
PHYSICAL REVIEW D 72, 064006 (2005)
Supersymmetry in gauge theories with extra dimensions
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We show that a quantum-mechanical N � 2 supersymmetry is hidden in 4d mass spectrum of any
gauge invariant theories with extra dimensions. The N � 2 supercharges are explicitly constructed in
terms of differential forms. The analysis can be extended to extra dimensions with boundaries, and for a
single extra dimension we clarify a possible set of boundary conditions consistent with 5d gauge
invariance, although some of the boundary conditions break 4d gauge symmetries.
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I. INTRODUCTION

Much attention has been paid recently to gauge theories
with extra dimensions to explore new possibilities for
gauge symmetry breaking and solving the hierarchy prob-
lem without introducing additional Higgs fields [1–10]. For
instance, in the gauge-Higgs unification scenario, extra
components of gauge fields play a role of Higgs fields
[2,3]. Attractive models of grand unified theories have
been constructed on orbifolds, in which gauge symmetry
breaking is caused by orbifolding [4]. With extra dimen-
sions with boundaries, Higgsless gauge symmetry break-
ing can be realized via boundary conditions [5–7,9]. The
interesting scenario of dimensional deconstruction [8]
can be regarded as a gauge theory with latticized extra
dimension.

In those models, the notorious quadratic divergence
problem of scalar fields is absent. In a higher-dimensional
point of view, this is easily understood because any diver-
gences of mass corrections to gauge fields are protected by
a higher-dimensional gauge invariance. In a 4-dimensional
point of view, however, the cancellation of the divergences
does not seem to be manifest because a remnant of higher-
dimensional gauge invariance is not apparent in 4d effec-
tive theories and the cancellation can occur only after all
massive Kaluza-Klein (KK) modes are taken into account.
(If we truncate massive KK modes at some energy, the
cancellation becomes incomplete.) Furthermore, the can-
cellation still occurs even when 4d gauge symmetries are
broken via orbifolding, the Hosotani mechanism, or bound-
ary conditions. Thus, in constructing phenomenological
models, it will be important to understand higher-
dimensional gauge invariance from a 4d effective theory
point of view.

Another appealing and well-known scenario to solve the
problem of the quadratic divergence is to invoke super-
symmetry. Then, it may be natural to ask a question
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whether these two kinds of theories, gauge theories with
extra dimensions and supersymmetric theories, ever have
some relation. The immediate answer is negative, since
supersymmetry necessarily needs fermionic degree of free-
dom, while the cancellation mechanism of the quadratic
divergence in the higher-dimensional gauge theory does
not necessitate it. We will, however, see that actually these
two are related: (quantum-mechanical) supersymmetry is
hidden in the higher-dimensional gauge theories. The main
purpose of this paper is to show it. We note that quantum-
mechanical supersymmetry, being 0� 1-dimensional field
theory, can be described without using any spinors.

There exists some evidences for the existence of some
kind of supersymmetry in 4d mass spectrum already at the
truncated low-energy theory, as the remnant of higher-
dimensional gauge symmetry: If a 4d gauge symmetry is
not broken, a massless 4d gauge field appears because 4d
gauge invariance guarantees the gauge field to be massless.
This may be explained from a supersymmetry point of
view because supersymmetry ensures that the ground state
has zero energy and the zero energy state is interpreted as
the massless gauge field. The second evidence is that in a
5d gauge theory with a single extra dimension, every
massive mode of A5;n (a massive KK mode of the gauge
field in the direction of the extra dimension) can be ab-
sorbed into the longitudinal mode of A�;n (a massive KK
mode of the 4d gauge field) by gauge transformations. This
fact implies that there should exist a one-to-one correspon-
dence between A5;n and A�;n. The correspondence may be
interpreted as supersymmetry between a ‘‘bosonic’’ state
and a ‘‘fermionic’’ one, although both modes are bosonic.
The last evidence is that a massless mode A5;0 (if exists)
cannot be gauged away and it appears as a physical state, in
contrast to the massive modes A5;n, which can be gauged
away and hence are unphysical modes. This observation is
again consistent with supersymmetry because zero energy
states do not form any supermultiplets between bosonic
and fermionic states.

