will be advantageous to choose
a hyper-surface that intersects the outgoing shell, as e.g. �2

in Fig. 3 in the space-time corresponding to the value
�M;u� of the Dirac observables. Such a hyper-surface is
related to a single point Q, say, at the constraint surface C
in the phase space of the system. All hyper-surfaces in a
neighborhood of �2 in the space-time that intersect both
the regular center and the outgoing shell determine points
in a neighborhood U of Q at C. If we carry out this
construction for all space-times corresponding to Dirac
observables that lie in some neighborhood of the point
�M;u� in R2, we fill up a neighborhood U of Q at C.

Next, we choose the gauge �U;V� so that we can de-
scribe each of the above hyper-surfaces by the embedding
variables U��� and V���. In this way, we have constructed
-8
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coordinatesU���, V���,M and u in the neighborhood U in
C (the momenta conjugate to U��� and V��� vanish at C,
see Ref. [5]). We can then, of course, calculate the reduced
action in these coordinates. However, we do not need to do
this explicitly, for exactly the same calculation has been
done, in effect, in Ref. [5]. That is the reason for all the
choices above.

In Ref. [5], it is first shown that the reduced action equals
to its Liouville form. The Liouville form is expressed in
terms of the embedding variables and the shell variables. It
is then shown that the Liouville form is determined just by
boundary terms at three boundaries: the regular center, the
shell and the infinity. The only change to be carried out
here is that we have the mirror instead of the regular center.
It follows from the expressions in Ref. [5] that the
Liouville form is still given by the boundary terms at the
mirror, the shell and the infinity. We have only to find the
boundary term resulting from the mirror.

This contribution from the mirror is given by Eq. (60) of
Ref. [5] to be

��kdU� ldV���Rm �  j��Rmd�m; (58)

where (cf. Eqs. (61) and (62) of Ref. [5])

k �
R
2

dR
dU

ln
�
�
U0

V0

�
;

and

l �
R
2

dR
dV

ln
�
�
U0

V 0

�
:

The last term in Eq. (58) vanishes because �m � Rm is
constant. Moreover, we have

ln
�
�
U0

V 0

�
� 0; (59)

because the foliation is orthogonal to the mirror. Indeed, if
a radial curve tangential to the mirror is given by U �
U�t�, V � V�t�, # � #0 and ’ � ’0, then Eq. (5) implies

V�t� �U�t� � 2Rm

and the tangent vector � _U; _V; _#; _’�, therefore, satisfies

_U � _V; _# � _’ � 0: (60)

Let the foliation be given by U � U�t; �� and V � V�t; ��.
Then, according to Eqs. (1) and (5), the foliation will be
orthogonal to the vector fulfilling (60), if

� _UV0 � _VU0 � 0

or V0 � �U0, which immediately implies Eq. (59).
It follows that the contribution from the mirror vanishes

similarly as that from the regular center did in Ref. [5]. Our
Liouville form must, therefore, coincide with that obtained
in Ref. [5], and so the reduced action is

S � �M _u: (61)
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This is equivalent to

S � �M _v: (62)

because of Eq. (17). The same results can be obtained if the
calculation is carried out along the hyper-surfaces of the
type �1 or �3 of Fig. 2, but these have not been described
explicitly in Ref. [5].

VI. CONSTRUCTION OF THE SHELL QUANTUM
MECHANICS

The basic observables we have found in Sec. V are the
energy E and the asymptotic advanced time v of the shell.
They form a canonically conjugate pair: fE; vg � 1. In this
section we turn these two observables into self-adjoint
operators on a suitable Hilbert space. We shall use units
for which c � @ � 1.

