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Crossing the w � �1 barrier in the D3-brane dark energy model

I. Ya. Aref’eva* and A. S. Koshelev†

Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina str. 8, 119991, Moscow, Russia

S. Yu. Vernov‡

Skobeltsyn Institute of Nuclear Physics, Moscow State University, Vorob’evy Gory, 119992, Moscow, Russia
(Received 18 July 2005; published 23 September 2005)
*Electronic
†Electronic
‡Electronic

1550-7998=20
We explore a possibility for the Universe to cross the w � �1 cosmological constant barrier for the
dark energy state parameter. We consider the Universe as a slowly decaying D3-brane. The D3-brane
dynamics are approximately described by a nonlocal string tachyon interaction and the backreaction of
gravity is incorporated in the closed string tachyon dynamics. In a local effective approximation this
model contains one phantom component and one usual field with a simple polynomial interaction. To
understand cosmological properties of this system we study toy models with the same scalar fields but
with modified interactions. These modifications admit polynomial superpotentials. We find restrictions on
these interactions under which it is possible to reach w � �1 from below at large time. Explicit solutions
with the dark energy state parameter crossing or not crossing the barrier w � �1 at large time are
presented.
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I. INTRODUCTION

The combined analysis of type Ia supernovae, galaxy
cluster measurements, and Wilkinson microwave anisot-
ropy probe (WMAP) data provide evidence for accelerated
cosmic expansion [1–3]. The cosmological acceleration
strongly indicates that the present day Universe is domi-
nated by a smoothly distributed slowly varying dark energy
(DE) component. The modern constraints on the DE state
parameter are around the cosmological constant value w �
�1� 0:1 [3–8] and the possibility that w varies in time is
not excluded. From the theoretical point of view there are
three essentially different cases: w>�1 (quintessence),
w � �1 (cosmological constant), and w<�1 (phantom)
(see [9–37] and refs. therein).

Since from the observational point of view there is no
barrier between these three possibilities it is worth consid-
ering models where these three cases are realized. Under
general assumptions it is proved in [38] that within single
scalar field models one can realize only one possibility:
w � �1 (usual model), or w � �1 (phantom model). It is
interesting that the interaction with the cold dark matter
does not change the situation and does not remove the
cosmological constant barrier [38,39]. There are several
phenomenological models describing the crossing of the
cosmological constant barrier [40–57]. Most of them use
more then one scalar field or use a nonminimal coupling
with gravity, or modified gravity, in particular, via brane-
world scenarios. In two-field models one of these two fields
is a phantom and the other one is a usual field and the
interaction is nonpolynomial in general.
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It is important to find a model which follows from
fundamental principles and describes a crossing of thew �
�1 barrier.

In this paper we show that such a model may appear
within a brane approach when the Universe is considered
as a slowly decaying D3-brane and a possibility to cross the
barrier comes from taking into account a backreaction of
the D3-brane. This DE model [36] assumes that our
Universe is a slowly decaying D3-brane and its dynamics
are described by the open string tachyon mode and the
backreaction of this brane is incorporated in the dynamics
of the closed string tachyon. The open string tachyon
dynamics are described within a level truncated open string
field theory (OSFT). The notable feature of this OSFT
description of the tachyon dynamics is a nonlocal poly-
nomial interaction [58–68]. It turns out the open string
tachyon behavior is effectively described by a scalar field
with a negative kinetic term (phantom) [69–73]. However
this model does not suffer from quantum instability, which
usually phantom models have, since in the nonlocal theory
obtained from OSFT there are no ghosts at all near the
nonperturbative vacuum [36].

Level truncated cubic OSFT fixes the form of the inter-
action of local fields to be a cubic polynomial with non-
local form factors. Integrating out low lying auxiliary fields
one gets a 4th degree polynomial [64,65]. Higher order
auxiliary fields may change the coefficients in front of
lower terms and produce higher degree polynomials. All
these corrections are of higher orders of �0.