In this paper, we show that the above observations are
true. To see this, we expand the gauge fields into infinite
towers of KK modes by use of eigenfunctions of differen-
-1 © 2005 The American Physical Society
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tial equations with respect to extra-space coordinates to
determine the 4d mass-squared. There is a one-to-one
correspondence between a KK mode and a mass eigen-
function (see Eqs. (3.14) and (3.19)). In a four-dimensional
point of view, the KK modes of the extra-dimensional
components of the gauge fields are regarded as scalars
and contain would-be Nambu-Goldstone bosons that can
be absorbed into the longitudinal modes of the four-
dimensional components of the gauge fields. One of the
main purposes of this paper is to show that for each KK
mode, the mass eigenfunction of the four-dimensional
gauge field forms a supermultiplet with that of the
would-be Nambu-Goldstone boson, except for massless
modes and that the mass eigenfunctions really obey the
algebra of N � 2 supersymmetric quantum mechanics
given by Witten [11]. We emphasize that this statement
is true for any compact Riemannian manifold without a
boundary as extra dimensions. The statement still holds
even if we add a warped factor to the metric [12] and/or
also a weight function to the action (see Section III for
details).

The question, however, of whether the whole action
possesses the quantum-mechanical supersymmetry cannot
be addressed in the present paper. In particular, though we
deal with only free Lagrangians in this paper, once we
intend to include interactions of gauge fields with other
fields, we have to define the supersymmetry transformation
of matter fields, for instance. The interaction terms would
be inevitable for the investigation of the cancellation
mechanism of the quadratic divergence. These issues are
out of scope of the present paper.

An important implication of the above observation is
that the 4d mass spectrum of the 4d vector bosons is
governed by an N � 2 supersymmetric quantum mechan-
ics, and it suggests a mechanism to solve the hierarchy
problem at tree level [5,13]. The supersymmetric structure
for the mass eigenfunctions turns out to be useful to
determine allowed boundary conditions when the extra
dimensions have boundaries. The choice of boundary con-
ditions is very crucial to construct Higgsless models of
gauge symmetry breaking [5–7,9]. In a four-dimensional
gauge invariant theory, we will see that the boundary
conditions compatible with the supersymmetric structure
are very restrictive and that the requirement of the com-
patibility is powerful enough to obtain all possible sets of
boundary conditions on the gauge fields.

This paper is organized as follows. We construct an N �
2 superalgebra in terms of differential forms in Section II.
In Section III, applying the technology developed in
Section II, we show that the N � 2 supersymmetric struc-
ture appears in 4d mass eigenfunctions (mass spectrum) of
gauge theories with extra dimensions. In Section IV, extra
dimensions with boundaries are discussed. For a 4�
1-dimensional gauge invariant theory on an interval, a
consistent set of boundary conditions with 5d gauge in-
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variance is successfully obtained from a supersymmetric
point of view. The Section V is devoted to summary and
discussions. A simple proof of the Hodge decomposition
theorem is given in an Appendix.
II. N � 2 SUPERSYMMETRY ALGEBRA AND
DIFFERENTIAL FORMS

In this section, we construct an N � 2 supersymmetry
algebra in terms of differential forms. We will see later that
the N � 2 supersymmetry is realized in 4d mass spectrum
of any gauge invariant theories with extra dimensions.

Let K be a D-dimensional compact Riemannian mani-
fold with a metric gij�i; j � 1; 2; � � � ; D�. A k form !�k� on
K is given by

!�k� �
1

k!
!i1i2���ikdy

i1 ^ dyi2 ^ � � � ^ dyik ; (2.1)

where yi�i � 1; 2; � � � ; D� are coordinates on K and ^
denotes the wedge product. The coefficient!i1���ik is totally
antisymmetric in all k indices. The Hodge star (Poincaré
dual) operator on the k form !�k� is defined by

�!�k� �
���
g
p

k!�D� k�!
!i1���ikg

i1j1 � � � gikjk�j1���jkjk�1���jDdy
jk�1

^ � � � ^ dyjD; (2.2)

where g � det gij and �i1i2���iD is a totally antisymmetric
tensor with �12���D � 1. Repeated applications of � on any
k form give

� �!�k� � ��1�k�D�k�!�k�: (2.3)

The inner product of any two k forms !�k� and ��k� is
defined by

���k�; !�k��� �
1

k!

Z
K
dDy

���
g
p

��i1���ik!j1���jkg
i1j1 � � � gikjk

�
Z
K

���k� ^ �!�k�: (2.4)

Here, we have introduced a weight function ��y� for later
convenience with a property

��y�> 0: (2.5)

Then, it follows that

���k�; !�k��� � �!
�k�; ��k���; (2.6)

�!�k�; !�k��� 	 0; (2.7)

���k�; �!�D�k��� � ��1�k�D�k�����k�; !�D�k���: (2.8)
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The adjoint of the exterior derivative d is defined, with
respect to the inner product (2.4), by

���k�1�; dy!�k��� � �d�
�k�1�; !�k���: (2.9)

For compact manifold without a boundary,1 the action of
dy on a k form !�k� turns out to be of the form

dy!�k� � ���1��k�1�D��1 � d� �!�k�: (2.10)

For k � 0 and 1, dy!�k� are explicitly written as

dy!�0� � 0; (2.11)

dy!�1� � �
1

�
���
g
p @j��

���
g
p
gij!i�; (2.12)

where !�1� � !idyi. The first equation comes from the
fact that dy maps k forms into k� 1 forms and there is no
�1 form. We notice that the nilpotency of dy still holds
irrespective of ��y�, i.e.

