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We present the concomitant decomposition of an �s� 2�-dimensional space-time both with respect to a
timelike and a spacelike direction. The formalism we develop is suited for the study of the initial value
problem and for canonical gravitational dynamics in braneworld scenarios. The bulk metric is replaced by
two sets of variables. The first set consists of one tensorial (the induced metric gij), one vectorial (Mi) and
one scalar (M) dynamical quantity, all defined on the s space. Their time evolutions are related to the
second fundamental form (the extrinsic curvature Kij), the normal fundamental form (Ki) and normal
fundamental scalar (K), respectively. The nondynamical set of variables is given by the lapse function
and the shift vector, which however has one component less. The missing component is due to the
externally imposed constraint, which states that physical trajectories are confined to the �s�
1�-dimensional brane. The pair of dynamical variables (gij, Kij), well known from the Arnowitt-Deser-
Misner decomposition is supplemented by the pairs (Mi, Ki) and (M, K) due to the bulk curvature. We
give all projections of the junction condition across the brane and prove that for a perfect fluid brane
neither of the dynamical variables has jump across the brane. Finally we complete the set of equations
needed for gravitational dynamics by deriving the evolution equations of Kij, Ki and K on a brane with
arbitrary matter.
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I. INTRODUCTION

Recent models motivated by string theory/M theory
[1,2] indicate that gravity may act in more than four non-
compact dimensions (the bulk). Our every day experiences
are preserved by postulating that ordinary standard-model
matter remains confined to the brane, which is a single
spatial time-evolving 3-surface (a temporal 4-surface).
Remarkably, gravity is also shown to be localized on the
brane in these models [2]. As energy momentum is the
source for gravity, the expectation is that some sort of
localization of gravity on the brane is quite generic. More
exactly, the Ricci component of the curvature should be
localized through the bulk Einstein equations. However the
Weyl component of the curvature induced by black holes in
the bulk can give rise to the nonlocalization of gravity. It
has been known for a while that gravity is not localized on
the Friedmann-Lemaı̂tre-Robertson-Walker brane em-
bedded in Schwarzschild–anti-de Sitter bulk, whenever
the former has a negative cosmological constant [3]. A
recent example in this sense was found in [4], where it is
explicitly shown how gravity is delocalized on a vacuum
Einstein brane by the 5-dimensional (5D) horizon of a bulk
black hole. The way to see whether gravity is localized on
the brane is a perturbative one, emerging from the pertur-
bative analysis of the massive Kaluza-Klein modes of the
bulk graviton by perturbations around a Minkowski brane
in anti-de Sitter bulk [2] (or Einstein static vacuum brane
[5] in Schwarzshild–anti-de Sitter bulk [4]).

In order to monitor gravitational dynamics from the
brane observer’s viewpoint and to follow the evolution of
matter fields on the brane, the decomposition of bulk
05=72(6)=064015(12)$23.00 064015
quantities and their dynamics with respect to the brane is
necessary. This was done in [6], leading to an effective
Einstein equation on the brane, which contains additional
new source terms: a quadratic expression of the energy-
momentum tensor and the ’’electric’’ part of the bulk Weyl
tensor. Brane matter is related to the discontinuity (across
the brane) in the second fundamental form of the
brane through the Lanczos-Sen-Darmois-Israel matching
conditions [7–10]. The more generic situation, allowing for
a brane embedded asymmetrically and for matter
(nonstandard-model fields) in the bulk was presented in
[11]. There it was proven that the 5D Einstein equations are
equivalent on the brane with the set of the effective
Einstein equations (with even more new source terms,
arising from asymmetric embedding and bulk matter),
the Codazzi equation and the twice-contracted Gauss equa-
tion. For a recent review of other issues related to brane-
worlds, see [12].

No canonical description of the bulk, similar to the
standard Arnowitt-Deser-Misner (ADM) treatment of the
4D gravity has been given until now. That would be
straightforward if one simply aims to increase the dimen-
sion of space by one. Such a procedure however would not
know about the preferred hypersurface which is the brane.
Occurrence of effects like the localization of gravity on the
brane would be difficult to follow. Therefore we propose to
develop a formalism which singles out both the time and
the off-brane dimension. Although we primarily have in
mind the 3� 1� 1 braneworld model, we would like to
keep a more generic setup for other possible applications,
like the 2� 1� 1 decomposition of space-time in general
-1 © 2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.72.064015
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relativity. Therefore we develop the formalism in s� 1�
1 dimensions.

We suppose that the full noncompact space-time B can
be foliated by a family of �s� 1�-dimensional spacelike
leaves St, characterized by the unit normal vector field n.
The projection of this foliation onto the observable �s�
1�-dimensional space-time M (the brane) gives the usual
s� 1 decomposition of M into the foliation �t, whenever
n�x 2M� 2 TM. Let us denote the unit normal vector
field to M by l. We also suppose that B can be foliated by
a family of �s� 1�-surfaces M� (with M0 �M), or at
least we are able to extend the field l in a suitable manner to
some neighborhood of M. We denote bym the unit normal
to n in the tangent plane spanned by n and l. The inter-
section of the leaves St and M� represent spatial
s-surfaces �t�, from among which �t � �t0 (Fig. 1).

