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Spacetime structure of static solutions in Gauss-Bonnet gravity: Charged case
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We have studied spacetime structures of static solutions in the n-dimensional Einstein-Gauss-Bonnet-
Maxwell-A system. Especially we focus on effects of the Maxwell charge. We assume that the Gauss-
Bonnet coefficient « is non-negative and 4&/€> =1 in order to define the relevant vacuum state.
Solutions have the (n — 2)-dimensional Euclidean submanifold whose curvature is k = 1, 0, or —1. In
Gauss-Bonnet gravity, solutions are classified into plus and minus branches. In the plus branch all
solutions have the same asymptotic structure as those in general relativity with a negative cosmological
constant. The charge affects a central region of a spacetime. A branch singularity appears at the finite
radius r = r, > 0 for any mass parameter. There the Kretschmann invariant behaves as O((r — r,)™3),
which is much milder than the divergent behavior of the central singularity in general relativity
O(r~*"=2) In the k = 1 and O cases plus-branch solutions have no horizon. In the k = —1 case, the
radius of a horizon is restricted as r;, < V2a (ry, > \V2&) in the plus (minus) branch. Some charged black
hole solutions have no inner horizon in Gauss-Bonnet gravity. There are topological black hole solutions
with zero and negative mass in the plus branch regardless of the sign of the cosmological constant.
Although there is a maximum mass for black hole solutions in the plus branch for k = —1 in the neutral
case, no such maximum exists in the charged case. The solutions in the plus branch with k = —1 and
n = 6 have an inner black hole and inner and outer black hole horizons. In the 4a&/¢> = 1 case, only a
positive mass solution is allowed, otherwise the metric function takes a complex value. Considering the
evolution of black holes, we briefly discuss a classical discontinuous transition from one black hole

spacetime to another.
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I. INTRODUCTION

Recently a large number of studies in the field of black
hole physics have focused on the question of higher di-
mensions. One of the reasons for this is the fascinating new
picture of our universe called the braneworld universe
[1-3]. Because the fundamental scale could be about
TeV in this scenario, these models suggest that the creation
of tiny black holes in the upcoming linear hadron collider
could be possible [4]. This would be strong evidence of
extra dimensions.

Underlying the braneworld model is an underlying fun-
damental theory, superstring/M theory [5], which is the
most promising candidate to produce a quantum theory of
gravity. Although superstring/M theory has been highly
elaborated, it is not enough to understand black hole phys-
ics in the string context. Hence at present to take string
effects perturbatively into classical gravity is one approach
to the study of quantum gravity effects. With the restriction
that the tension of a string be large as compared to the
energy scale of other variables, i.e., in the o’ expansion,
where o' is the inverse string tension, the Gauss-Bonnet
terms appear as the first curvature correction term to gen-
eral relativity [6]. These are ghost-free combinations [7]
and have quasilinear properties [8].

Against this background we studied spacetime structures
of static solutions in the n-dimensional Einstein-Gauss-
Bonnet-A system systematically [9]. The black hole solu-
tions in Gauss-Bonnet gravity were first discovered by
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Boulware and Deser [10] and Wheeler [11], independently.
Since then many types of black solutions have been in-
tensively studied [9,12]. Beyond the Gauss-Bonnet action
which is the second order Lovelock action [13], the black
hole solution in general Lovelock gravity is analyzed in
Refs. [14—16] without providing the explicit form of solu-
tion. These solutions have a good many characteristic
properties which cannot be seen for black hole solutions
in general relativity. Let us briefly review the characteristic
properties of the uncharged solutions in Gauss-Bonnet
gravity. We assume that the Gauss-Bonnet coefficient «,
which corresponds to «', is non-negative, and a cosmo-
logical constant is either positive, zero, or negative. The
general solutions are classified into plus and minus
branches. For the negative mass parameter, a new type of
singularity called a branch singularity appears at the non-
zero finite radius r = r, > 0. The divergent behavior
around the singularity in Gauss-Bonnet gravity is milder
than that around the central singularity in general relativity.
A black hole solution with zero or negative mass exists in
the plus branch even for a zero or positive cosmological
constant. There is also an extreme black hole solution with
positive mass, in spite of the lack of an electromagnetic
charge.

In this paper we extend the previous investigations by
including the Maxwell charge. In general relativity, the
Maxwell charge affects the structure of the singularity,
the number of horizons, and the thermodynamical proper-
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ties. In general relativity, if we add the charge to a
Schwarzschild black hole, an inner horizon appears, and
the singularity becomes timelike so that a spacetime rep-
resents the Reissner-Nordstrom (RN) black hole. Since the
singularity is timelike, a test observer can see it. This
example seems to counter the cosmic censorship hypothe-
sis (CCH), proposed by Penrose [17,18]. The CCH asserts
that the singularities formed in the generic gravitational
collapse of physical matter should be covered by the event
horizon and remain invisible. There are two versions of the
CCH. One of them is the weak cosmic censorship hypothe-
sis, which asserts that observers at infinity should not see
singularities. The other is the strong one, which asserts that
any observers should not see them, i.e., a spacetime is
globally hyperbolic. Nevertheless, the RN solution should
not be considered as a counterexample to the strong ver-
sion of the CCH. Penrose demonstrated that perturbations
originating outside the black hole would be blueshifted
infinitely at the inner horizon and that the inner horizon
suffers from blue-sheet instability [19]. After a large num-
ber of analyses, it has been clarified that this type of inner
horizon is unstable against the perturbations and trans-
forms into a null, weak scalar curvature singularity
[20,21]. The general proof of the CCH is, however, far
from complete, and many counterexample candidates have
been proposed in the framework of general relativity [22].
Then the following question arises: Can the string correc-
tions support a system sufficiently for the CCH to hold?
Furthermore, the charge may play an important role in
the braneworld and anti-de Sitter/conformal field theory
(adS/CFT) correspondence [23]. In fact, in the braneworld
model in general relativity, a cosmological constant may be
self-tuned to solve the cosmological constant problem in
charged bulk spacetime [24]. From these points of view,
investigations of the charged solution are important.

In Sec. II, we introduce our model and show solutions
which are generalizations of the originals of Boulware and
Deser’s. In Sec. III, we review the charged solutions in
general relativity for comparison. In Sec. IV, the general
properties of the solutions in the Einstein-Gauss-Bonnet-
Maxwell-A system with 4&/€> <1, whose meaning is
given in the text, are investigated. In Sec. V, we show
M-r diagrams and study the number of horizons in each
solution. The global structures of all solutions are summa-
rized in the tables. Section VI is devoted to the analysis of
the special case where 4a/ €2 = 1.1In Sec. VII, we present
conclusions and discuss related issues. Throughout this
paper we use units such that ¢ =% = kz = 1. As for
notation and conversion we follow Ref. [25]. The Greek
indices run w, v =0,1,...,n — 1.

II. MODEL AND SOLUTIONS

We start with the following n-dimensional (n = 4) ac-
tion
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1
5= [am, /_—g[ S (R—2A+ aLGB)} + Spaers (1)

where R and A are the n-dimensional Ricci scalar and the
cosmological constant, respectively. «,, := /87G,, where
G,, is the n-dimensional gravitational constant. The Gauss-
Bonnet Lagrangian Lgp is the combination of the Ricci
scalar, the Ricci tensor R ,,, and the Riemann tensor R
as

nvs nrpo

Lgg = R* — 4R, ,R*" + R, ,,R*"*°. )

mrpo

In the four-dimensional case, the Gauss-Bonnet terms do
not appear in the equation of motion but contribute merely
as surface terms. « is the coupling constant of the Gauss-
Bonnet terms. This type of action is derived from super-
string theory in the low-energy limit [6]. In that case « is
regarded as the inverse string tension and positive definite.
For the stability of Minkowski spacetime, we consider only
the case with & = 0 in this paper. We consider the Maxwell
gauge field as a matter field, whose action is

1

Smatter = _47ng /d"xv_gF,wF“V, (3)

where g, is the Maxwell coupling constant.
The gravitational equation of the action (1) is

GMV + aH/“, + Ag,w = K%T,uw “
where
_ 1
GMV = RMV - EgMVR’ ®)
H/.LV = 2[RR;LV - 2R,UvCYRaV - ZRQBRMCW.B
aBy !
+ R Roapy] — 7 8urlas. ©)

The energy-momentum tensor of the Maxwell field is

1

pr 4mg?