For quantization, the ranges of the classical observables
are important. While the values of v take the whole real
axis, E must be positive and it has been further limited in
the classical theory to E< Em in order that a scattering
theory be applicable. We are going to extend this domain to
higher energies in quantum theory. However, even in quan-
tum theory, it is impossible that the shell energy is larger
than

Eo �
Ro
2G

;

because the shells with E> Eo create a black hole that
includes the observer. This is in contradiction with the
basic assumption of the scattering theory, namely, that
the observer is in the asymptotic region, where all inter-
actions are negligible and the geometry of space-time is
practically flat. As it will turn out, the scattering theory
ceases to be applicable even earlier.

Thus, it is preferable to choose the interval �0; Eo� as the
range for E. In this case, unlike to the half axis, a one-
dimensional set of self-adjoint operators v̂ exists that
satisfy the canonical commutation relations with Ê. They
are all described in Ref. [20], pp. 141–142.

Let us choose the E representation so that our Hilbert
space can be identified with L2�0; Eo�, the space of square-
integrable complex functions  �p� on the interval �0; Eo�,
the action of the operator Ê being

Ê �p� � p �p�; (63)

the scalar product is

� ;
� �
Z Eo

0
dp 
�p�
�p�: (64)

Then, the self-adjoint operators v̂ described in Ref. [20] are
defined on the domain D� of the absolutely continuous
functions satisfying the boundary conditions

 �Eo� � ei� �0�;

where � 2 �0; 2��, by
-9
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v̂ �p� � �i@p �p�: (65)

Clearly, on this domain, the canonical commutation rela-
tion are satisfied.

The eigenvalues and eigenfunctions of the thus defined
operator v̂ are easily shown to be

v̂
n�p;���
2�
Eo

n�p;��; �n�

�
2�
; n2Z (66)

and


n�p� �
1������
Eo
p e2i��p=Eo�; �
m;
n� � �mn: (67)

The phase � appears in the eigenfunctions 
n, so each
measurement of the operator v̂ will depend on it. We have
to choose a particular value of �. The choice � � 0 corre-
sponds to the periodical boundary condition often used for
the momentum operator in a box. This is surely the sim-
plest choice. With this choice the eigenvalues and func-
tions of v̂ are given by

vn �
2�n
Eo

; n 2 Z; (68)

and

jvni � 
n�p� �
1������
Eo
p e2i�n�p=Eo� �

1������
Eo
p eivnp: (69)

The spectrum of v̂ is discrete. This is the price we have
to pay for making the operator self-adjoint on a finite
interval. The discreteness of the spectrum does not seem
to correspond to a realistic physical situation, where the
asymptotic advanced time takes values from a continuous
spectrum. But the situation is not so bad as it seems if we
look at the distance between two neighboring eigenvalues,
d � vn�1 � vn: The distance

d �
2�
Eo
�

2�@c
Eo

(70)

becomes very small, d� 1, so that the spectrum can be
considered ‘‘almost continuous’’. Indeed, Eo 	 100 MEarth

for Ro 	 1 m, and d 	 10�66 m.
The eigenstates of v̂ define the Fourier transform from v

to p representation

 �p� �
1������
Eo
p

X1
n��1

e2i�n�p=Eo� ~ �n� (71)

and its inverse,

~ �n� �
1������
Eo
p

Z Eo

0
dpe�2i�n�p=Eo� �p�: (72)

The final step in constructing a quantum theory is a
choice of dynamics. In our case, there is a time-translation
symmetry given by Eqs. (21); the corresponding change of
Dirac observables described by Eqs. (22) is canonically
064025
generated by the energy E. Hence, the most natural choice
of Hamiltonian is Ĥ � Ê (see Ref. [7]).

Let us work in Schrödinger picture so that the wave
function acquires the time dependence

 �p�e�ipt:

This, of course, makes expected values of v̂ time depen-
dent. The interpretation of this time dependence is, as
explained in Ref. [7], that a time-shifted observer will
see a different value of v in the same state. For example,Z Eo

0
dp 
n�p�eiptv̂� n�p�e�ipt� � vn � t;

which is in agreement with Eqs. (22) for � � �t, that is,
for an observer shifted by the amount �t of time. There is
no contradiction in the claim that the expected value of v̂ in
a state is not equal to some eigenvalue of v̂.
VII. THE SCATTERING TIMES

In this section, we construct operators from the classical
observables s��Ro� and s�Ro� for the whole range of the
energyE 2 �0; Eo� and show that their expected values and
spreads are finite in reasonable states.