The second scalar field comes from the closed string
sector, similar to [74] and its effective local description is
given by an ordinary kinetic term [75] and, generally
speaking, a nonpolynomial self-interaction [76]. An exact
form of the open-closed tachyon interaction is not known
and we consider the simplest polynomial interaction.
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Our goal is to understand the following: is it possible in
the two-component polynomial model that w crosses the
barrier w � �1 at large time and reaches �1 from below
at infinity? For this purpose we study special polynomial
two-component models. For these models there exist the
third order odd superpotentials. The existence of a super-
potential puts restrictions on the form of the potential. For
polynomial potentials these restrictions give relations
among coefficients. In this polynomial case we can esti-
mate the behavior of DE state parameter at large times. We
expect that small variations of the coefficients of the po-
tentials obtained from the given superpotential do not
change qualitatively the behavior of the system.

The superpotentials under consideration produce poten-
tials which are rather close to the form of the open-closed
tachyon potential for a non-BPS brane. Indeed, within the
level truncated string field theory description of a non-BPS
D3-brane decay both fields have tachyon mass terms and
the interaction is polynomial, the 4th order at the lowest
levels. A natural deformation of this form of the open-
closed string tachyon potential is given by extra 6th order
terms.

Corresponding local models in the flat background ad-
mit exact solutions. An exact solution of an effective local
model describing the pure open sector of a non-BPS D3-
brane is given by the kink solution [69,70] and the closed
tachyon dynamics under reasonable assumptions is given
by a lump solution [75,77]. In a nonflat background there is
a deformation of the effective local model describing the
pure open sector of a non-BPS D3-brane such that the
corresponding Friedmann equations have exact solutions
[37]. A more straightforward generalization of the model
[37] to the case of two fields gives a model with a kink-
lump solution. This solution at late times has a behavior as
a quintessence model, i.e. w goes to �1 from the above.

We also construct an exactly solvable stringy DE model
with the state parameter which crosses the cosmological
constant barrier w � �1 at a rather late time from above,
reaches its local minimal value that is less than �1, and
approaches�1 from below at infinite time. The form of the
potential in this case is rather complicated and we cannot
construct it from the string field theory yet. The Hubble
parameter in this model is a nonmonotonic function of time
as is the DE state parameter w.
II. THE MODEL

We consider a model of Einstein gravity interacting with
a single phantom scalar field � and one standard scalar
field � in the spatially flat Friedmann universe. Since these
scalar fields are assumed to come from string field theory
the string mass Ms and a dimensionless open string cou-
pling constant go emerges. In typical cases phantom rep-
resents the open string tachyon and the usual scalar field
the closed string tachyon [36,75,77]. The action is
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whereMP is the reduced Planck mass, g�� is a spatially flat
Friedmann metric

ds2 � �dt2 � a2�t��dx2
1 � dx

2
2 � dx

2
3�;

and the coordinates (t, xi) and fields � and � are dimen-
sionless. Hereafter we use the dimensionless parameter mp

for short:

m2
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g2
oM2

P

M2
s
: (2)

If the scalar fields depend only on time then the equations
of motion are as follows

3H2 �
1

m2
p

�
�

1

2
_�2 �

1

2
_�2 � V

�
; (3a)

2 _H �
1

m2
p
� _�2 � _�2�; (3b)

��� 3H _� �
@V
@�

; (3c)

��� 3H _� � �
@V
@�

: (3d)

Here dot denotes the time derivative and H 	 _a�t�=a�t�.
The form of the potential is assumed to be given from

string field theory within the level truncation scheme.
Usually for a finite order truncation the potential is a
polynomial and its particular form depends on the string
type.

In the present analysis we impose the following restric-
tion on the potential:
(a) p
-2
otential admits an existence of a polynomial super-
potential (see details in [78] and in the next section)
(b) p
otential is even

(c) �
�t� has nonzero asymptotics and ��t� has zero

asymptotics as t! 1

(d) p
otential is not more than 6th degree

(e) c
oefficient in front of 5th and 6th powers are of

order 1=m2
p and the limit m2

p ! 1 gives a nontrivial
4th degree potential.
Particular exact solutions will be found by using more
specific ansatzes. We will see that for the solution to be
constructed in Section IV the form of the potentials in the
limit m2

p ! 1 reproduces the one given by an approxima-
tion of the lowest level truncated string field theory.
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III. w � �1 BARRIER FOR TWO-COMPONENT
MODEL WITH POLYNOMIAL SUPERPOTENTIAL