�dy�2 � 0: (2.13)

We can now construct anN � 2 supersymmetry algebra.
To this end, we introduce a 2-component vector

j��k�i �
!�k�

��k�1�

 !
; (2.14)

where the upper (lower) component consists of a k (k� 1)
form. The inner product of two 2-component vectors j��k�1 i

and j��k�2 i is defined by

h��k�2 j�
�k�
1 i � �!

�k�
2 ; !

�k�
1 �� � ��

�k�1�
2 ; ��k�1�

1 ��: (2.15)

Then, the N � 2 superchargesQa (a � 1, 2) are given by2

Q1 �
0 dy

d 0

� �
; Q2 �

0 �idy

id 0

� �
: (2.16)

We note that the action of Qa on j��k�i is well defined. It is
easy to show that they form the following N � 2 super-
symmetry algebra:

fQa;Qbg � 2�abH; (2.17)


Qa;H� � 0; (2.18)
1An extension with boundaries will be discussed in Section IV.
2Here, the inner product (2.4) should be extended for complex

forms as

���k�; !�k��� �
1

k!

Z
K
dDy

���
g
p

���i1���ik �
�!j1���jkg

i1j1 � � � gikjk ;

and the relation (2.6) is then replaced by ���k�; !�k��� �
��!�k�; ��k����

�.
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��1�F;H� � 0; (2.19)

f��1�F;Qag � 0; for a; b � 1; 2; (2.20)

where the Hamiltonian H and the operator ��1�F with F
being the ‘‘fermion’’ number operator are defined by

H �
dyd 0

0 ddy

� �
; (2.21)

��1�F �
1 0
0 �1

� �
: (2.22)

We may call states with ��1�F � �1��1� ‘‘bosonic’’
(‘‘fermionic’’) ones. All the operators Qa, H, and ��1�F

are Hermitian with respect to the inner product (2.15).
To examine the structure of the N � 2 supersymmetry

algebra, let us consider the following Schrödinger-type
equations:

Hj��k�n i � �m
�k�
n �2j�

�k�
n i: (2.23)

SinceH � �Q1�
2 andQy1 � Q1, the eigenvalues �m�k�n �2 are

positive semidefinite, i.e.

�m�k�n �2 	 0: (2.24)

Since ��1�F commutes with H, we can have simultaneous
eigenfunctions of H and ��1�F such that

Hjm�k�n ;�i � �m
�k�
n �2jm

�k�
n ;�i; (2.25)

��1�Fjm�k�n ;�i � �jm
�k�
n ;�i: (2.26)

Since Q1 commutes (anticommutes) with H���1�F�,
Q1jm

�k�
n ;�i have the same (opposite) eigenvalues of H

���1�F� as jm�k�n ;�i, i.e.

H�Q1jm
�k�
n ;�i� � �m

�k�
n �2�Q1jm

�k�
n ;�i�; (2.27)

��1�F�Q1jm
�k�
n ;�i� � 
�Q1jm

�k�
n ;�i�: (2.28)

Actually, the states jm�k�n ;�i and Q1jm
�k�
n ;
i are mutually

related, with an appropriate phase convention, as

Q1jm
�k�
n ;�i � m�k�n jm

�k�
n ;
i: (2.29)

Since jm�k�n ;�i have the form

jm�k�n ;�i �
!�k�n

0

 !
; (2.30)
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jm�k�n ;�i �
0

��k�1�
n

� �
; (2.31)

the relations (2.29) are rewritten as

d!�k�n � m�k�n �
�k�1�
n ; (2.32)

dy��k�1�
n � m�k�n !

�k�
n : (2.33)

Therefore, there is a one-to-one correspondence between
the eigenstates of dyd and ddy for k and k� 1 forms,
respectively, and the eigenvalues are, in general, doubly
degenerate except for m�k�n � 0.