We define in p-representation:

ŝ��Ro� � �i
@
@p
� Ro (73)

and

ŝ�Ro��

������������������
1�

2Gp
Ro

s 242�Ro�Rm��4Gp ln

�����������
1� 2Gp

Ro
Rm
Ro
� 2Gp

Ro

�����������
35:

(74)

The multiplicative operator ŝ�Ro� is indeed well-defined on
all continuous functions  �p� because the result of its
action on such functions is square-integrable.

Observe also that we can write Eq. (74) in a scale-
invariant form

ŝ�Ro�
Ro

� 2
������������
1� q

p �
1� �� q ln

��������1� q
�� q

��������
�
; (75)

where

� �
Rm
Ro

< 1

and

q �
p
Eo
� 1

are dimension-free quantities. The existence of such a
formula is related to the dilatation symmetry of the classi-
cal theory. On the other hand, Eq. (73) cannot be written in
such a form and we have only
-10
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ŝ��Ro�
Ro

� �i
2G

R2
o

@
@q
� 1;

because the canonical commutation rules break the dilata-
tion symmetry.
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A. Eigenstates of v̂

The calculation of hvnjŝ�Ro�jvni or hvnj�ŝ�Ro��2jvni is
straightforward but tedious. All other expected values and
spreads are, however, easily expressible in terms of these
two. For example, we have
hvnj�ŝ��Ro� � ŝ�Ro��2jvni � hvnj�ŝ��Ro��2jvni � hvnj�ŝ�Ro��2jvni � 2j
X
m

hvnjŝ�Ro�jvmihvmjŝ��Ro�jvnij

� hvnj�ŝ��Ro��2jvni � hvnj�ŝ�Ro��2jvni � 2hvnjŝ�Ro�jvnihvnjŝ��Ro�jvni; (76)
because the operator ŝ��Ro� is diagonal in the basis jvni.
Our method of calculation will be based on the formulaZ

dqX�q� lnjq� �j � �Y�q� � Y���� lnjq� �j

�
Z
dq
Y�q� � Y���
q� �

; (77)

where Y�q� is any primitive function to X�q�,
Y�q� �
Z
dqX�q�:
(The integration per partes is just performed here with the
choice of the primitive function that makes the resulting
formula manifestly regular.)

Using Eqs. (69) and (75), we obtain
1

Ro
hvnjŝ�Ro�jvni � 2

Z 1

0
dq

������������
1� q

p
�1� �� q lnjq� 1j � q lnjq� �j�

� �
4

3
�1� ���1� q�3=2j10 � 2

Z 1

0
dqq

������������
1� q

p
lnjq� 1j � 2

Z 1

0
dqq

������������
1� q

p
lnjq� �j: (78)

Now, Z
dqq

������������
1� q

p
� �

2

15
�2� q� 3q2�

������������
1� q

p
;

and we obtain from formula (77), first,

Z 1

0
dqq

������������
1� q

p
lnjq� 1j � �

2

15
�2� q� 3q2�

������������
1� q

p
lnjq� 1jj10 �

2

15

Z 1

0
dq
�2� q� 3q2�

������������
1� q
p

q� 1

� �
2

15

Z 1

0
dq

������������
1� q

p
�2� 3q� � �

�
8

15

�
2

and, second,Z 1

0
dqq

�����������
1�q

p
lnjq��j��

2

15
��2�q�3q2�

�����������
1�q

p
��2���3�2�

������������
1��

p
�lnjq��jj10

�
2

15

Z 1

0
dq
�2�q�3q2�

�����������
1�q
p

��2���3�2�
������������
1��
p

q��

��
431

152 �
8

15
��

2

15
�2��2���3�2�

������������
1��

p
� ln��

4

15
�2���3�2�

������������
1��

p
ln�1�

������������
1��

p
�:
In order to see, what this complicated formula means, we
expand it in powers of � and ln�, neglecting all terms with
�2, �2 ln� and higher. The result is independent of �!