In Sec. II we define temporal and off-brane evolution
vectors and we decompose them in an orthonormal basis
adapted to the foliation St. The �s� 2�-dimensional metric
is replaced by a convenient set of dynamical variables
�gij;Mi;M�, together with the lapse and shifts of n. We
show that one shift component, N , obeys a constraint due
to the Frobenius theorem. This constraint can be traced
back to the fact that the trajectories of standard-model
particles are confined to a hypersurface. In other words,
it is a consequence of the very existence of the brane. The
simplest way to fulfill this constraint is to choose a vanish-
ing N . This in turn is equivalent with choosing the two
foliations perpendicularly,ma � la. Then we introduce the
FIG. 1. The two foliations with unit normal vector fields n and
l. The unit vector field m belongs to the tangent space spanned
by n and l and it is perpendicular to n.
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second fundamental forms of the St, M� and �t� hyper-
surfaces and establish their interconnections. This is done
via the normals n and l, their ’’accelerations,’’ the normal
fundamental forms and normal fundamental scalars, all to
be defined in Sec. II. Some of the more technical details
needed for the results of Sec. II are derived in
Appendixes A, B, and C.

We establish in Sec. III the relation between time de-
rivatives of the dynamical data and various projections of
extrinsic curvatures �Kij;Ki;K�. In Sec. IV we write the
junction conditions, in particular, the Lanczos equation
across a brane containing arbitrary matter in terms of these
extrinsic curvature projections.

Section V and Appendix D contain the decompositions
with respect to St, M� and �t� of the intrinsic curvatures.
We give the decomposition of the connections, Riemann,
Ricci and Einstein tensors. Among these we find the
Raychaudhuri, Codazzi and Gauss equations. The evolu-
tion equations for the set �Kij;Ki;K� are then readily
deduced in Sec. VI. We give them explicitly for a bulk
containing nothing but a negative cosmological constant,
but for a generic brane. With this we complete the task of
giving all gravitational evolution equations in terms of one
tensorial, one vectorial and one scalar pair of dynamical
quantities.

Section VII contains the concluding remarks. Here we
compare our formalism specified for s � 2 with previous
decompositions of space-time in general relativity.

Notation.—A tilde and a hat distinguish the quantities
defined on B and St, respectively. Quantities belonging to
M� possess a distinctive dimension-carrying index while
those defined on �t� have no special distinctive mark. For
example, the metric 2-forms on B, St, M� and �t� are
denoted ~g, ĝ; �s�1�g and g, respectively, while the corre-
sponding metric-compatible connections are ~r, D̂, �s�1�D
and D. Then
ĝa1���ard1���ds
c1���crb1���bs

� ĝa1
c1
� � � ĝarcr ĝ

d1
b1
� � � ĝdsbs ;

�s�1�ga1���ard1���ds
c1���crb1���bs

� �s�1�ga1
c1
� � � �s�1�garcr

�s�1�gd1
b1
� � � �s�1�gdsbs ;

ga1���ard1���ds
c1���crb1���bs

� ga1
c1
� � � garcr g

d1
b1
� � � gdsbs ; (1)
project any tensor ~Ta1���ar
b1���bs

on B to St, M� and �t�,
respectively.

Latin indices represent abstract indices running from 0
to �s� 1�. Greek and bold Latin indices, running from 0 to
�s� 1� and from 1 to s, respectively, either count some
specific basis vectors or they denote tensorial components
in these bases. Vector fields in Lie derivatives are repre-
sented by boldface characters. For example ~LVT denotes
the Lie derivative on B along the integral lines of the vector
field Va.
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FIG. 3. Decomposition of the off-brane evolution vector @=@�
for nonperpendicular foliations.
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II. FUNDAMENTAL FORMS

A. First fundamental forms of �t� , St and M�

By a careful study of the two foliations in Appendix A
we arrive to the conclusion that temporal and off-brane
evolutions happen along vector fields given as�

@
@t

�
a
� Nna � Na �Nma; (2)

�
@
@�

�
a
� Ma �Mma: (3)

In the above formulas Na and N have the well-known
interpretation from the decomposition of the 3�
1-dimensional space-time as shift vector and lapse func-
tion. The quantity N is the component of the shift in the
off-brane direction (Fig. 2). Finally the vector Ma and the
scalar M are quantities representing the off-brane sector of
gravity, all defined on �t� (Fig. 3).

The �s� 2�-dimensional metric is

~g ab � gab �mamb � nanb; (4)

gab being the induced metric of �t�. In Appendix B we
prove a simple relationship between the corresponding
determinants:

�������
�~g

p
� NM

���
g
p
: (5)

The induced metrics on St and on M� are respectively:

ĝ ab � ~gab � nanb � gab �mamb; (6)
FIG. 2. Decomposition of the time-evolution vector @=@t,
when the two foliations are not perpendicular (Fig. 3).
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�s�1�gab � ~gab �mamb � gab � nanb: (7)

They obey ĝabnb � �s�1�gabl
b � 0.

A simple counting shows that the �s� 2��s� 3�=2 com-
ponents of the �s� 2�-metric ~g�� can be replaced by the
equivalent set fgab;Ma;M;Na;N ; Ng, for which the re-
strictions gabn

a � gabm
a � Mana � Mama � Nana �

Nama � 0 apply. In Appendix C we however prove from
the Frobenius theorem the constraint (C2) on N and M.
This seems to reduce the number of variables; still the
information is not lost. Although the number of gravita-
tional variables is reduced by one, we gain the information
that the evolution of standard-model fields is constrained to
a hypersurface. The easiest way to satisfy this constraint is
to choose

N � 0; (8)

which means perpendicular foliations (Fig. 4). We will
follow this choice, which leads to the identification

la � ma (9)

in the rest of the paper [excepting Appendixes A, B, and C,
the results of which are indispensable in deriving the
constraint Eq. (C2)].