In the appendix, we have shown that any k form A�k� can
be expanded as

A�k� �
Xbk
p�1

cp�
�k�
p �

X0

nk

ank!
�k�
nk �

X0

nk�1

bnk�1
��k�nk�1

; (2.34)

where f��k�p ; p � 1; 2; � � � ; bkg is a complete set of the
harmonic k forms and !�k�nk and ��k�nk�1

are eigenfunctions
of the equations

dyd!�k�nk � �m
�k�
nk �

2!�k�nk for m�k�nk � 0; (2.35)

ddy��k�nk�1
� �m�k�nk�1

�2��k�n�k�1� for m�k�nk�1
� 0: (2.36)

The summations in Eq. (2.34) should be taken over the
eigenfunctions with nonzero eigenvalues. Thus, we have
found the following structure among a sequence of differ-
ential forms:
III. SUPERSYMMETRY IN GAUGE THEORIES
WITH EXTRA DIMENSIONS

In this section, with the help of the previous analysis, we
show that an N � 2 supersymmetry is hidden in 4d mass
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spectrum of any gauge invariant theories with compact
extra dimensions without a boundary. We should notice,
to avoid confusion, that the N � 2 supersymmetric struc-
ture can be seen for mass eigenfunctions appearing in the
mode expansion of gauge fields, rather than a symmetry of
the action. We can introduce N � 2 supercharges, that
make a mass eigenfunction associated with a 4d vector
boson transform into a mass eigenfunction associated with
a 4d would-be Nambu-Goldstone boson, and vice versa,
which can be absorbed into the longitudinal mode of the 4d
vector boson.

To this end, we consider a (4�D)-dimensional Abelian
gauge theory with a weight function. The (4�D)-
dimensional metric is assumed to be of the form

d~s2 � e��4=D�W�y�����dx
�dx� � gij�y�dy

idyj�: (3.1)

The (4�D)-dimensional coordinates are denoted by
xM � �x�; yi�, where x��� � 0; 1; 2; 3� are the 4-
dimensional coordinates and yi�i � 1; 2; � � � ; D� are the
extra D-dimensional coordinates. The ��� is a 4d
Minkowski metric with ��� � diag��1; 1; 1; 1�, and
W�y� and gij�y� are assumed to depend only on the coor-
dinates yi. We note that for D � 1 and W�y� � 1

2 kjyj with
g55�y� � e4W�y�, the metric reduces to the warped metric
discussed by Randall and Sundrum [12]. The action we
consider is

S �
Z
d4xLK

�
Z
d4x

Z
dDy

��������
�G
p e��� 1

4
GMM0GNN0FMNFM0N0

�
;

(3.2)

where e��y� is a weight function depending on yi and

FMN�x; y� � @MAN�x; y� � @NAM�x; y�; (3.3)

GMN�y� �
e��4=D�W�y���� 0

0 e��4=D�W�y�gij�y�

 !
; (3.4)

G�y� � detGMN�y�: (3.5)

For our purpose, it is convenient to rewrite LK into the
form

L K �
Z
dDy

���
g
p

�
�
�

1

4
gMM

0
gNN

0
FMNFM0N0

�
; (3.6)

where

gMN�y� �
��� 0

0 gij�y�

� �
; (3.7)
-4
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g�y� � det gij�y�; (3.8)

��y� � e��y�e�2W�y�: (3.9)

Thus, the system becomes identical to that of the gauge
theory with the metric

ds2 � ���dx�dx� � gij�y�dyidyj (3.10)

and the weight function ��y�.
In a viewpoint of the extra D-dimensions, the 4-

dimensional gauge fields A��x; y� are regarded as 0 forms,
while the extra D-dimensional components Ai�x; y� are
regarded as a 1 form, so that we may write

A�1��x; y� � Ai�x; y�dy
i: (3.11)

Here, the exterior derivative d is defined by d � dyi@i with
respect to the coordinates on the extra dimensions. As was
done in the previous section, we introduce the inner prod-
uct for k forms as

���k�; !�k��� �
1

k!

Z
dDy

���������
g�y�

q
��y��i1���ik�y�!j1���jk�y�

� gi1j1�y� � � � gikjk�y�: (3.12)

It turns out that LK can be written into the form

LK � �
1

4
�@�A� � @�A�; @

�A� � @�A���

�
1

2
�dA� � @�A�1�; dA� � @�A�1���

�
1

2
�dA�1�; dA�1���: (3.13)

As proved in the appendix, 0 forms A��x; y� can be ex-
panded as3

A��x; y� � A�;0�x���0� �
X0

n0

A�;n0
�x�!�0�n0

�y�

� A�;0�x���0� �
X0

n0

A�;n0
�x�

m�0�n0

dy��1�n0
�y�; (3.14)

where

��0� �
�Z

dDy
���
g
p

�
�
�1=2

; (3.15)

dyd!�0�n0
� �m�0�n0

�2!�0�n0
; (3.16)

ddy��1�n0
� �m�0�n0

�2��1�n0
; for m�0�n0

� 0; (3.17)
3We have used the fact that the 0th Betti number b0 is equal to
1.
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and