1

Ro
hvnjŝ�Ro�jvni �

4

15
�7� 4 ln2�: (79)

Observe that the corresponding classical result for the
flat space-time is 2�1� �� and so the quantum scattering
time is shorter that the classical flat space-time one if � <
�1� 8 ln2�=15, which is surely the case for all �� 1. This
is due to the broad spread of energy in the state jvni and the
factor

������������
1� q
p

in the integral because q runs up to 1 in the
quantum theory: the massive shells ‘‘shorten’’ the proper
time interval measured by the external observer. The inde-
pendence of the formula on vn is clearly due to the time-
translation invariance of the model.

The expected value of the square of the scattering time
operator in the state jvni is given by
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1

R2
o
hvnj�ŝ�Ro��

2jvni �
4

3
�

5

3
��

2

3
�2 � �3 �

�
2

3
�

11

3
�� 2�2 � �3

�
� ln�� ��1� 2�2 � �4� ln�1� ��

�

�
4

3
� �

�
�3ln2��

2

3
�1� 4�3 � 3�4

��
�2

3
� dilog�

�
; (80)
where the dilogarithmic function is defined by

dilog x :�
Z
dx

lnx
1� x

:

Expansion in � yields that also the squared scattering time
operator does not depend on � up to first order:

1

R2
o
hvnj�ŝ�Ro��2jvni 	

4

3
�

1

9
�2: (81)

Here we have used the expansion of the dilogarithm,

dilog� 	
�2

6
� �� � ln��O��2; �2 ln��:

The mean value of the operator ŝ��Ro� is simply ob-
tained:

hvnjŝ��Ro�jvni � �Ro �
2�n
Eo

: (82)

That of its square reads

hvnjŝ
2
��Ro�jvni � R2

o �
4�nRo
Eo

�
4�2n2

E2
o

; (83)

thus the spread vanishes, as expected:

��s��n � 0: (84)

The expected value of the operator ŝ� is easily found by
using the formulas (78) and (82). Its square can be obtained
by using Eqs. (76), (80), (82), and (83). Expanding in � as
above, one finds the spread of ŝ� to be independent on �
and on the state jvni:

�s��Ro�
Ro

	

��������������������������������������������������
4

3
�
�2

9
�

4

15
�7� 4 ln2�

s
	 1:1413: (85)

We observe that everything has a well-defined limit as �!
0.

B. Energy dependence of the scattering time

In this subsection, we are going to study the behavior of
the scattering times with energy. To that aim, we have to
work with suitable wave packets 
�p�. For example, to
calculate h
jŝ�Ro�j
i and h
j�ŝ�Ro��2j
i, one can take the
so-called box wave packets,


�p� � 0 8p 2 �0; Eo� �q� w=2�� [ �Eo� �q� w=2�; Eo�

and


�p� �
1����������
Eow
p 8p 2 �Eo� �q� w=2�; Eo� �q� w=2��;
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where Eo �q is the mean energy and Eow the width of the
packet, �q and w being the corresponding dimension-free
quantities. Operators containing v̂ or v̂2 may then have
diverging expected values. However, the box wave packets
are completely sufficient and perfectly suitable for the
study of the energy dependence of the scattering time
and its spread.