B. Second fundamental forms of �t� , St and M�

We introduce the �t�, St and M� projections of the
covariant derivative of an arbitrary tensor ~Ta1���ar

b1���bs
defined

on B as
-3



FIG. 4. Decomposition of the temporal and off-brane evolution
vectors @=@t and @=@� for perpendicular foliations.
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Da
~Ta1���ar
b1���bs

� gca1���ard1���ds
ac1���crb1���bs

~rc ~Tc1���cr
d1���ds

;

D̂a
~Ta1���ar
b1���bs

� ĝca1���ard1���ds
ac1���crb1���bs

~rc ~Tc1���cr
d1���ds

;

�s�1�Da
~Ta1���ar
b1���bs

� �s�1�gca1���ard1���ds
ac1���crb1���bs

~rc ~Tc1���cr
d1���ds

:

(10)

When ~Ta1���ar
b1���bs

coincides with its projection to �t�, St or
M�, the expressions (10) are the covariant derivatives in
�t�, St or M�, respectively (they annihilate the corre-
sponding metrics). Despite the notation, projections of
derivatives of tensors not lying on �t�, St and M� are
not derivatives, as they fail to obey the Leibniz rule. For
example: Da�Ml

b� � MDal
b.

As there are two normals to �t�, we can define two kinds
of extrinsic curvatures:

Kab � Danb � gcdab
~rcnd; Lab � Dalb � gcdab

~rcld:

(11)

We denote their traces by K and L. It is immediate to see
the symmetry of these extrinsic curvatures by noting that
nb � �N ~rbt and lb � M~rb� [see Eqs. (A6)].

It is also useful to introduce the extrinsic curvatures of
St:

K̂ ab � D̂anb � ĝcdab
~rcnd � ~ranb � nan

c ~rcnb: (12)

As na and la are hypersurface orthogonal, all extrinsic
curvatures defined above are symmetric.

An �s� 1� � 1 decomposition would be the general-
ization to the arbitrary dimension of the ADM decompo-
064015
sition of gravity, in which the extrinsic curvature K̂ab takes
the role of the canonical momenta associated with ĝab.
Instead we would like a formalism which singles out
both directions n and l. By identifying ĝab �
fgab;M

a;M;N ; Nag [see Eqs. (6), (A1), and (A6)], it is
immediate to choose the set fgab;Ma;Mg as canonical
coordinates on St and to search for the canonical momenta
among the various projections of K̂ab:

K̂ ab � Kab � 2l
�aKb� � lalbK: (13)

The quantities

K a �
�s�1�gcal

dK̂cd; K � lcldK̂cd (14)

represent off-brane projections of K̂ab. Ki is the normal
fundamental form, introduced in [13] and we call K the
normal fundamental scalar. The extrinsic curvature Kab
defined in (11) can be shown to be the projection of K̂ab
to �t�:

Kab �
�s�1�gcdabK̂cd (15)

from the gca �
�s�1�gcdĝ

d
a property of the projectors. We

remark that laKab � 0 and laKa � 0 hold, thus Kab and
Ka are tensors defined on �t�.

In terms of the �s� 2�-connection ~r, the projections
Ka and K are expressed as

Ka � gbal
c ~rbnc � gbal

c ~rcnb;

K � lalb ~ranb � la ~Lnla:
(16)

The second expression for Ka follows from the symmetry
of K̂ab in Eq. (12).

Alternatively, keeping in mind the bulk-brane scenario,
where a decomposition with respect to the normal la is
frequently desirable [6], we introduce the extrinsic curva-
ture of the space-time leave M�:

�s�1�Lab �
�s�1�Dalb � �s�1�gcdab

~rcld � ~ralb � lalc ~rclb;

(17)

and we decompose it with respect to the �t� foliation as

�s�1�Lab � Lab � 2n�aLb� � nanbL: (18)

Here the quantities

L a � �ĝbanc�s�1�Lbc; L � nanb�s�1�Lab (19)

represent timelike projections of �s�1�Lab and the previ-
ously introduced extrinsic curvature Lab is nothing but the
projection of �s�1�Lab to �t�:

Lab � ĝcdab
�s�1�Lcd: (20)

As naLab � 0 and naLa � 0 indicate, both Lab and La are
tensors defined on �t�.
-4
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The projections La and L can be equally expressed as

La � �gbanc ~rblc � �gbanc ~rclb �Ka;

L � nanb ~ralb � na ~Llna:
(21)

Thus La will be replaced in all forthcoming computations
by Ka.

We have just completed the task to characterize both the
extrinsic curvatures of St and of M� in terms of quantities
defined on �t� alone.

Finally we define the curvatures �a and �a of the con-
gruences na and la

�b � nc ~rcnb � gbdn
c ~rcnd �Llb; (22)

�b � lc ~rclb � gbdl
c ~rcld �Knb: (23)

The second pair of expressions for each of the above
curvatures are nothing but their s� 1� 1 decomposition.
Physically, the curvature �a is the nongravitational accel-
eration of observers with velocity na. Detailed expressions
for these curvatures are deduced in Appendix C.

Let us note that the sets of Eqs. (12) and (13) and (17)
and (18) allow for the following decompositions of the
covariant derivatives of the normals:

~ranb � Kab � 2K
�alb� � lalbK� na�b;

~ralb � Lab � 2K
�anb� � nanbL� la�b:

(24)

From here we find simple expressions for their covariant
divergences:

~r an
a � K̂ � K �K; ~ral

a � L̂ � L�L: (25)

We also derive the useful relation

~r an
b ~rbn

a � K̂abK̂
ab � KabK

ab � 2KaK
a �K2:

(26)
1The expressions (27), (28), and (34), introduced for tensors
projected to St, M� or �t�, when generalized to arbitrary
tensors on B could fail to obey the Leibniz rule. For example:
LV�Ml

b� � MLVl
b.
III. TIME DERIVATIVES OF gab, Ma AND M

In this section we establish the relations among the time
derivatives of the dynamical data fgab;Ma;Mg and extrin-
sic curvatures fKab;Ka;Kg and fLab;La;Lg.