!�0�n0
�

1

m�0�n0

dy��1�n0
or ��1�n0

�
1

m�0�n0

d!�0�n0
: (3.18)

Since A�1��x; y� � Ai�x; y�dy
i is a 1 form, it can be ex-

panded as

A�1��x; y� �
Xb1

p�1

’p�x��
�1�
p �y� �

X0

n1

�n1
�x�!�1�n1

�y�

�
X0

n0

hn0
�x���1�n0

�y�

�
Xb1

p�1

’p�x��
�1�
p �y� �

X0

n1

�n1
�x�

m�1�n1

dy��2�n1
�y�

�
X0

n0

hn0
�x�

m�0�n0

d!�0�n0
�y�; (3.19)

where b1 is the 1st Betti number and

d��1�p � 0 � dy��1�p ; p � 1; 2; � � � ; b1; (3.20)

dyd!�1�n1
� �m�1�n1

�2!�1�n1
; (3.21)

ddy��2�n1
� �m�1�n1

�2��2�n1
; for m�1�n1

� 0; (3.22)

and

!�1�n1
�

1

m�1�n1

dy��2�n1
for ��2�n1

�
1

m�1�n1

d!�1�n1
: (3.23)

It is now clear that the N � 2 supersymmetric structure
discussed in the previous section can be seen in the mode
expansion of the gauge fields. The mass eigenfunction !�0�n0

and ��1�n0
associated with the 4d vector A�;n0

�x� and the
(would-be Nambu-Goldstone) boson hn0

�x�, respectively,
obey theN � 2 supersymmetric quantum mechanics. They
transform into each other by the action of the N � 2
supercharges and hence form a supermultiplet, i.e.

H
!�0�n0

��1�n0

 !
� �m�0�n0

�2
!�0�n0

��1�n0

 !
; (3.24)

Q1
!�0�n0

0

 !
� m�0�n0

0
��1�n0

� �
; Q1

0
��1�n0

� �
� m�0�n0

!�0�n0

0

 !
;

(3.25)
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Q2
!�0�n0

0

 !
� im�0�n0

0
��1�n0

� �
;

Q2
0
��1�n0

� �
� �im�0�n0

!�0�n0

0

 !
;

(3.26)

where

H � �Q1�
2 � �Q2�

2 �
dyd 0

0 ddy

� �
; (3.27)

Q1 �
0 dy

d 0

� �
; Q2 �

0 �idy

id 0

� �
: (3.28)

We note that the mass eigenfunction !�0�n0
corresponds to 4d

vector boson A�;n0
�x� and hence the mass spectrum of the

4d vector bosons is governed by the above N � 2 super-
symmetric quantum mechanics.

Inserting the mode expansions (3.14) and (3.19) into the
Lagrangian LK and using the orthogonal relations of the
eigenfunctions, we have

LK � �
1

4
�F��;0�x��2 �

X0

n0

�
�

1

4
�F��;n0

�x��2

�
�m�0�n0

�2

2

�
A�;n0

�x� �
1

m�0�n0

@�hn0
�x�
�

2
�

�
1

2

Xb1

p�1

�@�’p�x��
2 �

X0

n1

�
�

1

2
�@��n1

�x��2

�
�m�1�n1

�2

2
��n1
�x��2

�
; (3.29)

where

F��;n�x� � @�A�;n�x� � @�A�;n�x�: (3.30)

Therefore, we conclude that in a 4-dimensional point of
view, the field contents of the model are given as follows:
A�;0 is a massless gauge field. A�;n0

are massive vector

bosons with mass m�0�n0
. hn0

are would-be Nambu-
Goldstone bosons and can be absorbed into the longitudi-
nal modes of A�;n0

. ’p�p � 1; 2; � � � ; b1� are massless
scalars and cannot be gauged away. They could play a
role of Higgs fields for non-Abelian gauge theories [2].
�n1

are massive scalars with mass m�1�n1
. The origin of the

scalar fields ’p and �n1
are the extra-dimensional compo-

nents of the gauge fields.

IV. EXTRA DIMENSIONS WITH BOUNDARIES

In this section, we extend the previous analysis to extra
dimensions with boundaries. In this case, we have to
impose boundary conditions at the boundaries. The criteria
of obtaining a possible set of boundary conditions are,
however, less obvious. For instance, the Dirichlet boundary
conditions are used in Higgsless gauge symmetry breaking
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scenario [5–7], but the boundary conditions break 4d
gauge symmetries explicitly. Thus, it is not clear whether
such boundary conditions lead to consistent gauge theories.
Recently, a criterion to select a possible set of boundary
conditions has been proposed in Ref. [6]. The authors
require the boundary conditions to obey the least action
principle. Since the requirement does not, however, rely on
gauge invariance directly, it is still unclear that such bound-
ary conditions lead to consistent gauge theories. Since
gauge symmetry breaking can occur via boundary condi-
tions, it is important to clarify a class of boundary con-
ditions compatible with higher-dimensional gauge
invariance.