Analogously to the preceding subsection the expected
values can be written in terms of the dimension-free quan-
tities:

1

Ro
h
jŝ�Ro�j
i �

1

w

Z �q�w=2

�q�w=2
dqF��; q� (86)

and

1

R2
o
h
j�ŝ�Ro��

2j
i �
1

w

Z �q�w=2

�q�w=2
dqF2��; q�; (87)

where we have used the abbreviation

F��; q� :� 2
������������
1� q

p �
1� �� q ln

��������1� q
�� q

��������
�
:

The spread is

�ŝ�Ro�
Ro

�

���������������������������������������������������������������������������������
1

R2
o
h
j�ŝ�Ro��2j
i �

1

R2
o
�h
jŝ�Ro�j
i�2

s
:

(88)

The integrands are the same as in the case of the v
eigenstates and the integrals can be computed in a com-
pletely analogous manner. Since they are rather unwieldy,
we will not write down the results explicitly but rather
derive important properties of the expected values using
suitable approximations.

In the interval

0< q� �;

we can expand F in powers of q:

F��; q� 	 2�1� �� � �2 ln�� 1� ��q� . . . :

Integrating term by term, we obtain

1

Ro
h
jŝ�Ro�j
i 	 2�1� �� � �2 ln�� 1� �� �q;

and the leading term is the flat space-time value as ex-
pected. Numerical study of the function F shows that the
expected value (86) is increasing in the whole interval 0<
�q < �.

At �q � �, the integral in Eq. (86) can be written as
follows
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1

w

Z ��w=2

��w=2
dqF��; q� �

1

w

Z ��w=2

��w=2
dqa�q� �

1

w


Z ��w=2

��w=2
dqb�q� lnjq� �j;

where

a�q� :� 2
������������
1� q

p
�1� �� q ln�1� q��;

and

b�q�: � 2q
������������
1� q

p

QUANTUM SUPERPOSITION PRINCIPLE AND . . .
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are smooth functions in a neighborhood of q � �. We are
going to expand the integrals in powers of w and of
ln�w=2�. We observe first that
1

w

Z ��w=2

��w=2
dqa�q� � a��� �O�w� (89)
for any C1 function a�q�. Second, we can use the trick of
the foregoing subsection:
1

w

Z ��w=2

��w=2
dqb�q� lnjq� �j �

1

w
f�b1�q� � b1���� lnjq� �jg

��w=2
��w=2 �

1

w

Z ��w=2

��w=2
dq
b1�q� � b1���

q� �
;

where b01�q� � b�q� so that

lim
q!�

b1�q� � b1���
q� �

� b���:

Hence, if b�q� is any smooth function,

1

w

Z ��w=2

��w=2
dqb�q� lnjq� �j � �b��� � b��� ln�w=2�

�O�w ln�w=2��: (90)

Collecting all results, we obtain

1

Ro
h
jŝ�Ro�j
i � 2

�������������
1� �

p
�1� � ln�1� ��

� � ln�w=2�� �O�w ln�w=2��: (91)

There is a sharp peak at �q � � that grows like� lnw2 . From
this we infer that the scattering time displays a kind of
resonance phenomenon near the critical energy, �q 	 �.
The resonance gets more distinct when the packet becomes
narrower.
The integral in Eq. (87) can be dealt with in an analo-
gous way. First,

1

w

Z ��w=2

��w=2
dqF2��; q� �

1

w

Z ��w=2

��w=2
dq �a�q� �

1

w


Z ��w=2

��w=2
dq �b�q� lnjq� �j

�
1

w

Z ��w=2

��w=2
dq �c�q�ln2jq� �j;

where

�a�q� :� 4�1� q��1� �� q ln�1� q��2;

�b�q� :� 8�1� q�q�1� �� q ln�1� q��;

and

�c�q� :� 4�1� q�q2

are smooth functions in a neighborhood of q � �. Thus,
for the first two integrals, we can use the formulas (89) and
(90). The third integral can be written as follows
1

w

Z ��w=2

��w=2
dq �c�q�ln2jq� �j �

1

w
f� �c1�q� � �c1����ln2jq� �jg��w=2

��w=2 �
1

w

Z ��w=2

��w=2
dq2

�c1�q� � �c1���
q� �

lnjq� �j;
where �c01�q� � �c�q� and the function

�c 2�q� :� 2
�c1�q� � �c1���

q� �

is smooth in a neighborhood of q � � with �c2��� � �c���.
Again, we use Eq. (90) and obtain