A. Setup

We can assume that H�t� is a function (named a super-
potential, see for example [78]) of ��t� and ��t�:

H�t� � W���t�; ��t��:

This allows us to rewrite (3b) as

@W
@�

_��
@W
@�

_� �
1

2m2
p
� _�2 � _�2�: (4)

System (3) is certainly solved provided the relations

@W
@�
�

1

2m2
p

_�;
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@�
� �

1

2m2
p

_� (5)

are satisfied. If this is the case we have the following
relation between the potential V and the superpotential W

V � 3m2
pW2 � 2m4

p

��
@W
@�

�
2
�

�
@W
@�

�
2
�
: (6)

This relation gives the potential in terms of W and its first
derivatives with respect to � and �. Provided the super-
potential is given to find a solution of the dynamical system
one has to solve the second order system of ordinary
differential Eqs. (5).

B. Construction of the potential

In this subsection we construct the potentials that admit
a polynomial superpotential. Recall, that we restrict ourself
to have 6th degree even polynomial potential. Then general
substitutions for _��t� and _��t� are as follows

_� �
X

m;n�0;1;2

pmn�m�n; _� �
X

m;n�0;1;2

xmn�m�n: (7)

Equivalence of second mixed derivatives of W implies

x12 � �p21; x11 � �2p20; x01 � �p10;

p11 � �2x02; x21 � p12 � x22 � p22 � 0:

For the potential to be even we have to set constants p01,
p10, x01, x10 to zero and an integration constant in W
should be zero as well. Also in order to have the 6th degree
of the interaction potential for � and � we have to put
p21 � 0 and x12 � 0. Substituting expressions (7) into (5)
and integrating we get

W �
1

2m2
p

�
p00��

1

3
p02�3 � x00��

1

3
x20�3

� p20��
2 � x02�

2�
�
: (8)

One can obtain the potential V from relation (6). However,
we postpone this to the next subsection when the asymp-
totic late time behavior will be specified.
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Note that in the case of a single field the superpotential
W defines this scalar field, as a solution of the first order
differential equation, which always can be trivially solved
in quadratures [78] and there is no difference to start with
the explicit form of the (phantom) scalar field as a function
of time or with the corresponding form of the superpoten-
tial. In the case of two fields the superpotential method
gives the second order system of differential equations,
which may be nonintegrable. In this case it is more pref-
erable to start from the form of the superpotential, which
corresponds to the required form of the potential. In
Section V we demonstrate that the usual and the phantom
scalar fields can have very unusual dependence on time,
which cannot be predicted from the consideration of mod-
els with single field and a polynomial potential.

C. Time evolution

Differential Eqs. (7) when all relations among pmn and
xmn constants are taken into account read as follows

_��t� � p00 � p02�
2�t� � 2x02��t���t� � p20�

2�t�;

_��t� � x00 � x02�2�t� � 2p20��t���t� � x20�2�t�:
(9)

To specify the boundary conditions let us recall that we
have in mind the following picture. We assume that the
phantom field � smoothly rolls from the unstable pertur-
bative vacuum (� � 0) to a nonperturbative one, say, � �
a and stops there. The field � is expected to asymptotically
go to zero in the infinite future. This asymptotic behavior
implies p00 � �p02a2 and x00 � �x02a2 and we have the
following system left:

_��t� � p02�2�t� � 2x02��t���t� � p20�2�t� � p02a2;

_��t� � x02�
2�t� � 2p20��t���t� � x20�

2�t� � x02a
2:

(10)

The superpotential W can be rewritten in the following
form

W �
1

6m2
p
�p02���2 � 3a2� � 3p20��2

� 3x02��a
2 ��2� � x20�

3�: (11)

The corresponding potential V is as follows

V �
1

2
�p02��

2 � a2� � 2x02��� p20�
2�2

�
1

2
�x02��2 � a2� � 2p20��� x20�2�2

�
1

12m2
p
�p02��3a2 ��2� � 3x02��a2 ��2�

� 3p20��
2 � x20�

3�2: (12)
-3



I. YA. AREF’EVA, A. S. KOSHELEV, AND S. YU. VERNOV PHYSICAL REVIEW D 72, 064017 (2005)
D. Cosmological consequences: late time behavior

From the cosmological point of view we address the
following questions to our model. What is the behavior of
the Hubble parameter H, how do the state parameter w and
the deceleration parameter q evolve?