In the following, we discuss how to obtain a possible set
of boundary conditions compatible with gauge invariance
from a supersymmetry point of view. To this end, let us
consider a 4� 1-dimensional Abelian gauge theory on an
interval

S �
Z
d4x

Z L

0
dy

�������������
�g�y�

q �
�

1

4
FMN�x; y�F

MN�x; y�
�
(4.1)

with a nonfactorizable metric

ds2 � e�4W�y����dx
�dx� � g55�y�dy

2: (4.2)

The metric reduces to the warped metric discussed by
Randall and Sundrum [12] when g55�y� � 1 and W�y� �
1
2 kjyj. Another choice of g55�y� � e�4W�y� leads to the
model discussed in Ref. [5], in which a hierarchical mass
spectrum has been observed.

In order to expand the 5d gauge fields A��x; y� and
A5�x; y� into mass eigenstates, we follow the discussions
in Section III and consider the supersymmetric
Hamiltonian,4

H � Q2 �
� 1�����

g55
p @y

e�4W�����
g55
p @y 0

0 �@y
1�����
g55
p @y

e�4W�����
g55
p

0@ 1A; (4.3)

Q �
0 � 1�����

g55
p @y

e�4W�����
g55
p

@y 0

 !
(4.4)

which act on two-component vectors

j�i �
f�y�
g�y�

� �
: (4.5)

The inner product of two states j�1i and j�2i is defined by
-6
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h�2j�1i �
Z L

0
dy

�������������
g55�y�

q �
f2�y�f1�y�

�
e�4W�y�

g55�y�
g2�y�g1�y�

�
: (4.6)

To obtain consistent boundary conditions for the functions
f�y� and g�y� in j�i, we first require that the superchargeQ
is Hermitian with respect to the inner product (4.6), i.e.

h�2jQ�1i � hQ�2j�1i: (4.7)

It turns out that the functions f�y� and g�y� have to obey
one of the following four types of boundary conditions5:

�i� g�0� � g�L� � 0; (4.8)

�ii� f�0� � f�L� � 0; (4.9)

�iii� g�0� � f�L� � 0; (4.10)

�iv� f�0� � g�L� � 0: (4.11)

We further require that the state Qj�i obeys the same
boundary conditions as j�i, otherwise Q is not a well-
defined operator and ‘‘bosonic’’ and ‘‘fermionic’’ states
would not form supermultiplets. The requirement leads to

@yf�0� � @yf�L� � 0 for �i�; (4.12)

@y

�
e�4W�������
g55
p g

�
�0� � @y

�
e�4W�������
g55
p g

�
�L� � 0 for �ii�; (4.13)

@yf�0� � @y

�
e�4W�������
g55
p g

�
�L� � 0 for �iii�; (4.14)

@y

�
e�4W�������
g55
p g

�
�0� � @yf�L� � 0 for �iv�: (4.15)

Combining the conditions (4.8), (4.9), (4.10), and (4.11)
together with (4.12), (4.13), (4.14), and (4.15), we have
found the four types of boundary conditions compatible
with supersymmetry,

Type �N;N� :
�
@yf�0� � @yf�L� � 0;
g�0� � g�L� � 0;

(4.16)

Type �D;D� :
� f�0� � f�L� � 0;
@y�

e�4W�����
g55
p g��0� � @y�

e�4W�����
g55
p g��L� � 0;

(4.17)
5If we allow f�L� �g�L�� to be connected with f�0� �g�0��, we
have a one parameter family of the boundary conditions [14]:

sin�f�0� � cos�f�L� � cos�
�
e�4W�������
g55
p g

�
�0� � sin�

�
e�4W�������
g55
p g

�
�L�

� 0:
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Type �N;D� :
� @yf�0� � f�L� � 0;

g�0� � @y�
e�4W�����
g55
p g��L� � 0; (4.18)

Type �D;N� :
� f�0� � @yf�L� � 0;

@y�
e�4W�����
g55
p g��0� � g�L� � 0: (4.19)

It follows that the above boundary conditions ensure the
Hermiticity of the Hamiltonian, i.e.

h�2jH�1i � hH�2j�1i: (4.20)