1

R2
o
h
j�ŝ�Ro��2j
i�4�1�������4ln�1����

�4�1����1�� ln�1���

�� ln�w=2��2�O�wln2�w=2��: (92)

It follows that the spread of the scattering time at �q � �
attains a regular limit for w! 0 and in this sense is
relatively weakly dependent on w:

�ŝ�Ro�
Ro

� 2
�������������������������������������������������������
�1� ������ 4 ln�1� ���

q
�O�wln2�w=2��: (93)

Finally, in the interval

� < q < 1;

numerical analysis shows that F first steeply falls to a
minimum, then slowly increases reaching its second maxi-
mum if � is smaller than about 0.1, and then falls again to
negative values near q � 1. Near its local maximum, F is
of course slowly changing and the scattering time is in a
-13
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very good approximation equal to the value of F there (for
small w). Expanding F and @F=@q in powers or �, we find
that the position and the value of the second maximum
depends only weakly on �; the corrections to results ob-
tained for � � 0 are of the second order in �. Thus, we
obtain for the position qM��� of the second maximum

qM��� � qM�0� �O��2�;

where qM�0� is the larger solution to the equation
@F=@q�0; q� � 0, which reads

ln
1� q
q
�

3

2� 3q
;

and the value FM��� of the second maximum is

FM���
Ro

�
FM�0�

Ro
�O��2�;

where FM�0� is the value of the second maximum of
F�0; q�, or

FM�0�

Ro
�

4
����������������������
1� qM�0�

p
2� 3qM�0�

:

Numerical calculations yield

qM�0� � :133 071

and

FM�0�

Ro
� 2:32 658:

We observe first that the second maximum lies at very
high energies. If an observer is going to send a shell from
2.1

0.01

2.05

2

0.0050 0.0250.020.015

2.15

q_bar
w = 0.01                

w = 0.0001              

FIG. 4 (color online). The expected scattering time 1
Ro


h
jŝ�Ro�j
i for box wave packets is plotted as a function of
the dimension-free mean energy q. Plots are shown for packets
with constant energy widths w � 0:01 and w � 0:0001. The
mean scattering time has a peak near the critical energy at � �
0:01. The peak is more distinctive when the packet is narrower.
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the radius, say, 1 m to the center, then the energy needed to
achieve the scattering time corresponding to the second
maximum lies at about 25 Earth masses. The existence of
the second maximum and the fall in the scattering time at
still higher energies result from the manipulations of the
observer proper time and of his position in the space-time
due to this huge mass concentration rather than from some
processes near and under the horizon. The second obser-
vation is that the value of the second maximum is not much
larger than 2Ro, which corresponds roughly to the flat
space-time value. The plot of the resonance behavior of
the time (86) for some typical values of � and w in a
reasonable energy interval is given in Fig. 4.
VIII. DISCUSSION

The values of the scattering times calculated in the
previous section are roughly comparable to the time
2�Ro � Rm� the light needs to cross twice the flat space-
time distance between the observer and the mirror. It can be
appreciably shorter if the wave packet contains sufficiently
strong high-energy part ( �q 	 1), or much larger, if it is
concentrated at the resonant energy ( �q 	 �). Although the
resonance can yield arbitrarily long scattering times, it
works only in an extremely narrow regime of �q and w.
Hence, our quantum theory does not yield black hole-like
objects with their observed properties.

Quite a number of excuses can be thought of. One class
of explanations might be based on the obvious difference
between our shell model and a real astrophysical object.
For example, the collapse of the shell is a one-off event
while an astrophysical black hole must be fed steadily in
order to be observable; the zero-rest-mass shell is rather
different from a massive star; etc. Another class contains
explanations that seek the reason for too short scattering
times in our calculation method. Could the model of thin
null shell be kept and only the ideas changed of how the
scattering time is defined and calculated? Let us focus on
this second possibility.