1
<F,uaFV - Zg,u.VFa,BF B) (7)

The Maxwell equation is obtained as
V F** = (. ()

We assume static spacetime and adopt the following line
element:

ds> = —f(r)e 2°0Vd® + f~Y(r)dr* + r*dQ2_,, (9)

where dQ2 , = y;dx'dx/ is the metric of the (n —
2)-dimensional Einstein space.

The gravitational Eq. (4) provides 6 = 0 without loss of
generality. The Maxwell equation is written by using the
electric field E(r) defined by E(r) := F,, as

%(rHE) ~0. (10)
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Here we do not consider the magnetic field. This equation
is integrated to give

E=-5 (11)

where the integration constant Q is the electric charge.
The equation of the metric function f is then written as

o= = k= ) ="
+ 5= RS = (0= 5)(k = )]
1%

T 4(n —2)(n — 3)>mg2rn=¢’ (12)

where a:=n—-3)n—4)a and A=-(n-1)X
(n —2)/(2€%). Note that a negative (positive) A gives a
positive (negative) €2. k is the curvature of the (n —
2)-dimensional Einstein space and takes 1 (positive curva-
ture), O (flat), or —1 (negative curvature). The general
solution of Eq. (12) is obtained [26] as

_ r? _ M 1 (n—3)0°
f—k+ﬁ{l+\/l+4a|:rn_l_ﬁ_w:| ,

(13)
where
- lemG,M
AT W
212
0> 0 (15)

2 D~ 3Pl

The integration constant M is proportional to the mass of a
black hole for the black hole spacetime. =X _, is the volume
of the unit (n — 2)-dimensional Einstein space. There are
two families of solutions which correspond to the sign in
front of the square root in Eq. (13). We call the family
which has a minus (plus) sign the minus- (plus-) branch
solution. By introducing new variables as r := r/{, M :=
M/€" 73, Q:= Q/¢" 3, and @ := a/€?, the curvature ra-
dius € is scaled out when the cosmological constant is
nonzero. In the A = 0 case the variables are scaled as r :=
r/N@ M= M/& and 0 := 0/Va.

The global structure of a spacetime is characterized by
properties of the singularities, horizons, and infinities. As
for the definition of horizons we follow Ref. [9]. The
solutions in this paper are classified into two types by
horizon existence. The first is a black hole solution which
has a black hole horizon. A solution which does not have a
black hole horizon but has a locally naked singularity is a
globally naked solution.
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Since there are many parameters in our solution, such as
@, €% (or A), M, O, k, and = branches, the analysis should
be performed systematically. In this paper we employ M-r
diagrams, which are explained in Ref. [9].

III. STATIC SOLUTIONS IN THE
EINSTEIN-MAXWELL-A SYSTEM

In Gauss-Bonnet gravity, two branches of the static
solution appear. The minus-branch solution reduces to
the solution in the Einstein-Maxwell-A system in the limit
of a — (. The metric function f becomes
M (n—-3) 0° r?
f=k— 3 + 5 e + 7 (16)
On the other hand, f diverges for the plus-branch solution
in this limit, and there is no counterpart in the Einstein-
Maxwell-A system. Before proceeding to the case with the
Gauss-Bonnet terms, we first summarize the spacetime
structure of the static solutions described by Eq. (9) with
6 =0 and (16) in the Einstein-Maxwell-A system for
comparison. The spacetime structure and stability of the
n-dimensional black hole solutions are extensively studied
in Ref. [27]. Being interested in the charged solution, we
assume Q # 0 throughout this paper.

There is a singularity at the center (r = 0). The
Kretschmann invariant behaves

A2
Ruvp = 0< Q ) (17)

r4n—8

I =Rupe
around the center. The metric function f is positive around

the center by Eq. (16), and the tortoise coordinate defined
by

i frf‘ldr, (18)

is finite at the center. Hence the singularity is always
timelike [Fig. 1(a)].

The structure of the infinity is the same as that of the
neutral case [9] except for the solution with A = k = M =
0. For this solution the QO term is dominant, and the
conformal diagram of the infinity is the same as that of
the Minkowski spacetime.

(a) (b) (c) (d)

WV

FIG. 1. The conformal diagrams around a singularity. Wavy
lines denote singularities. There are time-reversed diagrams for
(c) and (d).
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The horizon plays an important role in determining the
spacetime structure. The existence of the horizon is clearly
visualized on the M-r diagram, especially in the case
where there are many parameters. By Eq. (16), the M-r),
relation in the Einstein-Maxwell-A system is

52
[ 1 N (n—23) o . k }

2 n—4 ' 2|
€ 2 r

M=r = (19)
We consider here that the values of &, €, and Q are fixed so
that this relation becomes a curve on the M-r diagram.
From the degeneracy condition of the horizon f(r.) =
df/ drlr:,ex = 0, where r, is the radius of the degenerate
horizon, we can show that the M-r;, curve on the diagram
becomes vertical at this point. However, all the horizons at
the vertical point are not necessarily degenerate. As shown

(a)
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in Ref. [9], if

o | = 20)
oM r=ry,

where f(r, M) := f(r), the horizon at the vertical point can
be nondegenerate. Although this condition (20) is satisfied
only if r;, — 0 limit in general relativity, we will find below
that there is no such solution. Hence the horizon at any
vertical point in the Einstein-Maxwell-A system is a de-
generate horizon.

The mass M and the charge O of the extreme solution
are

M=, = 2rg;1[7((” —2 i}, @1

n—23)2 r?

ex

(b) (c)

(d)

0=02

0=(1/6)"]

08 -

04

-0.5 0 05 1

05 -

FIG. 2. The M-r diagrams for the static solutions in the four-dimensional Einstein-Maxwell-A system. The diagrams in the upper,
middle, and lower rows are the 1/¢> = 0 (zero cosmological constant), 1/¢> = —1 (positive cosmological constant), and 1/ = 1
(negative cosmological constant) cases, respectively. The diagrams in the left, the middle, and the right columns are the k = 1, 0, and
—1 cases, respectively. The M-r, relations (thick curves) and the M-r,, relations (dotted curves) are plotted. The dots with characters
“E” and “D” imply the degenerate horizon and the doubly degenerate horizon, respectively. The region with a star which is bounded
by the M-r,, curve represents an untrapped region. It changes from an untrapped region to a trapped region or vice versa by crossing the
M-r, curve. In cases with more than four dimensions, the M-r diagrams are qualitatively the same.
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-1 (n—23)k
+
RS

Xy zp 278 1y
02 =0 =" 3)2[ } 22)
respectively. By Eq. (22), there are extreme solutions only
in the case where A < 0 and/or k = 1. On the M-r diagram
the extreme solution is expressed by the point where two
horizons coincide. When d?M/dr? = 0 is satisfied at the
finite radius r, = ry, the three horizons degenerate, and we
call the horizon a doubly degenerate horizon.

We will examine a number of horizons of the solutions.
The M-r diagrams are shown in Fig. 2, and the global
structures are summarized in Tables I and II.

A. A =0 case
By Eq. (19) we find

3 = %[1‘7] + \/Mz —2(n — 3)kQ?] (23)

for k # 0, and

_ 2
o3 = =0 2;4)Q (24)

for k = 0.

Inthe k=1 case, the solution is the n-dimensional RN
solution [28]. The M-r diagram is shown in Fig. 2(a). For

M < M., where M, = 213 = 1/2(n — 3)Q?, the solu-

tion has no horizon and represents a spacetime with a
globally naked singularity. For M = M., the solution is
the n-dimensional extreme RN black hole solution. The
term of the square root in Eq. (23) vanishes, and a degen-
erate horizon locates at ro, = [(n — 3)0%/2]"/2"=3)_ For
M > M., the solution has black hole and inner horizons,
which have radii with the plus and the minus signs in
Eq. (23), respectively, and represents the RN black hole
spacetime.