Even without having a time dependence for the fields �
and � we can answer some of the above questions provided
that we know the asymptotic behavior of the fields. Indeed,
we assume the field ��t� starts from 0 and goes to a finite
asymptotic a and its velocity goes to zero in the infinite
future. The field ��t� and its velocity _��t� go to zero in the
infinite future. Recall, that the function H�t� is restored
once we substitute the time dependence ��t� and ��t� into
(11). As the first result we see thatH�t� in the infinite future
goes asymptotically to the following value

H1 � �
a3p02

3m2
p
: (13)

We immediately see that p02 should be negative if a is a
positive asymptotic value of the field ��t�. Also it is
evident that _H�t� goes to zero.

Further one can expand functions ��t� and ��t� for large
times as follows

��t� � a� f�t� � . . . ; ��t� � g�t� � . . . ; (14)

where f�t� 
 a, g�t� 
 a, and the ratio f�t�=g�t� is finite.
Assuming such an expansion we have the following
asymptotic behavior of the Hubble parameter

Has �
a

2m2
p
�p02f

2�t� � 2x02f�t�g�t� � p20g
2�t�� �

a3p02

3m2
p
:

The eigenvalues of the quadratic form in f and g:

�H;1 �
1

2
�p20 � p02 �

�����������������������������������������
�p20 � p02�

2 � 4x02

q
�;

�H;2 �
1

2
�p20 � p02 �

�����������������������������������������
�p20 � p02�

2 � 4x02

q
�

determine whetherH�t� comes to its asymptotic value from
above (�H;1 > 0 and �H;2 > 0) or from below (�H;1 < 0
and �H;2 < 0). If �H;1 and �H;2 have opposite signs we
need to use more detailed approximation.

Now we turn to the behavior of the state parameterw and
the deceleration parameter q. They are related with the
Hubble parameter by the following relations

w � �1�
2

3

_H

H2 ; q � �1�
_H

H2 :

Since H�t� in our consideration goes asymptotically to a
finite constant and its time derivative vanishes both the
state and the deceleration parameters go to �1. The ques-
tion doesw approach�1 from above or from below is very
important. The first case is the so-called quintessencelike
behavior and the second one is the phantomlike behavior. It
is convenient to rewrite the relation for the state parameter
064017
using the Eq. (3b) as follows

w � �1�
_�2�t� � _�2�t�

3m2
pH

2 :

Substituting expressions for the _��t� and _��t� from (10) we
get

w � �1�
�

3m2
pH

2 ; (15)

where

� � �p02�2�t� � 2x02��t���t� � p20�2�t� � p02a2�2

� �x02�
2�t� � 2p20��t���t� � x20�

2�t� � x02a
2�2:

(16)

We employ again the asymptotic expansion (14) to write

�as � 4a2�p2
02 � x

2
02�f

2�t� � 4a2�p2
20 � x

2
02�g

2�t�

� 8a2x02�p20 � p02�f�t�g�t�: (17)

The quadratic form

�p2
02 � x

2
02�f

2�t� � �p2
20 � x

2
02�g

2�t�

� 2x02�p20 � p02�f�t�g�t�

has the following eigenvalues

��;1 �
1

2
�p2

02 � p
2
20

�
��������������������������������������������������������������������������
�p2

02 � p
2
20�

2 � 4x2
02�x

2
02 � 2p20p02�

q
�;

��;2 �
1

2
�p2

02 � p
2
20

�
��������������������������������������������������������������������������
�p2

02 � p
2
20�

2 � 4x2
02�x

2
02 � 2p20p02�

q
�:

(18)

Therefore, when both ��;1 and ��;2 are positive we have a
phantomlike behavior, when these �s are both negative we
have a quintessencelike behavior. When ��;1 and ��;2 have
opposite signs we may have oscillations at large times near
the cosmological constant barrier w � �1.