Therefore, we have succeeded to obtain the consistent set
of boundary conditions that ensure the Hermiticity of the
supercharges and the Hamiltonian and also that the action
of the supercharge on j�i is well defined. Since the super-
symmetry is a direct consequence of higher-dimensional
gauge invariance, our requirements on boundary condi-
tions should be, at least, necessary conditions to preserve
it. It turns out that the boundary conditions obtained above
are consistent with those in Ref. [6], although it is less
obvious how the requirement of the least action principle
proposed in Ref. [6] is connected to gauge invariance. We
should emphasize that the supercharge Q is well defined
for all the boundary conditions (4.16), (4.17), (4.18), and
(4.19) and hence that the supersymmetric structure always
appears in the spectrum, even though the boundary con-
ditions other than the type (N,N) break 4d gauge symme-
tries, as we will see below.

From the above analysis, the 5d gauge fields A��x; y�
and A5�x; y� are expanded in the mass eigenstates as fol-
lows:

A��x; y� �
X
n

A�;n�x�fn�y�; (4.21)

A5�x; y� �
X
n

hn�x�gn�y�; (4.22)

where fn�y� and gn�y� are the eigenstates of the
Schrödinger-like equations

�
1�������
g55
p @y

e�4W�������
g55
p @yfn�y� � m2

nfn�y�; (4.23)

�@y
1�������
g55
p @y

e�4W�������
g55
p gn�y� � m2

ngn�y� (4.24)

with one of the four types of the boundary conditions
(4.16), (4.17), (4.18), and (4.19). Since the massless states
are especially important in phenomenology, let us inves-
tigate the massless states of the Eqs. (4.23) and (4.24).
Thanks to supersymmetry, the massless modes would be
the solutions to the first order differential equation
Qj�0i � 0, i.e.

@yf0�y� � 0; (4.25)
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@y

�
e�4W�������
g55
p g0�y�

�
� 0: (4.26)

The solutions are easily found to be

f0�y� � c; (4.27)

g0�y� � c0e4W�y�
�������������
g55�y�

q
; (4.28)

where c and c0 are some constants. We should emphasize
that the above solutions do not necessarily imply physical
massless states of A�;0�x� and h0�x� in the spectrum. This is
because the boundary conditions exclude some or all of
them from the physical spectrum. Indeed, f0�y� ��g0�y���
satisfies only the boundary conditions of the type (N,N)
(type (D,D)). Thus, a massless vector A�;0�x� (a massless
scalar h0�x�) appears only for the type (N,N) (type (D,D))
boundary conditions. This implies that the 4d gauge sym-
metry is broken except for the type (N,N) boundary
conditions.

Let us next discuss geometrical meanings of the bound-
ary conditions. To this end, it is convenient to rewrite the
Eqs. (4.23) and (4.24) into a familiar form of the N � 2
supersymmetric quantum mechanics. Reparametrizing the

LIM, NAGASAWA, SAKAMOTO, AND SONODA
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coordinate y such that

ds2 � e�4W�~y�����dx�dx� � d~y2�; (4.29)

where W�~y� � W�y�~y��, we can rewrite the Eqs. (4.23) and
(4.24) into the form

� �D~yD~y
~fn�~y� � m2

n
~fn�~y�; (4.30)

�D~y
�D~y~gn�~y� � m2

n~gn�~y�; (4.31)

where

eW�~y� ~fn�~y� � fn�y�; (4.32)

e3W�~y�
�������������
g55�~y�

q
~gn�~y� � gn�y�; (4.33)

D ~y � @~y �W
0�~y�; (4.34)

�D ~y � @~y �W0�~y�: (4.35)

Here, the prime denotes the derivative with respect to ~y.
The Hamiltonian and the supercharge can be written, in
this basis, as
~H � ~Q2 �
� �D~yD~y 0

0 �D~y
�D~y

 !
�
�@2

~y �W
00�~y� � �W0�~y��2 0

0 �@2
~y �W

00�~y� � �W0�~y��2

 !
; (4.36)

~Q �
0 � �D~y

D~y 0

 !
: (4.37)

These expressions are nothing but theN � 2 supersymmetric quantum mechanics given by Witten [11], andW�~y� is called
a superpotential. In this basis, the boundary conditions (4.16), (4.17), (4.18), and (4.19) become

Type �N;N� :
� ~f0�~y0� �W

0�~y0�~f�~y0� � ~f0�~yL� �W
0�~yL�~f�~yL� � 0;

~g�~y0� � ~g�~yL� � 0;
(4.38)

Type �D;D� :
� ~f�~y0� � ~f�~yL� � 0;