TABLE I. The classification of the spacetime structures of the
static solutions in the Einstein-Maxwell-A system. The numbers
in the column “Type” imply the types of the conformal dia-
grams in Figs. 6-9. For the A > 0 and k = 1 case, see Table II.

k A=0 A>0 A<0
M Type M Type M Type
1  M<M, sI seeTablelI M<M, sIV
M=M, dbl M=M, dbll
M>M,, bVII M>M, bIV
0 M=0 sI any s M<M,, sIV
M>0 sl M= M, dbll
M>M, bIV
-1 any sIII any s M<M,, sIV
M=M, dbll
M > M bIV

I}
>
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TABLE II. The classification of the spacetime structures of the
static solutions in the A >0 and k = 1 cases in the Einstein-
Maxwell-A system. This table also shows the classification of
the spacetime structures of the static solutions in the minus
branch in the Einstein-Gauss-Bonnet-Maxwell-A system with
4@ /€% # 1. In the latter case the mass of the extreme solutions is
1\7182 — 1\71&';1 where { = 1,2. The numbers in the column
“Type” imply the types of the conformal diagrams in Figs. 6-9.

_101<10,l 101 =104l 101> 104
M Type M Type M Type
M< A;Ig() sII M<M, sII any sII
M= m) dolll M =M, dslII
MY <m<m2 bvil M>M, sl
M= Mg dsll
m>m2 sIT

In the k=0 case, the ]\7I—rh diagram is shown in
Fig. 2(b). For M < 0 the solution has no horizon and
represents a spacetime with a globally naked singularity.
For M > 0 the solution has a cosmological horizon and
represents a spacetime with a globally naked singularity.

In the k = —1 case, the M—rh diagram is shown in
Fig. 2(c). The solution has a cosmological horizon for
any value of M and represents a spacetime with a globally
naked singularity.

B. A >0 case

In the £k = 1 case, the solution is the n-dimensional RN-
dS solution and has three horizons at most. The M-r,
diagram is shown in Fig. 2(d).

When the charge of the solution satisfies 0 < |Q| <
|Q,l, there are two vertical points in the M-r, diagram.
Here Q, is the charge of the solution with a doubly
degenerate horizon

5 _ 2 2(n-3)

Qi ym -3 (23)
L (-3
rd——(n_ 1)(11—2)' (26)

These vertical point E’s in Fig. 2(d) correspond to two
degenerate horizons with radii rg() and rg() (rg) < rg()
calculated by solving Eq. (22) with respect to r,, respec-
tively. The former is realized by the degeneracy of the
black hole and the inner horizons, while the latter is
realized by the degeneracy of the black hole and the
cosmological horizons. We denote the mass of these solu-
tions by MY and M2 ML < M?), respectively. For
M< Mg(), the solution has a cosmological horizon and
represents a spacetime with a globally naked singularity.

For M = M&) the solution has a degenerate black hole
horizon and a cosmological horizon and represents the
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extreme RN-dS black hole spacetime. For MY < M <
MSQ the solution has inner, black hole, and cosmological
horizons. The spacetime is the RN-dS black hole space-
time. For M = M, the solution has inner and degenerate
horizons. For M > M2, the solution has a cosmological
horizon and represents the spacetime with a globally naked
singularity.

When |Q| = |Q,I, there is a solution with a doubly
degenerate horizon whose mass parameter is

S 4
M= My =— 1;3. 27)

The doubly degenerate horizon locates at r = r,. This
solution represents a spacetime with a globally naked
singularity. The ratio of the charge to the mass is

0 [ =17
M, 8(n —2)(n —3)

The ratio takes the largest value |Q,|/M, = 3/4 for n =
4. For M #+ M, the solution has a cosmological horizon
and represents the spacetime with a globally naked
singularity.

When |Q| > |Q,l, any solution has a cosmological hori-
zon and represents the spacetime with a globally naked
singularity.

In the k = 0 and the k = —1 cases, the M-r diagrams
are shown in Figs. 2(e) and 2(f), respectively. They have
qualitatively similar structures. The solutions have one
cosmological horizon for any value of M and represent
the spacetime with a globally naked singularity.

(28)

C. A <0 case

The system with a negative cosmological constant has
been intensively studied in the adS/CFT and braneworld
contexts. Furthermore there are topological black hole
solutions [29,30].

In the k£ = 1 case, the solution is the RN-adS solution.
The M-r diagram is shown in Fig. 2(g). The M-r diagram
in the k = 0 case is shown in Fig. 2(h). We can see that they
have similar structures. There is one vertical point in the
M-r), diagrams. It corresponds to the degenerate horizon,
whose solution has the mass and the charge calculated by
Egs. (21) and (22) The mass of both extreme solutions is
positive. For M < M,,, the solution has no horizon and
represents the spacetime with a globally naked singularity.
For M = M.,,, the solution has a degenerate black hole
horizon and represents the extreme black hole spacetime.
For M > Mex, the solutions have inner and black hole
horizons. The solution with k=1 represents the
n-dimensional RN-adS black hole spacetime.

In the k= —1 case, the M-r diagram is shown in
Fig. 2(i). The solutions are classified into three types. For
M < M., the solution has no horizons and represents the
spacetime with a globally naked singularity. For M = M.,
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the solution has a degenerate black hole horizon and rep-
resents the extreme black hole spacetime. For M > M.,
the solution has inner and black hole horizons and repre-
sents the black hole spacetime. Because of the first term on
the right-hand side (rhs) of Eq. (19), a black hole solution
with zero or negative mass can exist. As seen from
Fig. 2(i), the black hole solution with the lightest mass
for a fixed charge is the extreme solution. When the charge
is small, the extreme black hole solution has negative mass.
When |Q] = |Qcyl, where

e 2)2(n 5 (” (52) e

the extreme black hole solution has zero mass, and its
horizon radius is

5 .
ex,0 °

n—23
Fox = p— 2(,’. (30)

For the charge |Q| > |Qex,0|, all the black hole solutions
have positive mass.

IV. GENERAL PROPERTIES OF SOLUTIONS IN
THE EINSTEIN-GAUSS-BONNET-MAXWELL-A
SYSTEM

We proceed to the cases with Gauss-Bonnet terms. First,
let us discuss the general properties of the static solutions
in this system.

For the well-defined theory with the relevant vacuum
state (M = Q = 0), we assume

4éa
02
In this and the next sections, we study the 4@/€> < 1 case.
The special case of 4@/€> =1 will be investigated in

Sec. VL.
The square of the effective curvature radius is defined by

[9]

=1. 31)

£2 4&
0% '—7<1 + 1—ﬁ>. (32)

In Sec. III, we showed the structures of the infinity of the
solutions, which depend on the value of €2, in general
relativity. By replacing €2 in the discussion in general
relativity by €2, the structures of the infinity in the
Einstein-Gauss-Bonnet-Maxwell-A system are obtained.

In general relativity there is a central singularity for any
charged solution. In Gauss-Bonnet gravity the inside of the
square root of Eq. (13) vanishes at the finite radius r = ry,
and the other type of singularity, called the branch singu-
larity, appears there. The M-r), relation becomes

(n—3)0°
21‘1’7‘73 '

N N A& n—1
M= M, = —(1 ——“>r§d +

= (33)
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This relation is independent of k. In the neutral case O = 0,
the branch singularity appears only for the solution with
negative mass [9], while all the solutions have branch
singularity in the charged case. Around the branch singu-
larity the Kretschmann invariant behaves as

I ~0[(r—r,)7?] 34)

From the condition (31), r;, decreases monotonically as M
increases and asymptotically approaches zero in the limit
of M — oo. It is noted that the divergent behavior of the
branch singularity is milder than that of the central singu-
larity in general relativity [see Eqgs. (17) and (34)].

The metric function f behaves around the branch singu-
larity as

A
£ = <k+%>+ﬁ
n—1 4a\ 2(n —3)2aQ?
- ) 2
(35)

Hence when k=1 or 0, the singularity is timelike
[Fig. 1(a)]. When k = —1, the singularities are timelike
and spacelike [Fig. 1(d)] for r, >+2a& and r, <+2a,
respectively. In the special case of k= —1 and r, =
V2@, the singularities are spacelike and timelike for the
minus and plus branches, respectively.

On the horizon the metric function f vanishes: f(r,) =
0, and we find

2ak M 1 (n-3)0°
1+ )=1+4a| ————~——"—|>0,
( r2> J a[r’ﬁ] € A2 }

h
(36)

where the signs on the left-hand side (lhs) represent the
minus/plus branches. Hence

r < —2ak (for the plus branch), 37)

ra > —2ak (for the minus branch). (38)
By these conditions it is concluded that there is no horizon
for k = 1, 0 in the plus branch. When k = —1, the horizon
radius is restricted as r, < ~2@& (r, > +/2@) in the plus
(minus) branch.