In the next sections we consider two special solutions.
The first one corresponds to the quintessence behavior and
the second one does so to the phantom behavior. Moreover
we will see that for these solutions the state parameter
crosses the w � �1 barrier. Notice that such a crossing
is forbidden in single field models [38].
IV. QUINTESSENCE LATE TIME SOLUTION

A. Ansatz and corresponding potential

We are about to construct a solution to the system (10).
The system is essentially simplified if we take

x02 � x20 � 0: (19)

The latter is the ansatz we explore in this section.
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Substitution of this ansatz into (10) gives

_��t� � p02��2 � a2� � p20�2�t�;

_��t� � �2p20��t���t�:
(20)

The superpotential W given by (8) under conditions (19)
reads as follows

W �
1

6m2
p
���p02�3a2 ��2� � 3p20�2�: (21)

The corresponding potential V can be found using relation
(6) to be

V �
1

2
�p02��2 � a2� � p20�2�2 � 2p2

20�
2�2

�
1

12m2
p
�2�p02�3a

2 ��2� � 3p20�
2�2: (22)
B. Solution

A solution to the system (20) when the field � starts
from 0 and goes asymptotically to a and the field �
asymptotically vanishes is the following

� � a tanh�2ap20t� (23)

and

� �
a

������������
2� r
p

cosh�2ap20t�
: (24)

Hereafter in this section we denote r � p02=p20.
Let us note that one obtains the same solution (23) and

(24) for different potentials. Namely, the solution is not
violated if we take a potential of the form

V1 � V � �V; (25)

where V is the potential given by (22) and �V is such that
�V, @��V�=@�, and @��V�=@� are zero on the solution.
For ��t� and ��t� given by (23) and (24), respectively, the
most general even form of �V with the 6th degree inter-
action is the following

�V � A
�
�2 �

1

2� r
�2 � a2

�
2

� �1� v1�2 � v2�2 � v3���: (26)

This example shows that the same functions ��t�, ��t�
(and consequently the Hubble parameter H�t�, state pa-
rameter w, and deceleration parameter q�t�) can corre-
spond to different potentials V��; ��.

C. Cosmological properties

Substituting (23) and (24) into (21) we obtain the
Hubble parameter
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H �
a3

3m2
p

tanh�2ap20t�
�
p02 � 3p20

cosh2�2ap20t�
� p02

�
: (27)

The function H�t� is not monotonic for general values of
the parameters and has an extremum at the point

tc �
log

� �������
3�r
2�r

q
�

�������
1

2�r

q �
2ap20

:

We are certainly interested in the case when this tc is
real, i.e. the argument of the logarithm should be a positive
real value. That means that we have to have r >�2.
Moreover, if r >�2 then the argument of the logarithm
is greater than 1, and consequently the value of the loga-
rithm is positive. Further we recall that in order to have a
positive asymptotic for theH�t�we require p02 < 0. On the
other hand expression for tc implies that p20 > 0 if we are
interested in positive time semiaxis (the situation is sym-
metric for the negative time semiaxis). Thus, r turns out to
be less than 0. Eventually, we state that

�2< r< 0:

The Hubble parameter in the extremum is

Hc �
2a3

3m2
p
p20

������������
1

3� r

s
:

Recall that at large times the Hubble constant goes to

H1 � �
a3

3m2
p
p02

and the ratio Hc=H1 is as follows

Hc

H1
� �

2

r

������������
1

3� r

s
(29)

and is determined by the ratio r of parameters p02 and p20.
It is a matter of a simple algebra to check that for r >�2
the ratio (29) is greater than 1. This means that for the
specified domain of r the point tc corresponds to a maxi-
mum. The typical plots corresponding to the performed
analysis are shown in Fig. 1. In the case r <�2 the tc
becomes imaginary and the function H�t� turns out to be
monotonic. This situation is close to the single field model.
The case of r > 0 is implausible because H�t� changes the
sign during the evolution and has a negative asymptotic.

The state parameter w is given by the following expres-
sion

w � �1�
4p20m2

pcosh4�2ap20t�

a2�p02�cosh2�2ap20t� � 1� � 3p20�

�

�
1� 3tanh2�2ap20t�

cosh2�2ap20t� � 1

�
2p02

p02�cosh2�2ap20t� � 1� � 3p20

�
: (30)
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It has a singularity in the origin and behaves as �1=t2. At
the point tc the state parameter w crosses �1 because at
this point _H�t� � 0. After tc for particular parameters (see
Fig. 1) there appears a period of deceleration (q > 0),
however, at late times the Universe returns to the accelera-
tion,w and q for this solution approach�1 from the above.
The latter is evident from the expression for � (16)

� � �4p2
20a

4

�
2� r

cosh2�2ap20t�
�

3� r

cosh4�2ap20t�

�
:

For the large time the first term in the parentheses domi-
nates over the second one and since in our case it is
assumed that r >�2 we obtain that �< 0, w goes to
�1 from the above, and the solutions have the quintes-
sencelike behavior.