We proceed as follows. First we define suitable deriva-
tives of tensors from St and M� as the respective projec-
tions of the Lie derivative in B along an arbitrary vector
flow Va:

L̂ VT̂
a1���ar
b1���bs

� ĝa1���ard1���ds
c1���crb1���bs

~LVT̂
c1���cr
d1���ds

; (27)

�s�1�LV
�s�1�Ta1���ar

b1���bs
� �s�1�ga1���ard1���ds

c1���crb1���bs
~L�s�1�

V Tc1���cr
d1���ds

:

(28)

When Va belongs to St (M�), the derivative L̂V (�s�1�LV)
is the Lie derivative in St (M�).
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When V is @=@t or @=@�, the derivatives decouple as

L̂ @=@tT̂
a1���ar
b1���bs

� NL̂nT̂
a1���ar
b1���bs

� L̂NT̂
a1���ar
b1���bs

; (29)

�s�1�L@=@�
�s�1�Ta1���ar

b1���bs
� M�s�1�Ll

�s�1�Ta1���ar
b1���bs

� �s�1�LM
�s�1�Ta1���ar

b1���bs
: (30)

In particular, for the metrics induced on St and M� we find

L̂ @=@tĝab � 2NK̂ab � 2D̂�aNb�; (31)

�s�1�L@=@t
�s�1�gab � 2M�s�1�Lab � 2�s�1�D�aMb�: (32)

We have used that the extrinsic curvatures (12) and (17) are
expressible as

K̂ab �
1

2
L̂nĝab �

1

2
~Lnĝab;

�s�1�Lab �
1

2
�s�1�Ll

�s�1�gab �
1

2
~Ll
�s�1�gab:

(33)

Next we define a projected derivative of a tensor taken
from �t�,1

L VT
a1���ar
b1���bs

� ga1���ard1���ds
c1���crb1���bs

~LVT
c1���cr
d1���ds

; (34)

in terms of which time and off-brane derivatives can be
defined as the projections to �t;� of the Lie derivatives ~L
taken along @=@t and @=@� directions, respectively:

@
@t
Ta1...ar
b1...bs

� L@=@tT
a1���ar
b1���bs

� NLnT
a1���ar
b1���bs

�LNT
a1���ar
b1���bs

;

(35)

@
@�

Ta1���ar
b1���bs

� L@=@�T
a1���ar
b1���bs

� MLlT
a1���ar
b1���bs

�LMT
a1���ar
b1���bs

:

(36)

It is not difficult to show that despite being projected Lie
derivatives, they become partial derivatives in any adapted
coordinate system. Thus for any Ta1���ar

b1���bs
defined on �t;� the

property

@
@t

@
@�

Ta1���ar
b1���bs

�
@
@�

@
@t
Ta1���ar
b1���bs

(37)

holds. For the smetric the formulas (35) and (36) reduce to

@
@t
gab � 2NKab � 2D�aNb�; (38)
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@
@�

gab � 2MLab � 2D�aMb�; (39)

where we have used that the extrinsic curvatures of �t� can
be expressed as

Kab �
1

2
Lngab; Lab �

1

2
Llgab: (40)

Equations (38) and (39), when inverted with respect to the
extrinsic curvatures, read

Kab �
1

2N

�
@
@t
gab � 2D�aNb�

�
; (41)

Lab �
1

2M

�
@
@�

gab � 2D
�aMb�

�
: (42)

The comparison of the right-hand sides from Eqs. (22)
and (C3a), also from (23) and (C3b) leads to simple
expressions for the curvatures �b and �b:

�b � Db�lnN� �Llb; (43)

�b � �Db�lnM� �Knb; (44)

with L and K given by

L � �
1

MN

�
@
@�

N �MaDaN
�
; (45)

K �
1

MN

�
@
@t
M� NaDaM

�
: (46)

Equivalently,

K �
1

M
LnM; L � �

1

M
LlN: (47)

Finally the difference of the contractions of Eqs. (24)
with la and na respectively leads to 2Ka � ��l; n	a �
Kla �Lna�. Inserting the commutator (C1c) and keeping
in mind that @Ma=@t � �Fi�

a@Mi=@t and @Na=@� �
�Fi�

a@Ni=@� hold in the chosen coordinate basis fe�g,
we get

K a �
1

2MN

�
@
@t
Ma �

@
@�

Na �MbDbNa � NbDbMa
�
:

(48)

In terms of Lie derivatives this gives

K a �
1

2M
LnMa �

1

2N
LlNa �

1

2NM
�McKa

c � NcLac�:

(49)

Summarizing, Eqs. (41), (46), and (48) express the
projections of the extrinsic curvature K̂ab in terms of the
time derivatives @gab=@t, @Ma=@t, @M=@t and other quan-
tities from �t�. Concerning the extrinsic curvature of M�,
Eqs. (42) and (45) convince us that Lab and L are those
064015
projections of �s�1�Lab, which have nothing to do with time
evolution, while the projection La �Ka is dynamical.
IV. THE LANCZOS EQUATION

Whenever the hypersurface M has a distributional en-
ergy momentum �ab, the extrinsic curvature �s�1�Lab will
have a jump

��s�1�Lab � �~�2

�
�ab �

1

s
�s�1�gab�

�
: (50)

This is particularly interesting in the braneworld scenario.
Then �ab is composed of the energy-momentum tensor Tab
of standard-model fields and of a � brane tension term:

�ab � ���s�1�gab � Tab: (51)