The M-r), relation is

— A2 5
M=r;¢l[%+—(” ) 0 +5<1+“—k>} (39)

2 r%l”_“ r%l r%
For k = 0 this relation is the same as that in general
relativity (19). For k = —1 the solution with r, = +/2&
has a branch singularity at r = rp := /2& where

PHYSICAL REVIEW D 72, 064007 (2005)

(- %) e ]

(40)
This implies that the sequence of solutions is divided by the
branch singularity into the plus and the minus branches in
the k = —1 case. It is seen that the M-r,, curve in the M-r
diagram terminates at the M-r, curve just at the point we
call the branch point (point B in Figs. 3 and 4). For the
mass parameter with M+ M g, the horizon radius is al-
ways larger than r,. While My is always negative in the
neutral case, My can be zero in the charged case by tuning
the charge O as

M:MB::

L 1 4a
0% =0} := m<1 - 73)(2&)"*3. @b

For |01 < |00l (101 > 10s]), My is negative (positive).

As we will see in the next section, in the M-r diagram of
the M-r,, curve there are some vertical points. In Gauss-
Bonnet gravity,

F 1 M 1
M | r=r, rh rh ¢
(n — 3)Q2}]'—1/2
- (42)
2(n—2)
Zrh(

is finite, so that the horizons at the vertical points are
degenerate except for r, — r;,, where the condition (20)
is satisfied. However, the M-r, curve is tangent to the M-r,,
curve at the branch point, and the M-r, curve monotoni-
cally decreases. Thus the M-r,, curve cannot be vertical at
the branch point. As a result the horizons at all the vertical
points are degenerate (for this analysis, see Ref. [9].)

In the extreme cases, the relations between the mass, the
charge, and the horizon radius are written as

o -2 k(- 4ak
M=M, =2 2 S T
ex T e [(n =32 3 (n—3)rd }
(43)
0% =03
28 P11 (n—-3)k | (n—5)ak
(n— 3)2[ €2 r2 * rd } (44)

In five dimensions the last term in Eq. (44) vanishes, and
the charge of the extreme solution has the same expression
as that in general relativity. This implies that degenerate
horizons appear at the same radius as those appearing in
general relativity if we choose the same charge value.
However, the mass of the extreme solution is different
from that in general relativity. Equation (44) is rewritten as
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(a) (b) (©) (d)

2 2 T 1 T 1 T

FIG. 3. The M-r diagrams of the static solutions in the six-dimensional Einstein-Gauss-Bonnet-Maxwell-A system with 4&/€> # 1.
The diagrams in the upper, middle, and lower rows are the 1/£?> = 0 (zero cosmological constant), 1/¢2> = —1 (positive cosmological
constant), and 1/€? = 1 (negative cosmological constant) cases, respectively. The diagrams in the columns from the left-hand side are
the k£ = 1 (the minus branch), O (the minus branch), —1 (the minus branch), and —1 (the plus branch) cases, respectively. We show the
M -ry, relations (thick solid curves) and the M -rp, relations (dot-dashed curves). We set @ = 0.2 and Q =0.1(k=1,0)and Q =103
(k= —1). We choose the value of the charge as |Q| < |Q,| in the k = —1 case. Otherwise, the two extreme solutions in the plus
branch coincide, and the M-r;, relation becomes single valued. The dotted curve represents a sequence of the degenerate horizon
(M-r relations) by varying Q. Below the M-r,, line, there are no solutions. The dots labeled “E,” “D,” and “B”” imply the degenerate
horizon, the doubly degenerate horizon, and the branch point, respectively. See Fig. 2 for the meanings of the stars. The M-r diagrams
of the higher-dimensional solutions with n = 6 have similar configurations to these.

~1
Ulrey) 1= ”{2 P24 4 (n = 3)kr2 6 + @k (n — 5)r208

_(”_3)2 52
——2 ¢

(45)

The function U(re,) is defined in the range ro = 0. If
Ul(r) is negative semidefinite, there is no extreme solu-
tion. If U(r,,) is a monotonically increasing function from
zero to infinity, there is a certain mass M., where the
solution becomes extreme for any value of Q. We denote
the mass of the extreme solution in the plus (minus) branch

as Méf) (1\71232)). When more than one extreme solution

exists in the same branch, we denote their mass as M, (H),

(2+)’ (M(l ), (2 )’ ).

If U(r,y) isnot a monotonic function, there are extremal
points, which correspond to the solutions with a doubly
degenerate horizon. We should take care not to confuse
these extremal points of the function U(,,) with the ex-
tremal solution with degenerate horizons.

Although there may be a horizon with more degeneracy
in general, in the present system up to a doubly degenerate
horizon can appear. Hence examining the extremal points
of U(r,y), we find the condition and location of the doubly
degenerate horizon r = r, such that dU/dr], —,, = 0.

As the charge Q is varied, the number of the roots 7, in
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(a) (b) (d)

2 T 2 T 2

2

*

3
\
05 B 05 3 ! 05 B 1
\ \
.\‘~ v\'
L - -_-_‘- >>>>>>>>>> ‘ ‘

(e) ® (&) (h)

FIG. 4. The M-r diagrams of the static solutions in the five-dimensional Einstein-Gauss-Bonnet-Maxwell-A system with 4 /€> #
1. The diagrams in the upper, middle, and lower rows are the 1/€> =0 (zero cosmological constant), 1/€> = —1 (positive
cosmological constant), and 1/¢> = 1 (negative cosmological constant) cases, respectively. The diagrams in the columns from the
left-hand side are the kK = 1 (the minus branch), O (the minus branch), —1 (the minus branch), and —1 (the plus branch) cases,
respectively. We show the M-r), relations (thick lines) and the M-r,, relations (dot-dashed lines). We set @ = 0.2 and 0 = 0.1. Below
the M-r,, line, there are no solutions. The dotted curve represents a sequence of the degenerate horizon (M-r., relations) by varying 0.
See Figs. 2 and 3 for the meanings of the dots and the stars.

Eq. (45) changes at the extremal points of the function
U(re). When A = 0, the doubly degenerate horizon ap-
pears at

. 2 _ 2 2n-3)
05 w32 U(ry) ERET KA (48)

When A # 0, the doubly degenerate horizon appears at
, . (m=4m-5)

ri=———ka. (46)
’ (n = 3)° (=3B (49)
KT
Since the lhs of this equation is positive, k must be —1 and
n = 6. Furthermore since ry < +/&, the doubly degenerate  ;nd the mass and the charge of the solution become
horizon exists only in the plus branch. Then the mass and
the charge of the solution are given by Egs. (43) and (45) as
. 4(n — 4)a —3)%¢’B
PR k) L N Gl |
. 4 (n=1Dn—=3) (n—17>n-2k
M, = 3, 47
n—>5 (50)
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Q2 _ r2(n74)k2 4(1’1 - 5)& . (f’l - 3)€ZB
d d m—2)n—32% (m—1Dm—-2)2%*%]
(51)

where

N _4a(n —1)(n —2)(n —4)(n - 5)
B.—k_lkl\/l T :
(52)

Note that the sign = does not correspond to the signs of the
solution branches but is determined to make the rhs of
Eq. (49) positive. If both signs give negative €>B, there are
two sets of parameters which give the solutions with a
doubly degenerate horizon. When |Q,| is single valued
(namely, there is only one value of the charge which gives
a doubly degenerate horizon), two extreme solutions
exist for |Q| < |Qd|, while no extreme solution exists for

101 > 104.

V. M-r;, DIAGRAM AND SPACETIME STRUCTURE

In the previous section, we discussed properties of the
singularity, the infinity, and the horizons of the solutions in
the Einstein-Gauss-Bonnet-Maxwell-A system. In this sec-
tion we focus on the number of horizons and show the
spacetime structures by taking into account the above
properties. The 5-dimensional black hole solution in the
present system is studied in Ref. [31] from the adS/CFT
point of view, and the black hole solution without cosmo-
logical constant is analyzed recently in Ref. [32]. To clarify
our considerations, the M-r diagrams are shown in Figs. 3

TABLE III.