Some freedom of this class is the usual ambiguity in
factor orderings and in the choice of self-adjoint exten-
sions, such as, in our case, the freedom in the parameter �
in Eq. (66). It seems, however, that different choices of this
kind are rather unlikely to change the scattering times a
great deal. Some hopeful freedom seems to be the
following.

Our quantum calculation is based on the classical for-
mula (23) that has been changed in two ways. First, it is
extended for energies in the interval �0; Em� to the interval
�0; Eo� by replacing the parenthesis under the logarithm by
the absolute value signs:

s�Ro��

������������������
1�

2GE
Ro

s �
2�Ro�Rm��4GEln

��������Ro�2GE
Rm�2GE

��������
�
:

(94)
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FIG. 5 (color online). The construction of the 3-surface �00�.
The dotted lines are the 3-surfaces of constant external and
internal Schwarzschild time. The space-time above the shell is
Schwarzschild and below it is Minkowski one. The observer
trajectory is not shown, but if it crossed the shell at T� > Tm, the
scattering time would be negative.
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Second, this extended formula is turned into an operator.
Can the formula (94) be given any ‘‘classical’’ meaning for
E> Em?

To see how this might be possible, consider first classical
shells with energies smaller than Em. Then the space-time
outside the shell can be foliated by spacelike surfaces of
constant Schwarzschild time T. Let us denote by Tm the
Schwarzschild time of the encounter between the shell and
the mirror, and by T� those between the shell and the
observer. One easily verifies that

s�Ro� �

�������������������
1�

2GE
Ro

s
�2�T� � Tm��: (95)

Next, this formula can be extended to higher energies as
follows. Consider an ingoing-shell solution with E> Em.
Even then, the Schwarzschild time coordinate T is well-
defined everywhere outside the shell (up to a constant shift,
which has no influence on the results). The differences to
the E< Em case are that there is the internal
Schwarzschild time for the part of the space-time that
lies inside the horizon, and the external Schwarzschild
time outside; that the levels of the internal time are time-
like; and that each of these ‘‘times’’ runs itself through the
whole real axis (in the maximal—Kruskal—extension of
Schwarzschild space-time). Therefore, the value T� (of the
external) and Tm (of the internal time) are both well-
defined in this case, too, and one can again easily verify
that Eq. (95) gives the same answer as Eq. (94).

The formula (95) has an interpretation in terms of space-
times and foliations even for E> Em. Indeed, the external
Schwarzschild time coordinate runs through all real values
along the ingoing shell, starting by�1 at I� and reaching
�1 at the horizon, R � 2GE. Hence, the external
Schwarzschild time takes on the value Tm somewhere at
the shell trajectory outside the horizon; let us denote the
radius of this point by R0m; clearly, R0m > 2GE> Rm.
Hence, there is a surface, �0, consisting of two pieces:
the first is the shell trajectory from the radius Rm to the
radius R0m and the second is the part of the surface T � Tm
from R0m to R � 1. �0 is a non-time-like surface; it can,
therefore, be slightly deformed to a smooth spherically
symmetric spacelike surface �00� that runs from the inter-
section of the ingoing shell with the mirror at R � Rm
inside the horizon until it meets the T � Tm surface outside
the horizon at R � R0m � 	, where 	 is any given real
number larger that zero that can be arbitrarily small.
Afterwards, �00� coincides with the surface T � Tm for
R 2 �Rm � 	;1�. The construction is displayed in Fig. 5.