We allow for a completely generic brane, with energy
density �, homogeneous pressure p, tensor of anisotropic
pressures �ab and energy transport Qa:

Tab � �nanb � pgab ��ab � 2n
�aQb�: (52)

We would like to write the Lanczos equation (50) in
terms of the new variables introduced in the previous
sections. For this we employ the decomposition (18) of
the extrinsic curvature of M. We find the following pro-
jections of the Lanczos equation:

�Lab � �~�2

�
pgab ��ab �

1

s
gab��� 3p� ��

�
; (53)

�Ka � �~�2Qa; (54)

s�L � �~�2���� 3p� �s� 1��	: (55)

We see that among the gravitational degrees of freedom
only Ka will have a jump across the brane due to the
distributional energy-momentum tensor. This occurs only
when there is energy transport on the brane. Thus in all
cosmological models with perfect fluid on the brane none
of the dynamical variables characterizing gravity will have
a jump across the brane.
V. INTRINSIC CURVATURES

The Riemann tensor, expression of the intrinsic curva-
ture of the �t� hypersurfaces arises from the noncommu-
tativity of the covariant derivative D:

Rabcdv
b � �DcDd �DdDc�va: (56)

Here va 2 T�t� is arbitrary. The Riemann tensor of B is
defined in an analogous manner:

~R a
bcd~vb � �~rc ~rd � ~rd ~rc�~v

a; (57)

for any ~va 2 TB: Straightforward computation leads to
the Gauss equation:
-6
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Rabcd � gai g
j
bg

k
cgld ~Rijkl � K

a
cKbd � Ka

dKbc

� LacLbd � L
a
dLbc: (58)

This standard result holds for any s-dimensional hypersur-
face embedded in an �s� 2�-dimensional space [14].

All other independent projections of ~Rabcd are enlisted
in Appendix C.

By contracting the Gauss equation twice, the relation
between the scalar curvatures emerges

R � ~R� 2 ~Rab�n
anb � lalb� � 2 ~Rabcdn

albncld � K2

� KabKab � L
2 � LabLab: (59)

Employing

nanb ~Rab � ~ra��
a � na ~rbn

b� � K2 � KabK
ab

� 2KaK
a � 2KK; (60a)

lalb ~Rab � ~ra��
a � la ~rbl

b� � L2 � LabL
ab

� 2KaK
a � 2LL; (60b)

nalbncld ~Rabcd � L2 �K2 � 3KaK
a � la ~raL

� na ~raK� �b�b; (60c)

we find the relation between the s- and �s�
2�-dimensional curvature scalars:

R � ~R� K2 � KabK
ab � 2KaK

a � 2KK � L2

� LabL
ab � 2LL� 2�b�b

� 2~ra��
a � �a � Kna � Lla�: (61)

Appendix D contains an independent derivation of
Eq. (61). Keeping in mind Ka � La, this equation shows
a perfect symmetry between quantities related to la and na.
The expressions of the �s� 1� 1�-decomposed Riemann,
Ricci and Einstein tensors in terms of tensors on �t� are
also given in Appendix D, as well as the relation between
the scalar curvatures in a form without total divergences.

GRAVITATIONAL DYNAMICS IN s� 1� 1 DIMENSIONS
064015
VI. TIME DERIVATIVES OF EXTRINSIC
CURVATURES

The energy-momentum tensor ~Tab of the bulk receives
two types of contributions: ~�ab from the nonstandard-
model fields in the bulk and �ab from standard-model fields
on the brane. The latter is a distributional source located on
the brane, at � � 0 [or in terms of generic coordinates ~xa

given covariantly as ��f~xag� � 0]. In the special case when
the bulk contains only a cosmological constant ~�, but with
a generic source on the brane, from Eqs. (51) and (52) we
obtain

~Tab � �~�2 ~�lalb � ���� ������ � ~�2 ~�	nanb

� ��p� ������ � ~�2 ~�	gab

� ��ab � 2n
�aQb�	����; (62)

and

~T � �5~�2 ~�� ��� 3p� 4������: (63)

By employing the bulk Einstein equation

~R ab � ~Tab �
~T
s

~gab; (64)

we obtain the following projections of the bulk Ricci
tensor:

gcag
d
b

~Rcd �
5� s
s

~�2 ~�

�

�
�� �s� 3�p� �4� s��

s
gab ��ab

�
����;

(65a)

gcald ~Rcd � 0; (65b)

lalb ~Rab �
5� s
s

~�2 ~��
�� 3p� 4�

s
����: (65c)

Employing these in Eqs. (D2a), (D2c), and (D2f) of
Appendix D and transforming the Lie derivatives LnKab,
LnKa and LnK to time derivatives by Eq. (35), the time
evolution of Kab, Ka and K can be readily deduced:
@
@t
Kab � N

�
gcag

d
b

~Rcd � Rab � Lab�L�L� � 2LacL
c
b � Kab�K �K� � 2KacK

c
b � 2KaKb �LlLab �

DbDaM
M

�

�DbDaN �LNKab; (66a)
@
@t

Ka � N��DbLab �Da�L�L� � KKa	 �LNKa � �Lba �L�ba�DbN; (66b)

@
@t

K � N
�
lalb ~Rab � LabLab �L2 �

DaD
aM

M
� 2KaK

a �K�K �K� �Ll�L�L�

�
�
DaM
M

DaN �LNK:

(66c)

The corresponding expressions containing � derivatives [which are similar to those of the time-evolution equations (41),
(46), and (48) of the complementary set of dynamical data] are
-7
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@
@t
Kab � N