PHYSICAL REVIEW D 72, 064007 (2005)

(n=06) and 4 (n = 5). The spacetime structures of the
solutions are summarized in Tables II, III, and IV.

A.A=0
1. k=1 case

The solution in the plus branch does not have a horizon
and represents a spacetime with a globally naked
singularity.

The M-r diagrams of the minus-branch solutions are
shown in Figs. 3(a) (n = 6) and 4(a) (n = 5). Since the
function U(r,,) monotonically increases from zero to in-
finity, there is an extreme solution for any Q. The extreme
solution has the positive mass M > 0. For M < M,
the solution has no horizon and represents a spacetime with
a globally naked singularity. For M = ML, the solution
has a degenerate horizon and represents the extreme black
hole spacetime. In the five-dimensional case, the mass and

the horizon radius of the extreme black hole are 1\71(6;) =

2|0| + @ and re, = /|0, respectively. For M > M., the
solution has inner and black hole horizons and represents
the black hole spacetime.

2. k=0 case

The solution in the plus branch does not have a horizon
and represents a spacetime with a globally naked
singularity.

The M-r diagrams of the minus-branch solutions are
shown in Figs. 3(b) (n = 6) and 4(b) (n = 5). The M-r,
relation becomes M = (n — 3)Q?/2r} 3, and the horizon
radius diverges in the M — 0+ limit. For M =< 0, the
solution has no horizon and represents a spacetime with a

The classification of the spacetime structures of the static solutions in the Einstein-

Gauss-Bonnet-Maxwell-A system with 4&/¢> # 1. The numbers in the column “Type” imply
the types of the conformal diagrams in Figs. 6-9. For the minus-branch solutions with A >0

and k = 1, and the plus-branch solutions with k = —1, see Tables II and IV, respectively.
A A = 0 (— branch) A >0 (— branch) A <0 (— branch) + branch
M Type M Type M Type M Type
1 M<M sl see Table II M<My sV any sIV
M=m  dbl M=m  dbl
M>MS bVl M>M5 bV
0 M=0 sI any sII M< My sIV any sIV
M>0 SITI M=M  dbll
M>M5 bV
-1 M<Mz, S  M<M, sIT M<M  sIV see Table IV
M=M, sV M=M, sVII M=M  dbll
M) <M< My bIV
M= My bIII
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TABLE IV. The classification of the spacetime structures of the static solutions in the plus

PHYSICAL REVIEW D 72, 064007 (2005)

branch with k = —1 in the Einstein-Gauss-Bonnet-Maxwell-A system. The numbers in the
column “Type” imply the types of the conformal diagrams in Figs. 6-9.
101<10 (1 =6)  101=10ul (n=6) 101>10, (n=6)  n=5
M Type M Type M Type M Type

M= My sIV M= My sIV. M = M, sIV. M =My sIV
My<M<MLY bl My<M<M, bl M>DM, blll M >M, bl

=M dbV M=M, dbIlV
ml < m < m%Y byl M>M, bIII

7= M3 dbVII

1> e bIII

globally naked singularity. For M > 0, the solution has a
cosmological horizon and represents a spacetime with a
globally naked singularity.

3. k= —1 case

In the k = —1 case, solutions in the plus branch can
have horizons. Since the function U(r,,) has a positive
maximum in the n = 6 case, there is a solution with a
doubly degenerate horizon when |Q| = |Q,|, which is
given by Eqgs. (46) and (48). This solution belongs to the
plus branch since r; < +2a&. When |0| < |0,l|, Eq. (45)
has two roots, i.e., two types of degenerate horizons exist.
Since the function U(r.,) becomes positive for the range
0 < re <+@(n —5)/(n — 3) <+2a& in this case, these
extreme solutions also belong to the plus branch. The

mass of these extreme solutions is denoted as My (") and
Mgf), where Mgf) < Mgf), respectively. On the other
hand, the function U(r,) is negative semidefinite in n = 5,
and there is no extreme solution.

Let us first consider the solutions in the minus branch.
The M-r diagrams of the minus-branch solutions are
shown in Figs. 3(c) (n = 6) and 4(c) (n = 5). The dia-
grams in n = 5 and higher-dimensional cases are qualita-
tively the same. For M < My, the solution has a
cosmological horizon and represents a spacetime with a
globally naked singularity. For M = M, the solution has
no horizon and represents a spacetime with a globally
naked singularity. Here My is positive (negative) when
101 > |05l (101 <1Qpyl), where [Qpol is given by
Eq. (41) as

B (2@)n*3
n—3"

(33)

\a}
o
o

In the n = 6 case, the M-r diagram of the plus-branch
solutions is shown in Fig. 3(d). The configuration of the
M-r, curve changes qualitatively depending on the value
of the charge. First we assume |Q| < |Q,|. Then there are
two extreme solutions. For M = M, the solution has no

horizon and represents a spacetime with a globally naked
singularity. For M g < M<M gf), the solution has a black
hole horizon and represents the black hole spacetime.
Since |0, < 10p,l by Egs. (48) and (53), My is negative.
So, the solution with Mz < M < 0 represents the negative
mass black hole. For M = MS(*), the solution has a degen-
erate and a black hole horizon and represents the black hole

spacetime. For M&“ <M<M gﬂ, the solution has three
horizons. Although the RN-dS black hole solution in gen-
eral relativity also has three horizons, the global structure
of the present solution differs from it. By our definition the
outermost and the innermost horizons of the three horizons
are the black hole horizon, i.e., there are two black hole
horizons, and the horizon between them is the inner hori-
zon. For an observer locating in the untrapped region
between the “inner’’ black hole horizon, i.e., the innermost
horizon, and the inner horizon, the inner horizon would be
seen as if it were the cosmological horizon. For M =

Mex @*) the solution has a black hole and a degenerate black
hole horlzon and represents the extreme black hole space-
time. For M > M2", the solution has a black hole horizon
and represents the black hole spacetime.

When |Q| = |Q,I, there is a solution with a doubly
degenerate horizon. For M = Mj, the solution has no
horizon and represents the spacetime with a globally naked
singularity. For My < M < M, the solution has a black
hole horizon and represents the black hole spacetime. The
solution with M B < M<0 represents the negative mass
black hole. For M = M, where M, is given by Egs. (46)
and (47), the solution has a doubly degenerate horizon. In
general relativity, there is a solution with a doubly degen-
erate horizon as a special case of the RN-dS solution, as
shown in Sec. III B. That is not a black hole solution, while
the present solution in Gauss-Bonnet gravity represents the
black hole spacetime with a doubly degenerate horizon.
The ratio of the charge to the mass becomes

_ (n —5)? 1
8 —3)(n — 4) = 2 (54)

[
M,
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For M > M, the solution has a black hole horizon and
represents the black hole spacetime.

When |0| > |Q,l, no extreme solution exists. For M =
M g, the solution has no horizon and represents the space-
time with a globally naked singularity. For M > My, the
solution has a black hole horizon and represents the black
hole spacetime. If |Q,| < |0| < |Q~B’0|, the solution with
My < M < 0 represents the negative mass black hole.

In the n = 5 case, the M-r diagram of the plus-branch
solutions is shown in Fig. 4(d). The qualitative behavior of
the solutions in the minus branch is similar to that in the
n = 6 case, while that in the plus branch is a little different.
Since the function U(r.) is negative semidefinite in the
n = 5 case, there is no extreme solution. Hence, in the plus
branch, for M < M 5, the solution has no horizon and
represents the spacetime with a globally naked singularity.
For M > My, the solution has a black hole horizon and
represents the black hole spacetime. If |Q] < |Q~B,0|, the
solution with My < M < 0 represents the negative mass
black hole.

B.A>0
1. k =1 case

The solution in the plus branch has no horizon and
represents a spacetime with a globally naked singularity.
On the other hand all the solutions in the minus branch
have horizons. The number of horizons depends on the
charge and the mass.