D. Connection to superstring field theory (SSFT)

The potential (22) contains mass terms for the fields �
and �. Their masses are given as follows

m2
� � p2

02a
2

�
3a2

2m2
p
� 2

�
; m2

� � �2p02p20a
2: (31)

However we have obtained previously the following re-
strictions: p02 should be negative, p20 should be positive
once the asymptotic a is chosen to be positive in order to
have a suitable cosmological behavior. Also it follows from
(29) that the ratio r should be small if we want to observe a
large ratio of the maximal value of the Hubble parameter
and its asymptotic value. These restrictions imply that both
m� andm� are small, the field� is a tachyon in the limit of
the large reduced Planck mass, and the field � has a
positive mass squared.

The situation drastically changes once we make use of
the freedom (26). For simplicity we can choose v1 � v2 �
v3 � 0. In this case the new potential will give new masses
for the fields. Indeed,

M2
� � p2

02a
2

�
3a2

2m2
p
� 2

�
� 4Aa2;

M2
� � �2p02p20a

2 �
4Aa2

2� r
:

(32)

Provided p02=A is small we effectively change the charac-
teristic of the fields because now if A> 0 they are both
tachyons. Moreover, in the limit r! 0 the ratio of the
masses M2

�=M
2
� goes to 2 as it should be if we consider

� as the open string tachyon and � as the closed string
tachyon.

The trajectories of the fields � and � are presented in
Fig. 2.
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V. PHANTOM LATE TIME SOLUTION

A. Ansatz and corresponding potential

In this section we construct a more complicated solution
to system (10) which exhibits a phantomlike late time
behavior for particular values of the parameters. Let us
assume the following relations among the coefficients of
system (10)

p02 � x02 � ��x02 � p20� � p20 � x20 � �c: (33)

Under this assumption we have

_��t� � p02��
2�t� � a2� � 2�p02 � c���t���t�

� �p02 � 2c��2�t�;

_��t� � �p02 � c��a2 ��2�t�� � 2�p02 � 2c���t���t�

� �p02 � 3c��2�t�: (34)

The superpotential under conditions (33) has the form

W �
1

6m2
p
��p02��3a

2 ��2� � 3�p02 � 2c���2

� 3�p02 � c���a
2 ��2� � �p02 � 3c��3� (35)

and the corresponding potential is

V �
1

2
�p02��

2 � a2� � 2�p02 � c���� �p02 � 2c��2�2

�
1

2
��p02 � c��a2 ��2� � 2�p02 � 2c���

� �p02 � 3c��2�2 �
1

12m2
p
�p02��3a

2 ��2�

� 3�p02 � c���a
2 ��2� � 3�p02 � 2c���2

� �p02 � 3c��3�2:� 3�p02 � 2c���2

� �p02 � 3c��3�2:
064017
B. Solution

Combining the equations of system (34) one readily
finds

_��t� � _��t� � ca2 � c���t� � ��t��2:

Therefore

��t� � ��t� � a tanh�ac�t� t0��: (36)

Substituting ��t� � a tanh�ac�t� t0�� ���t� into (34) one
finds

� � a tanh�ac�t� t0�� �
a2�p02 � c�t� ~C

cosh2�ac�t� t0��
(37)

and

� �
a2�p02 � c�t� ~C

cosh2�ac�t� t0��
: (38)

The behavior of the solution depends on the particular
values of parameters a, c, t0, and ~C. We adjust ~C in such
a way that ��0� � 0. This gives

~C � �
a
2

sinh�2act0�:

The form of trajectories (37) and (38) for the particular
values of the parameters is presented in Fig. 3.