�
gcag

d
b

~Rcd � Rab � Lab�L�L� � 2LacL
c
b � Kab�K �K� � 2KacK

c
b � 2KaKb �

DbDaM
M

�
1

M

�
@
@�

Lab �McDcLab � 2Lc�aDb�Mc
��
�DbDaN � NcDcKab � 2Kc�aDb�Nc; (67a)

@
@t

Ka � N��DbLab �Da�L�L� � KKa	 � N
bDbK

a � �Lba �L�ba�DbN �KbDaN
b; (67b)

@
@t

K � N
�
lalb ~Rab � LabL

ab �L2 �
DaDaM
M

� 2KaK
a �K�K �K� �

1

M

�
@
@�
�L�L� �MaDa�L�L�

��

�
DaM
M

DaN � N
aDaK: (67c)
We have employed Eq. (36) in their derivation. Note that in
the above formulas Lab and L are also given in terms of
dynamical data, cf. Eqs. (42) and (45).

VII. CONCLUDING REMARKS

We have developed a decomposition scheme of the �s�
2�-dimensional space-time based on two perpendicular
foliations of constant time and constant � surfaces. In a
braneworld scenario the latter contains the brane at � � 0.
A careful geometrical interpretation has allowed for iden-
tifying dynamical quantities with geometrical expressions.
From among the various projections to �t� of the extrinsic
curvature pertinent to the off-brane normal solely La was
found to be dynamical, together with all components (Kab,
Ka � La and K) of the extrinsic curvature related to na.
Their expression was given in terms of time derivatives of
the metric gab induced on �t�, shift vector componentsMa

and lapse M of @=@�. Time evolution of the second fun-
damental form Kab, of the normal fundamental form Ki

and normal fundamental scalar K were also derived for a
generic brane. The Lanczos equation was written in terms
of the same set of variables.

Our formalism applied for s � 2 is different from pre-
vious 2� 1� 1 decompositions in general relativity, de-
veloped to deal with stationary and axisymmetric space-
times. There the temporal and spatial directions singled out
TABLE I. Comparison of our notations and quantities employed
respective quantity from the formalism. We note that the corresponde
the two foliations perpendicular to each other.

Our forma

Manifolds �B;M�; S
Metrics �~g; �s�1�g; g
Metric-compatible covariant derivatives �~r; �s�1�D;
Coordinates �t; ��
Singled-out vectors �@@t ;

@
@��

Normals �na; la�
Accelerations ��a; ĝab�

b�

Shifts �Na;N �;M
Extrinsic curvatures ��s�1�Lab; K
Extrinsic curvature projections �Kab; Lab;

064015
are a stationary and a rotational Killing vector. By contrast,
we are interested in evolutions along the singled-out time-
like and off-brane directions. The formalism developed in
[15,16] relies on the use of a factor space with respect to
the rotational Killing vector. The induced metric is then
defined with this Killing vector and the formalism becomes
rather complicated. In a more recent approach [17],
Gourgoulhon and Bonazzola introduce the induced metrics
by using normal vector fields to the 2-space (like we do),
hence they avoid the use of twist-related quantities.
However their treatment relies on first decomposing
space-time with respect to the temporal direction, next
with respect to the spatial direction, and this procedure
unfortunately lets no counterpart to the brane extrinsic
curvature �s�1�Lab in their formalism. Thus their formalism
is not suited for a generalization to braneworld scenarios,
where the Lanczos equation is given precisely in terms of
�s�1�Lab. For convenience we give a comparative table of
the quantities appearing in the approaches of [17] and ours
(Table I).

The system of equations giving the evolution of
�gab;M

a;M� and �Kab;Ka;K� represents the gravitational
dynamics in terms of variables adapted to the brane. On top
of these there are constraints on their initial values to be
satisfied. These are the Hamiltonian and diffeomorphism
constraints. Their derivation from a variational principle in
with those of Ref. [17]. A triple dot denotes the absence of the
nces la $ m� and Lab $ L�� hold only because we have chosen

lism Gourgoulhon and Bonazzola

t;�t�� �E; . . . ;�t;�t	�

^; g� �g; . . . ; h; k�
D̂; D� �; ; . . . ;j ;k �

�t; ’�
� @@t ;

@
@’�

�n�;m��

�a�; b��
a �N� � ��q�;!�;�M�

^
ab� �. . . ;�K���

Ka � La;K;L� �. . . ;�L��; . . . ; . . . ; . . .�
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terms of our brane-adapted variables, keeping in mind that
some of the dynamics is frozen due to the existence of the
brane as a hypersurface, is in progress and will be pub-
lished in a forthcoming paper.
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and No. TS044665. L. Á. G. was further supported by the
János Bolyai Scholarship of the Hungarian Academy of
Sciences.

APPENDIX A: THE TWO FOLIATIONS

The t � const hypersurfaces St are defined by the one-
form field n � Ndt. Similarly, M� is the hypersurfaces
� � const, defined by l � M0d�. We introduce the one-
form field m such that the metric in B can be written as

~g � gijF
i 
 Fj �m 
m� n 
 n: (A1)

Here the co-basis ff�g � fn; Fi; mg has the dual basis
ff�g � fn; Fj; mg, where fFjg is some basis in T�t�.
Thus na � �na and ma � ma. The normal vector la to
M� can be conveniently parametrized as

la � na sinh
�ma cosh
: (A2)

This parametrization assures that la has unit norm with
respect to the metric (A1). The dual form to la is

l � ~g�:; l� � �n sinh
�m cosh
: (A3)

We introduce the second basis fe�g � f@=@t; Ei �
Fi; @=@�g and its dual co-basis fe�g � fdt; Ei; d�g. The
two sets of bases are related as

n � Ndt; Fi � Ai
�e

�;

m �
M0d�� N sinh
dt

cosh

;