The M-r diagrams of the minus-branch solutions are
shown in Figs. 3(e) (n = 6) and 4(e) (n = 5). Since the
function U(r.,) has the positive maximum, there is a
solution with a doubly degenerate horizon, whose mass
and charge are given by Egs. (50) and (51), respectively.
When |Q| < |Q,l, two types of extreme solutions exist
whose mass is ML and M2, For M < M7, the
solution has a cosmological horizon and represents a
spacetime with a globally naked singularity. For M =

Mgf), the solution has a degenerate black hole horizon
and a cosmological horizon and represents the extreme
black hole spacetime. For M < m1 < mMZ7, the solu-
tion has three horizons, which are inner, black hole, and
cosmological horizons. The solution represents the black
hole spacetime. For M= Mgf), the solution has an inner
horizon and a degenerate horizon and represents a space-
time with a globally naked singularity. For M > MS:), the
solution has a cosmological horizon and represents a
spacetime with a globally naked singularity.

When |Q| = |Q,l, there is a solution with a doubly
degenerate horizon. For M # M, the solution has a cos-
mological horizon and represents a spacetime with a glob-
ally naked singularity. For M = M, the solution has a
doubly degenerate horizon and represents a spacetime
with a globally naked singularity.

PHYSICAL REVIEW D 72, 064007 (2005)

When |Q| > |Q,|, no extreme solution exists. All the
solutions have a cosmological horizon only and represent a
spacetime with a globally naked singularity.

2. k = 0 case

Since there is no horizon for the solution in the plus
branch, all the solutions represent a spacetime with a
globally naked singularity.

The M-r diagrams of the minus-branch solutions are
shown in Figs. 3(f) (n = 6) and 4(f) (n = 5). The function
U(r.y) is negative semidefinite so that there is no extreme
solution. The solution has a cosmological horizon and
represents a spacetime with a globally naked singularity
for any mass parameter.

3. k= —1 case

The M-r diagrams are shown in Figs. 3(g) (n = 6, minus
branch), 3(h) (n = 6, plus branch), 4(g) (n = 5, minus
branch), and 4(h) (n = 5, plus branch). The properties of
the M-r,, relations are the same as those in the A = 0 and
k = —1 cases qualitatively. In the minus branch, however,
the structure of the infinity is different (see the conformal
diagrams).

In the case of the plus branch with A =0 and k = —1,
My is always less than MS() for |Q] < |0, and n = 6, as
seen in Sec. VA. This is also true in the present case. By the
M-r,, relation (33), r}, is a monotonically decreasing func-
tion of M, and the horizon radius of the plus-branch
solution is restricted as rj, < \/'27&. By these facts the
mass of the solution which has a horizon should be greater
than M. As a result, Mz < ML) is obtained. This also
holds in the A <0 case.

Although it is difficult to show |Qy| < |0l analyti-
cally, we can show |Q,] < |0zl by comparing Eq. (51)
with Eq. (41) in the & — 0, & — o0, and n — oo limits.
This supports the argument that this relation should hold
for any @ and n. Actually the numerical calculation shows
1041 <10p0l. This implies that the negative mass black
hole solution always exists for |0 = |Q,|.

C.A<0
1. k=1 case

The solution in the plus branch has no horizon and
represents a spacetime with a globally naked singularity.

The M-r diagrams of the minus-branch solutions are
shown in Figs. 3(1) (n = 6) and 4(i) (n = 5). Since the
function U(r.,) monotonically increases from zero to in-
finity, there is an extreme solution for any Q. The extreme
solution has the positive mass 1\712;) > (0 in the n = 6 case
and Mé;) > @ in the n = 5 case. For M < Mé;’, the solu-
tion has no horizon and represents a spacetime with a
globally naked singularity. For M = Mé;), the solution
has a degenerate black hole horizon and represents the
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extreme black hole spacetime. For M > M.}, the solution
has an inner and a black hole horizon and represents the
black hole spacetime.

2. k = 0 case

The solution in the plus branch has no horizon and
represents a spacetime with a globally naked singularity.

The M-r diagrams of the minus-branch solutions are
shown in Figs. 3(j) (n = 6) and 4(j) (n = 5). The qualita-
tive properties of the M-r diagram are the same as those in
the k = 1 case except that the mass of the extreme solution
is limited as M., > 0 in the n = 5 case.

3. k= —1 case

If n = 6 the function U(r.,) has two extrema. However,
Q% becomes negative for the minus sign in Eq. (52), and
eventually there is one extreme solution with a doubly
degenerate horizon. The value of the charge Q, of the
extreme solution is determined by Eq. (51), where the
plus sign is chosen in Eq. (52). When |Q| <|Q,l,
Eq. (45) has three roots, and there are three extreme
solutions. One of them has a degenerate horizon whose
radius is larger than +/2@ and belongs to the minus branch.
The other belong to the plus branch. When |Q| = |0/, the
degenerate horizons in the plus branch coincide and be-
come a doubly degenerate horizon. There is an extreme
solution in each branch. When |Q| > |Q,I, there is one
extreme solution only in the minus branch. In the n =5
case, there is only one extreme solution for fixed Q by
Eq. (45). The radius of the degenerate horizon is r, >
V2@, and the extreme solution belongs to the minus
branch.

First let us consider the minus branch. The M-r dia-
grams are shown in Figs. 3(k) (n = 6) and 4(k) (n = 5).
For any value of 0, there is an extreme solution with M =
Mé;) . For M <]\7I£;), the solution has no horizon and
represents a spacetime with a globally naked singularity.
For M = Mg;), the solution has a degenerate horizon and
represents the extreme black hole spacetime. For M) <
M < M, the solution has an inner and a black hole hori-
zon and represents the black hole spacetime. For M = My,
the solution has a black hole horizon and represents the
black hole spacetime.

We plot the M-r,, curve on the M-r diagrams. For a
small charge value, the extreme black hole solution has
negative mass [dot E in Figs. 3(k) and 4(k). As the charge
becomes large, the mass of the extreme black hole solution
increases and becomes zero. We denote the charge of the
zero mass extreme solution Q. (. Then when [Q] <
|Qcxol, the mass of the extreme black hole solution is

negative, and the solution with 1\71(6;) <M<0 represents
the black hole spacetime with the negative mass. When
|O] = |Qex0l, the extreme solution represents the zero

PHYSICAL REVIEW D 72, 064007 (2005)

mass black hole spacetime. When |Q| > |Q~ex,0|, all the
black hole solutions have the positive mass.

We have seen that several extreme solutions appear in
Gauss-Bonnet gravity. However, all of them do not have
zero mass except for the one in the case of A <0,k = —1
in the plus branch. Let us examine this situation and derive
the explicit form of Qex,O' By the condition M., = 0 (we
assume r., # 0), Eq. (43) gives

(n—2) p 2 (n — 4)ak?
——— e+ kr —FF—=0. 55
(n — 3)€? ex (n—3) 43
For A =0,
—4)ak
P Uik L1 (56)
n—3
which implies that only the k = —1 case can have a

positive real root. However, then the Qex,o is estimated
by Eq. (44) as

2]"20172)

- gx,o _ (nixm <0, 57)

which gives a contradiction so that Qex,o is not defined in
the A = 0 case.
For A # 0, the roots of Eq. (55) are

n— 2
’%X = (2( _3)26) k* |k|\/

2)(n —4)a
_ )2€2 i|
(58)

The value inside of the square root is guaranteed to be
positive definite by the condition (31). For k = 0O there is
no positive root. Substituting Eq. (58) into Eq. (44),

- R 59
ex.0 n—2)(n—-3)

When k = 1 the rhs is negative definite. Hence only in the
k = —1 case can QNeX,O be defined. Moreover for k = —1,
Eq. (59) gives a condition

rexliz, —o > V2&, (60)

which implies that the extreme solution with zero mass
appears only in the minus branch. Substituting Eq. (58)
into this condition in the A >0 case, one easily finds
4@/€*> = 1, which contradicts the condition (31). In the
A <0 case, taking the lower (minus sign) solution of
Eq. (58), one finds a similar contradiction. As a result,
only in the A <0 and k = —1 cases can we define Qex,o in
the minus branch by taking the upper solution of Eq. (58).
Its value is

_ 20 - 2a)
ex,0 mn—-2)(n—-3) °

(61)
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where

_ 2 _ Y
i‘gx = (;(n _3)§) |:1 + \/1 - 4(n(n i)(::;2€24)aj|- (62)

Next let us move onto the plus branch. The M-r dia-
grams of the plus-branch solutions are shown in Figs. 3(1)
(n = 6) and 4(1) (n = 5). The configurations of the M-r
diagrams are qualitatively the same as those in the A = 0,
k = —1 cases, respectively.