C. Cosmological properties

On solutions (37) and (38) the Hubble parameter has the
following form

H � �
a3p02 sinh�ac�t� t0���2cosh2�ac�t� t0�� � 1�

6m2
pcosh3�ac�t� t0��

�
a4c�p02 � c�t� sinh�2act0�

2m2
pcosh4�ac�t� t0��

: (39)
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An analysis of this function is rather complicated because
we come to transcendent equations once we want to find
the extrema. The situation is simplified a bit if we use the
Eq. (3b) to express the _H�t�. One can write

_H�t� � _�2�t� � _�2�t� � � _��t� � _��t��� _��t� � _��t��:

(40)

The last multiplier in our solution is equal to

a2c

cosh2�ac�t� t0��
:

The latter expression has the same sign as c and becomes 0
only in the infinite future. Note that c should be positive if
a is taken to be positive. Otherwise the asymptotic value of
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H�t� will be negative. Thus, the zeros of the _H�t� are
determined by zeros of the first multiplier _��t� � _��t�.
Also, the sign of the first multiplier can determine the
late time behavior. Using the exact dependence of the fields
one can write

_�� _� �
a2

cosh2�ac�t� t0��
�2c�2a�p02 � c�t

� sinh�2act0�� tanh�ac�t� t0�� � c� 2p02�:

(41)

This expression leads to the following consequences. The
late time behavior is governed by the sign of the sum p02 �
c. It should be positive if we expect the phantomlike late
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FIG. 4 (color online). The Hubble parameter H�t� (top) and its
fine structure (bottom) at a � 1, c � 0:55, p02 � �0:05, t0 �
�2, and m2

p � 0:2.
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time behavior. Also we observe that a natural choice t0 � 0
does not lead to new interesting cosmological properties.
Indeed, in this case the expression (41) is governed by the
function t tanh�act� which is monotonic at t > 0. Thus, the
nominator of (41) has not more than one zero. If so, then
we cannot have a large peak for the function H�t� and a
phantomlike late time behavior simultaneously (exactly
such an evolution is interesting from the cosmological
point of view) because to posses these properties H�t�
should have a local minimum. To summarize we have to
have a > 0, c > 0, p02 < 0, and t0 should be finite if we
want to observe new effects and there should be p02 � c >
0 for the phantomlike late time behavior.

The complete analysis of zeros of the Eq. (41) is very
cumbersome. However, it is possible to find particular
values of the parameters for which it has two roots. This
situation is demonstrated in Figs. 4 and 5.
064017
VI. CONCLUSION AND DISCUSSION

In this paper we have investigated the dynamics of two-
component DE models, with one phantom field and one
usual field with special polynomial potentials. The main
motivation for us was a model of the Universe as a slowly
decaying D3-brane whose dynamics are described by a
tachyon field [36]. To take into account the backreaction
of gravity we consider one more scalar field. This scalar
field has a usual kinetic term. The model is close to one
discussed in [79] which is also considered in the DE
context. The model in [79] is unstable, while stability of
our model is ensured by its string origin. Also note that in a
closed bosonic string sector an extra phantom appears [80].

Within two-component DE models with a general class
of interactions which correspond to polynomial superpo-
tentials we have found conditions that show whether the
model is a phantomlike (w goes to�1 from below), or it is
a quintessencelike (w goes to �1 from above). In particu-
lar, for the simplest model inspired by a D3-brane we have
found that an inclusion of the closed string tachyon dras-
tically changes the late time regime so for the two-
component model we have w>�1 at large time, while
in the open string case one has w<�1.

The two-component model considered in this paper is
interesting also for the following reason. Several attempts
to unify early time inflation with late time accelerated
Universe (see for example [81–84] and refs. therein)
have been performed. Generally speaking it is rather diffi-
cult to do this mainly because the ratio of the Hubble
parameters in the end of the inflation and during the period
of late acceleration should be very large. In our case we
have such a possibility just by taking r close to 0 in formula
(29).

Let us recall that two scalar fields, both with usual
kinetic terms, have been used in hybrid inflation [85],
and, in particular, in [86,87] the superpotential has a simple
quadratic form.

We have also found superpotentials depending on two
components for which we have w<�1 at late times. We
have presented the explicit solution implementing this
possibility. It would be very interesting to study small
deformations of the corresponding potential and to clarify
if the constructed solution is stable or not under deforma-
tions of the form of the potentials and after including the
cold dark matter.
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