Suppose that R0m < Ro so that the scattering time will be
positive. Then the construction of a classical space-time
with a reflected shell and the scattering time given by
Eq. (95) is as follows. Let us cut the ingoing-shell space-
time along �00�, throw away the future part and denote the
remaining space-time by M00

�. Let us further define an-
other piece M00

� of space-time as the time reversal of M00
�

064025
that is given by Eq. (10) with an arbitrary choice of
parameter u. Finally paste together M00

� with M00
� along

�00� and its time reversal �00� in M00
� so that spheres of the

same radius coincide. The resulting space-time M00 has a
continuous metric which is piecewise smooth, but only C0

at �00 between the radii Rm and R0m � 	 and at the shell;
observe that it is smooth at �00 for R> R0m � 	 because of
the time-reversal properties of Schwarzschild space-times
mentioned in the Introduction. The shell is reflected at the
mirror that forms a boundary of M00 and the corresponding
scattering time is again given by Eq. (94) for any E 2
�0; Eo�.

The use of the time reversal in the construction is not
accidental. Each space-time with the outgoing shell that
has the same energy and with the mirror that has the same
radius as our ingoing shell space-time is a time reversal
(10) of the ingoing-shell space-time. Hence, the space-time
that describes the reflection of the shell at the mirror can
also be constructed by pasting these ingoing and outgoing-
shell space-times along some spacelike 3-surfaces that
cross the mirror at the shell-reflection points. One of these
surfaces lies in the ingoing, the other in the outgoing shell
space-time. The surfaces must be isometric to each other or
else they will not match each other and the resulting metric
will not be C0 at the pasting points. One can then easily
verify that the two 3-surfaces must also be related by the
time reversal.

Let us call ‘‘fold’’ any spacelike 3-surface where the
metric is only C0. Of course, the folds do not make much
sense from the classical general relativity point of view. A
space-time with folds can, however, be used as a possible
path in the calculation of a path integral defined by the
Feynman-Kac formula (Ref. [20], Sec. X.11). Similar
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space-times have been described in Refs. [6,21]. Observe
that the folds in any polygonal ‘‘zig-zag’’ path lie at the
surfaces of constant time and their form is, therefore,
influenced by the chosen foliation. The scattering time
depends not only on the number of folds, but also on the
foliation, as mentioned in the Introduction.

Even if one would take this polygonal space-time idea
seriously, one could see at once that it opens new freedom
in addition to giving an interpretation of Eq. (94). Why the
internal Schwarzschild time Tm of the reflection is to
coincide with the external Schwarzschild time T00 at which
the two space-time pieces M00

� and M00
� are to be pasted

together for the radii R> R00 (R00 � R0m � 	 in the above
construction)? Clearly, similar constructions can be carried
out for any value of T00 whatsoever because the external
Schwarzschild time runs through all real values along the
shell. This shows explicitly how different foliations can
lead to very different scattering times.

In fact, it seems that the foliation ought to be chosen
such that the folds are limited to a region with as small
radius as possible. Recall that the constructed space-time
had a regular (smooth) classical metric outside R00. Sure,
for E> Em, there is no classical solution interpolating
between the two asymptotic (in and outgoing) states of
064025
the shell that does not pass at least through one fold, but the
folds could be banished to the inside of the horizon in this
way. Thus, the resulting quantum geometry could be very
similar to the classical Schwarzschild geometry outside the
horizon, while it had to differ strongly from it inside. At the
same time, the condition that the folds must not protrude
too much through the horizon would also lead to long
scattering times (they have to go out of the horizon at least
a little because they have to meet the 3-surfaces of constant
external Schwarzschild time). This follows from the fact
that T00 ! 1 along the shell as R00 approaches the horizon.

One possible conclusion from this discussion is that the
quantum theory of gravitational collapse does not entail
any natural formula for the scattering time. More precisely,
the differences in scattering times of one and the same
scattering process arising from various possible definitions
of scattering time cannot be attributed only to different
choices of factor orderings (because their order of magni-
tude is much larger that that of the Planck constant). This
seems to leave some hope that a method (or even a new
principle) exists, which 1) can be better justified than
Eq. (94) and 2) would lead to considerably longer scatter-
ing times. More research is needed, before a clear under-
standing can be established.
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