Inthe A = 0and k = —1 cases, |Q,] < |Q~B,0| holds for
any case. In the A <0 case, however, Ile can be larger
than |Qjl. This can be seen easily as follows. In the a« —
0 limit,

2n*3
a3 (63)

52
QB‘O ]’l_3 »

(64)

g 2n=9) [(n —4)(n 5)}“ o

(n=3°L (n—23)

So in this limit, |Q4| < |Qpl. On the other hand, in the
4a/€> — 1 limit, |Qgol ~ 0 and |Q,| > 0. Hence |Q,| >
|Q3,o|- Therefore there is a certain value of @ where the
|QB,0| and |Q,| are equal. |Qex,()| also vanishes in the
4@/€*> — 1 limit. Hence for a small &, there are two
extreme solutions in the plus branch for small |Q| <
|0,|. Simultaneously the negative mass black hole solution
exists. As the charge becomes large, extreme solutions
disappear while the negative mass black hole solution
remains. In the large @ limit, however, the negative mass
black hole solutions disappear, although the extreme solu-
tions exist. These behaviors in the space of the solutions
are interesting in the context of our discussion of the
evolution of the black hole.

VI. EINSTEIN-GAUSS-BONNET-MAXWELL-A
SYSTEM: 4@/¢* = 1 CASE

The system with 4&/€> = 1 is a special case, where the
vacuum states of the plus and the minus branches coincide.
Since we have assumed that « is positive, the cosmological
constant is negative by definition. The metric function f

becomes [33]
r? ™M (n-30°
f=k+ 7% {1 F \/4a[rn_1 - 520D }} (65)

When the radius is large a spacetime approaches adS
spacetime for r — oo with the effective curvature radius

€eff = \/2& for k = 1.
In the charged case, a branch singularity locates at
[ —=3)0* /0 3>
r=r,i=|——=—
M

(66)

Hence the mass must be positive in this special case. There
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is no negative mass black hole solution. Furthermore the 7,
is independent of the Gauss-Bonnet coefficient @. The
Kretschmann invariant behaves as

I =0(r—r)7) (67)

around the branch singularity. Since f behaves

r; _(n—3)|Q| /r—rb
~k+ b 68
f \/_}"Z 4V ( )

near the branch singularity, the branch singularities are
timelike [Fig. 1(a)] for the solutions with £k = 0, 1. For
the solutions with k = —1, the singularity is timelike for
r, > /2@ and spacelike [Fig. 1(d)] for r, <+/2@. In the
special case of r, = /2@, the singularity is spacelike in
the minus branch and timelike in the plus branch.

Since the radius of a horizon is restricted to r7 < —2ak
(r%l > —2ak) for the plus (minus) branch, there are no
horizons for solutions with k = 0, 1 in the plus branch.
The M -ry, relation (39) becomes

- 1 2kan\2
M=r"—(1+=) +
a7

As in the 4@ /€2 # 1 case, a vertical point of the M-r,
curve corresponds to a degenerate horizon. From the con-
dition f(re) = df/drl,—, = 0, the relations between the
mass, the charge, and the radius of the degenerate horizon
of the extreme solution are

_\A2
ﬂ} (69)

2(n—2)
2r,

M= M.,
yi=l 2ka 2(n — 4)ka
=—= _(1+—)|n—-2+—5"—
2a(n - 3)( =3 )[ 2 }
(70)
=0
r?,;” 2 2k 2(n — S)ka
=—¥|l+—|)n-14+—5—|
201(}’1 - 3)2( rezx >|: rezx i|
(71)

There is one extreme solution for any value of Q when k =
0,1 since the rhs of Eq. (71) monotonically increases.
When k£ = —1 and n = 5, there is also one extreme solu-
tion for any value of Q. Since the radius of the degenerate
horizon is restricted to r., > +/2@ by Eq. (71) for the k =
—1 and n = 5 cases, the extreme solution belongs to the
minus branch.

When k£ = —1 and n = 6, the number of extreme solu-
tions depends on Q. There is always one extreme solution
with M = M., in the minus branch. For 10l = 10,l,
where |Q,| is obtained by substituting ¢> = 4@& into
Eq. (51), there is an extreme solution with a doubly
degenerate horizon in the plus branch. M, and r,
are also obtained from Egs. (49), (50), and (52). For
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FIG. 5. The M-r diagrams of the static solutions in the six-dimensional Einstein-Gauss-Bonnet-Maxwell- A system with 4@ /€2 = 1.
From the left-hand side, the diagrams are the k~= 1 (the minus branch), k = 0 (the minus ~branch), k = —1 (the minus branch), and
k = —1 (the plus branch) cases. We show the M-r), relations (thick solid curves) and the M-r;, relations (dot-dashed curves). We set

a = 0.25 and Q = 0.1 for (a) and (b), Q = 0.2 for (c), and Q = 1073 for (d). We choose the value of the charge as IQI < Ile for (d).
Otherwise, the two extreme solutions in the plus branch coincide, and the M—rh relation becomes single valued. The dotted curve
represents a sequence of the degenerate horizon (M-r,, relation) by varying Q. Below the M-r,, line or the negative mass regions, there
are no solutions. See Figs. 2 and 3 for the meanings of the dots and the stars.

|0l < (>)|Q,] there are two (no) extreme solutions with
MS(H and Méi”, where Mgf) < M&*), respectively, in
the plus branch.

By the above analysis, we can draw the M-r diagram.
The solution in the plus branch has no horizon in the k£ =
1, O cases and represents a spacetime with a globally naked
singularity. The M-r diagrams of the minus-branch solu-
tion in the k = 1, 0 cases are shown in Figs. 5(a) and 5(b),
respectively. The solution only exists for the positive mass
parameter. Besides this fact, the properties are the same as
those in the 4@ # €2 case [see Figs. 3(i) and 3(j)]. There is

an extreme solution for any Q. For 0 < M < M}, the
solution has no horizon and represents a spacetime with a

globally naked singularity. For M = MY, the solution has
a degenerate black hole horizon and represents the extreme

black hole spacetime. For M > M., the solution has an

TABLE V. The classification of the spacetime structures of the
static solutions in the Einstein-Gauss-Bonnet-Maxwell-A system
with 4@/¢? = 1. The numbers in the column “Type” imply the
types of the Penrose diagrams drawn in Figs. 6-9. For the plus-
branch solution with k = —1, see Table IV, where the range
M = M should be changed to 0 < M = Mjp,.

k — branch + branch
M Type M Type
L0 o<M<My sV M=>0 STV
M=m dbII
> M bIV
-1 o<M<m sIV see Table IV
M=m) dbll (The range M =< My is
1) <M <My bIV  changed to 0 <M =< Mp.)
M= My bIII

inner and a black hole horizon and represents the black
hole spacetime.

In the k = —1 case, the M-r diagram of the minus-
branch solution is shown in Fig. 5(c). There is an extreme
solution for any Q. For 0 < M < M., the solution has no
horizon and represents a spacetime with a globally naked
singularity. For M = MY, the solution has a degenerate
black hole horizon and represents the extreme black hole
spacetime. For M D <M<M 5, the solution has inner and
black hole horizons and represents the black hole space-
time. For My = M, the solution has a black hole horizon
and represents the black hole spacetime.

The M-r diagram of the plus-branch solution is shown in
Fig. 5(d). The configuration of the M-r,, curve is almost the
same as that in the 4a@/¢> # 1 case [see Fig. 3(1)] except
that the mass parameter is always positive, and eventually
the mass of the branch point is positive.

The spacetime structures of these solutions are summa-
rized in Tables IV and V.