(A4)

and

@
@t
� N�f�;

@
@�
� M�f�; Ei � Fi: (A5)

The unknown coefficients Ai
�, N� and M� are constrained

by the duality relations he�; e�i � ��� � hf
�; f�i. After

some algebra we find the relation between the two co-bases

n � Ndt; m �N dt�Md�;

Fi � Nidt� Ei �Mid�;
(A6)
064015
and the relation between the bases

@
@t
� Nn� NiFi �Nm; (A7a)

@
@�
� MiFi �Mm; (A7b)

Ei � Fi: (A7c)

We have introduced the shorthand notations

N � N tanh
; M �
M0

cosh

: (A8)

Equation (A7a) shows that the time-evolution vector @=@t
is decomposed as in the ADM formalism of general rela-
tivity: N is the lapse function and �Ni;N � are the 4D shift
vector components in the chosen basis. The functions
�Mi;M� represent the arbitrary tangential and normal con-
tributions to the off-brane evolution vector @=@� with
respect to �t�. Equation (A7b) shows that there is no
n term in @=@�, thus off-brane evolution in the coordinate
� happens in St, thus at constant time.

For convenience we also give the inverted relations
among the bases:

dt �
n
N
; d� �

1

M

�
�
N

N
n�m

�
;

Ej �
1

N

�
N

M
Mj � Nj

�
n� Fj �

Mj

M
m;

(A9)

and

n �
1

N

�
@
@t
�

�
N

M
Mi � Ni

�
Ei �

N

M
@
@�

�
;

m �
1

M

�
�MiEi �

@
@�

�
; Fi � Ei:

(A10)

Obviously the two foliations will become perpendicular
for 
 � 0 �N . Then the vectors l and m coincide.
APPENDIX B: DECOMPOSITION OF THE
METRIC

By substituting Eq. (A6) into the �s� 2�-metric (A1) we
obtain
~g �� �
gijN

iNj �N 2 � N2 gijN
j gijN

iMj �NM
gijNi gij gijMi

gijNiMj �NM gijMj gijMiMj �M2

0
B@

1
CA: (B1)

To prove in a simple way the relationship (5) between the determinants of the �s� 2� and s metrics, we transform the
determinant ~g by suitably combining the columns and lines as follows:
-9
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~g �

�������������
N 2 � N2 gijN

j gijN
iMj �NM

0 gij gijMi

NM gijMj gijMiMj �M2

�������������
� �N 2 � N2	

��������
gij gijM

i

gijM
j gijM

iMj �M2

���������NM
��������
gijN

j gijN
iMj �NM

gij gijM
i

��������
� �N 2 � N2	

��������
gij gijMi

0 M2

���������NM
��������

0 NM

gij gijMi

��������� �N2M2g: (B2)

The inverse of the metric (B1) has a more cumbersome expression:

~g �� �
1

N2

�1 Ni �N
M M

i N
M

Nj �N
M M

j N2gij � NiNj � N2�N 2

M2 MiMj � 2 N
M N

�iMj� N 2�N2

M2 Mj �N
M Nj

N
M

N 2�N2

M2 Mi �N
M N

i N2�N 2

M2

0
BB@

1
CCA: (B3)

It is convenient to free ourselves from the particular bases employed above. For this purpose we define the generic
tensorial expressions gab � gij�F

i�a�F
j�b, Na � Ni�Fi�

a, Ma � Mi�Fi�
a, in terms of which Eqs. (A1), (A7a), and (A7b)

give Eqs. (2)–(4).

APPENDIX C: CURVATURES OF NORMAL CONGRUENCES

We start with the computation of the nontrivial Lie brackets of the basis vectors ff�g � fn; Fj � @=@yj; mg, employing
first the relations (A10), second that fe�g is a coordinate basis and finally rewriting the resulting expressions in the ff�g
basis:

�n; Fj	
a � @j�lnN�n

a �
1

N

�
@jN

i �
N

M
@jM

i
�
�Fi�

a �
M
N
@j

�
N

M

�
ma; (C1a)

�m;Fj	
a � @j�lnM�m

a �
1

M
@jM

i�Fi�
a; (C1b)

�n;m	a �
1

M

�
@
@�
�lnN� �Mj@j�lnN�

�
na �

1

MN

�
�
@
@t
M�

@
@�

N �Mj@jN � Nj@jM
�
ma

�
1

MN
�� ~L@=@tM

i � ~L@=@�N
i �Mj@jN

i � Nj@jM
i	�Fi�

a: (C1c)
However the Frobenius theorem states that �n; Fj	
a should

have no ma component. Therefore we get the condition

N � �M; Da� � 0: (C2)

Thus N should be proportional to M, with a proportion-
ality coefficient, which is constant along �t�.

Next we announce the following:
Theorem.—If ~r is the connection compatible with the

metric ~g, any set of vectors ff�g obeying ~g�f�; f�� � const

also satisfy the relation ~g�f�; ~rf�f�� � ~g��f�; f�	; f��.

Proof.—~g�f�; ~rf�f�� � �~g�~rf�f�; f�� � �~g�~rf�f�;
f�� � ~g��f�; f�	; f�� � ~g��f�; f�	; f�� Q:E:D:

Finally we employ the above result for f� either n or m
together with the commutators (C1a)–(C1c) to obtain ex-
plicit expressions for various components of the curvatures
�a and �a:
064015
�b � ~g�f�; ~rnn��f
��b � Db�lnN�

�
1

M

�
@
@�
�lnN� �MaDa�lnN�

�
mb; (C3a)

�b � ~g�f�; ~rll��f��b � �Db�lnM�

�
1

MN

�
@
@t
M�

@
@�

N �MaDaN � NaDaM
�
nb:

(C3b)

We have employed the relations DbN � �Fi�b@iN and
Na@aM � Ni@iM, deducible from the coordinate basis
character of fe�g.