VII. CONCLUSIONS AND DISCUSSION

We have studied spacetime structures of the static solu-
tions in the n-dimensional Einstein-Gauss-Bonnet-
Maxwell-A system, where the cosmological constant is
either positive, zero, or negative. We assume that the
Gauss-Bonnet coefficient « is non-negative. This assump-
tion is consistent with the notion that the action is derived
from superstring/M theory in the low-energy limit. The
solutions have the (n — 2)-dimensional Euclidean subma-
nifold whose curvature is k = 1,0, or —1. We assume
4a/€*> =1 in order to define the relevant vacuum state.
The structures of the center, horizons, infinity, and the
singular point depend on the parameters of the system
and the branches complicatedly so that a variety of global
structures for the solution is found. In our analysis, the
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bIV

bl bll bIII

bVI bVIl bVIII

FIG. 6. The conformal diagrams of black hole solutions. bl, bll, bIII, bIV, bVII, and bVIII have the same structure as those of the
Schwarzschild, Schwarzschild-dS, Schwarzschild-adS, RN-adS, RN, and RN-dS spacetimes, respectively.

dbl dbll dbllI

dblV dbV dbVI

FIG. 7. The conformal diagrams of black hole solutions with degenerate horizons. The degenerate horizon is drawn with a double or
triple line according to its degeneracy. By passing across the triple (double) line, the trapped region (does not) changes to an untrapped
one. dbl, dbll, and dbIII have the same structure as those of the extreme RN-adS, extreme RN, and extreme RN-dS spacetimes with
degenerated horizons of the inner and black hole horizons, respectively. dbIV is the case with triple degenerate horizons. Although the
horizontal lines in dblII are the infinities, they show distinct infinities by a single line depending on how to approach (from above or
from below) them.
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sV

sIV

*

FIG. 8. The conformal diagrams of the solutions with a globally naked singularity. There are time-reversed diagrams for sVII and

sVIIL

M-r diagram provides an easily understood visual
classification.

In Gauss-Bonnet gravity, the solutions are classified into
plus and minus branches. In the & — 0 limit, the solution
in the minus branch recovers the one in general relativity,
while there is no solution in the plus branch. The structure
of the infinity is not determined by the cosmological
constant alone but also by the effective curvature radius
€2;. In the minus branch the ordinary correspondence
between the signs of the cosmological constant A and the
asymptotic structures is obtained. In the plus branch, how-
ever, the sign of €% is always positive independent of the
cosmological constant, so that all the solutions have the
same asymptotic structure as those in general relativity
with a negative cosmological constant.

In general relativity, when one adds a charge to the
Schwarzschild black hole, the inner horizon appears, and
the singularity changes from spacelike to timelike. Also in
Gauss-Bonnet gravity, the charge affects greatly the central
region of a spacetime. In the charged solutions a singularity
appears at the finite radius » = r;, > 0, which is called a
branch singularity. Although in the neutral case the branch
singularity appears only for the negative mass parameter,

dsl

in the charged case it appears for any mass parameter. It
becomes timelike or spacelike depending on the parame-
ters. Furthermore, the Kretschmann invariant behaves as
O((r — r,)~?) around the branch singularity. This is much
milder than divergent behavior of the central singularity in
general relativity O(r~*"=2). This may imply that the
string effects make the singular behavior milder.

There are three types of horizons: inner, black hole, and
cosmological horizons. In the k = 1,0 cases the plus-
branch solutions do not have any horizon. In the k = —1
case, the radius of the horizon is restricted as r;, < 2a
(rp, > +/2@) in the plus (minus) branch. The point with
r, = /2@ on the M-r, relation is the branch point whose
mass is Mp. In the neutral case M is always negative, so
that there is a black hole solution with negative mass.
However, in the charged case M p becomes zero when
|0l = 10|, and Mz > 0 for |Q] > |Qp,l.

Among the solutions in our analysis, the black hole
solutions would be the most important. Although the
M-r, relations in the k = 1,0 cases have qualitatively
similar configurations to those in general relativity, the
solution in the k = —1 case is quite different. The charged

dsIII

FIG. 9. The conformal diagrams of the solutions with a globally naked singularity and degenerate horizons. The timelike
singularities in dsII show distinct singularities by a single wavy line depending on how to approach (from the right- or left-hand

side) to them. There is a time-reversed diagram for dsl.
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black hole solution in general relativity always has an inner
horizon, and the singularity is timelike. For the k = 1 and 0
cases in Gauss-Bonnet gravity, the singularity of the black
hole solution is timelike, too. Most of the black hole
solutions with k = —1, however, have no inner horizon
so that the branch singularity of these solutions becomes
spacelike. When |Q] < |Qp |, there are black hole solu-
tions with zero and negative mass in the plus branch for
k = —1 regardless of the sign of the cosmological con-
stant. Although there is maximum mass for the black hole
solutions in the plus branch for k = —1 in the neutral case,
no such maximum exists in the charged case, and any
positive mass solution is black hole for |Q] < |QB,O|- A
solution has three horizons at most. In general relativity,
the RN-dS black hole solution has three horizons which are
the inner, the black hole, and the cosmological horizons. In
Gauss-Bonnet gravity, the solutions in the plus branch with
k= —1 and n = 6 have three horizons for each cosmo-
logical constant when |Q|<|Q,| and MY <y <
Mﬁi“. The horizons of these solutions are the inner black
hole, the inner, and the “‘outer’’ black hole horizons. We
add the words inner and outer to distinguish each black
hole horizon.

We investigate the system with the special parameter
4@ /€? = 1 separately where the vacuum states in the plus
and minus branches coincide. In this case only is the
positive mass solution allowed; otherwise the metric func-
tion takes a complex value.

Considering the Gauss-Bonnet effects on the CCH, we
find first that the divergent behavior around the singularity
becomes milder than that in general relativity. It is, how-
ever, difficult to eliminate the singularity completely.
Second, most of the black hole solutions in the £k = —1
case have no inner horizon, and the singularity is spacelike.
However, all the black hole solutions in the Xk = 1 and 0
cases still have the timelike singularity. Furthermore since
the structure of the infinity of the black hole solution with
k = —1 is adS-like, the spacetime is not globally hyper-
bolic. As a result, the Gauss-Bonnet terms do not work
quite as well from the cosmic censorship spirit.

Let us consider the evolution of the black hole solutions.
In the RN-dS black hole spacetime in general relativity, the
spacetime seems to evolve to the one with globally naked
singularity by throwing some mass into the black hole such
that the mass of the black hole becomes larger than that of
the extreme black hole solution 1\71532 However, it will not
happen as discussed in Ref. [35]. In Gauss-Bonnet gravity,
the situation is quite different. In the nonextreme neutral
black hole spacetime in the plus branch with k = —1, there
are inner and black hole horizons without a cosmological
horizon [9]. When one puts the mass into the black hole,
the radius of the black hole decreases [36]. If more matter
is added, the black hole may evolve to the extreme black

PHYSICAL REVIEW D 72, 064007 (2005)

hole with finite processes and then to a spacetime with a
globally naked singularity. This is a classical transition
from the black hole spacetime to the one with a globally
naked singularity. Next let us consider the charged case
where the black hole spacetime has the inner black hole,
and the inner and the outer black hole horizons. This
solution exists in the plus branch for n = 6. Adding the
mass to the black hole, the black hole approaches the
extreme solution, and then it transits to the black hole
spacetime with a smaller horizon whose mass is M>

Mgf). This is a classical transition from one black hole
spacetime to another black hole spacetime. On the other
hand, another process, i.e., the Hawking evaporation pro-
cess, may occur in our black hole spacetime. The black
hole in this plus-branch solution may evaporate and lose its
mass. Then, what happens when the mass of the black hole

becomes M = M gf), where the horizon inside of the outer
black hole horizon degenerates? To obtain the precise
scenario of the evolutions of black hole spacetime through
classical and quantum processes, we need a detailed
analysis.

There are some applications and extensions of the
present investigation. We find that the static solutions in
Gauss-Bonnet gravity have much variety and interesting
properties. One of the most important issues is stability of
the solutions. There are some studies which support the
dynamical stability of the exterior spacetime of the black
hole solutions in Gauss-Bonnet gravity [37—39]. However,
they do not cover all the cases, and there remain some
unclear analyses. The problem of the stability of the inner
horizons has also been raised. This is interesting from the
CCH point of view [40,41]. We find several solutions with
degenerate horizons. They correspond to the solutions with
the product metric such as the Nariai and the Bertotti-
Robinson solutions. All the solutions of this type in the
Einstein-Maxwell-A system have been recently classified
in Ref. [42]. It would be interesting to extend the analysis
to Gauss-Bonnet gravity. Another application is to the
braneworld. The solution with a negative cosmological
constant and/or in the plus branch has the adS-like struc-
ture of the infinity. These solutions can be applied to the
bulk spacetime of the braneworld and are currently under
investigation.
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