APPENDIX D: DECOMPOSITION OF
CURVATURES

In this Appendix we enlist the relations among the �s�
2�- and s-dimensional Riemann, Ricci and Einstein ten-
sors, as well as the relation between the scalar curvatures in
-10
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a fully decomposed form. The formulas are valid for perpendicular foliations, ma � la.
The projections of the Riemann tensor are Eq. (58) and

nigjbg
k
cgld ~Rijkl � DdKbc �DcKbd �KcLbd �KdLbc; (D1a)

nigjbn
kgld ~Rijkl � �LnKbd � KbkKk

d �KbKd �LLbd � N�1DdDbN; (D1b)

ligjbg
k
cgld ~Rijkl � DdLbc �DcLbd �KcKbd �KdKbc; (D1c)

ligjbl
kgld ~Rijkl � �LlLbd � LbkL

k
d �KbKd �KKbd �M

�1DdDbM; (D1d)

niljgkcg
l
d

~Rijkl � DdKc �DcKd � LciK
i
d � LdiK

i
c; (D1e)

nigjbg
k
cll ~Rijkl � �DcKb �LlKbc � KkdLkb �KLbc � 2M�1K�bDc�M; (D1f)

niljgkcll ~Rijkl � LlKc �DcK�KkLkc �M�1Ki
cDiM�M�1KDcM; (D1g)

niljnkgld ~Rijkl � �DdL�LnKd �KiKi
d � N

�1LidDiN � N�1LDdN; (D1h)

niljnkll ~Rijkl � L2 �K2 � 3KiK
i �LlL�LnK� �NM�

�1DiNDiM: (D1i)

Contractions and multiplications with the normal vectors of the above formulas give, respectively

gcag
d
b

~Rcd � Rab � Kab�K �K� � 2KacK
c
b �LnKab � N

�1DbDaN � 2KaKb � Lab�L�L� � 2LacL
c
b

�LlLab �M
�1DbDaM; (D2a)

nanb ~Rab � �Ln�K �K� � KabKab � N�1DaDaN � 2KaK
a �K2 �LlL�L�L�L�

� �NM��1DaNDaM; (D2b)

lalb ~Rab � �Ll�L�L� � LabL
ab �M�1DaD

aM� 2KaK
a �L2 �LnK�K�K �K�

� �NM��1DaND
aM; (D2c)

nalb ~Rab � DaK
a �LlK � KabL

ab �KL�M�1KaDaM; (D2d)

gcand ~Rcd � DcKc
a �Da�K �K� �KaL�LlKa �M�1Ki

aDiM�M�1KDaM; (D2e)

gcald ~Rcd � DcLca �Da�L�L� �KaK �LnKa � N�1LiaDiN � N�1LDaN: (D2f)

The last two equations are the Codazzi equations. Note that LnK denotes the trace of LnKab. The scalar curvatures are
related as

~R � R� K2 � 3KabKab � 2Ln�K �K� � 2N�1DaDaN � 2KK �KaK
a � L2 � 3LabLab � 2Ll�L�L�

� 2M�1DaDaM� 2LL� �NM��1DaNDaM: (D3)

By virtue of the (25) decompositions of covariant derivatives, Eqs. (D2b) and (D2c) can be put into the forms (60)
containing divergence terms. So can the scalar curvature.

Finally, the Einstein tensors are related as

gcag
d
b

~Gcd � Gab � Kab�K �K� � 2KacK
c
b �LnKab � N

�1DbDaN � Lab�L�L� � 2LacL
c
b �LlLab

�M�1DbDaM�
1

2
gab�K

2 � 3KcdK
cd �Ln�K �K� � 2N�1DcD

cN	

�
1

2
gab��L2 � 3LcdLcd � 2Ll�L�L� � 2M�1DcDcM	 � gab�KK �KcK

c � �NM��1DcNDcM�;

(D4a)

nanb ~Gab �
1

2
�R� K2 � KabKab � L2 � 3LabLab� �KK �KaK

a �K2 �LlL�L2 �M�1DaDaM; (D4b)

lalb ~Gab � �
1

2
�R� L2 � LabL

ab � K2 � 3KabK
ab� �LL�KaK

a �L2 �LnK �K2 � N�1DaD
aN; (D4c)

nalb ~Gab � nalb ~Rab; (D4d)

gcan
d ~Gcd � gcan

d ~Rcd; (D4e)

gcal
d ~Gcd � gcal

d ~Rcd: (D4f)
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By performing first the traditional �s� 1� � 1 decom-
position and then further splitting the �s� 1�-dimensional
spacelike hypersurface into the s-dimensional brane and
off-brane direction @=@�, we can give an independent
proof of the relation between the scalar curvatures. The
twice-contracted Gauss equation for the hypersurface St of
B is

~R � R̂� K̂2 � K̂abK̂
ab � 2~ra��

a � K̂na�: (D5)

The extrinsic curvature K̂ab of St can be further decom-
posed employing Eq. (13), while for R̂ there is another
064015
twice-contracted Gauss equation, this time for the hyper-
surface �t� of St:

R̂ � R� L2 � LabLab � 2D̂a�lcD̂cla � Lla�: (D6)

The latter relation and Eq. (13) inserted in Eq. (5) and
employing

D̂a�l
cD̂cl

a�Lla� � ~ra��
a�Lla�Kna��LL��a�a;

(D7)

gives Eq. (61) once again.
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