~g0�~y0� �W
0�~y0�~g�~y0� � ~g0�~yL� �W

0�~yL�~g�~yL� � 0;
(4.39)

Type �N;D� :
� ~f0�~y0� �W

0�~y0�~f�~y0� � ~f�~yL� � 0;
~g�~y0� � ~g0�~yL� �W0�~yL�~g�~yL� � 0;

(4.40)

Type �D;N� :
� ~f�~y0� � ~f0�~yL� �W0�~yL�~f�~yL� � 0;

~g0�~y0� �W
0�~y0�~g�~y0� � ~g�~yL� � 0;

(4.41)
where ~y0 � ~y�y � 0� and ~yL � ~y�y � L�. For the Dirichlet
boundary conditions of ~f�~y� � 0 and ~g�~y� � 0 at ~y �
~y0; ~yL, we can interpret them as the existence of rigid walls
at the boundaries. For the other boundary conditions of
~f0�~y� �W0�~y�~f�~y� � 0 and ~g0�~y� �W0�~y�~g�~y� � 0 at ~y �
~y0; ~yL, we can also interpret them as the existence of delta
function potentials at the boundaries. Since for a delta
function potential a localized (bound) state can appear,
the low-energy spectrum will have interesting properties
for a nontrivial function W�~y� [5,12].

Before closing this section, it is instructive to investigate
5d gauge invariance in non-Abelian gauge theories. Let G
and H be a non-Abelian gauge group and its subgroup,
respectively. We consider the situation that the 4d gauge
symmetry G is broken to H via boundary conditions. We
denote the generators of G, H, and G=H by fTIg, fTag, and
-8
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fTâg, respectively. The 4d gauge symmetry breaking of
G! H may be realized by imposing the type (N,N)
boundary conditions on the gauge fields AaM�x; y�, which
correspond to the unbroken generators ofH, and one of the
other boundary conditions on AâM�x; y�, which correspond
to the broken generators of G=H.

Infinitesimal gauge transformations will be given by

�AIM�x; y� � @M"I�x; y� � gfIJKA
J
M�x; y�"

K�x; y�; (4.42)

where g is the 5d gauge coupling constant and fIJK are the
structure constants of G. The boundary conditions for the
gauge parameters "I�x; y� should be taken to be the same as
AI��x; y�. This requirement comes from the consistency
with the inhomogeneous terms in Eq. (4.42). In order for
the 5d gauge invariance under the transformations (4.42) to
preserve, the homogeneous terms on the right-hand side of
Eq. (4.42) have to obey the same boundary conditions as
AIM�x; y�. Then, it turns out that this is the case provided
that [10]

fâ b̂ ĉ � 0: (4.43)

Although the above conditions are not, in general, satisfied
for arbitrary choice of G and H, they can be realized, for
instance, if the Z2 parity for the generators of G are
assigned as

P �Ta� � �Ta; (4.44)

P �Tâ� � �Tâ: (4.45)

It is interesting to note that this happens for gauge sym-
metry breaking via Z2 orbifolding [4]. Thus, we have found
that the 5d gauge invariance is preserved under the infini-
tesimal gauge transformations (4.42) with the conditions
(4.43), even though the 4d gauge symmetry G is broken to
H in the 4d effective theory.
V. SUMMARY AND DISCUSSIONS

We have investigated gauge invariant theories with extra
dimensions and observed the quantum-mechanical N � 2
supersymmetric structure between 4d and extra-space
components of gauge fields. The supersymmetry manifests
itself in their 4d mass spectrum and massless 4d modes are
found to be the solutions to the first order differential
equation

Qj�0i � 0: (5.1)

It is then clear that the massless modes possess distinct
analytic properties from other massive modes, which obey
the 2nd order differential equations.

We have also discussed boundary conditions in gauge
theories on extra dimensions with boundaries. In a gauge
symmetry point of view, it is less obvious to obtain a
possible set of boundary conditions consistent with gauge
invariance because some of the boundary conditions ex-
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plicitly break 4d gauge symmetries. On the other hand, in a
supersymmetry point of view, the requirement of 5d gauge
invariance is replaced by the conditions that the super-
charges are Hermitian and also that the action of the super-
charges are well defined on a functional space with definite
boundary conditions. We should emphasize that the super-
charges are well defined in quantum mechanics even if
there is no zero energy state, and hence that the degeneracy
between ‘‘bosonic’’ and ‘‘fermionic’’ states still holds. In
this sense, the boundary conditions we obtained are con-
sistent with 5d gauge invariance, even if some of 4d gauge
symmetries are broken via boundary conditions.

Since the origin of the supersymmetry is the gauge
invariance in higher dimensions, we expect that any
higher-dimensional theories with gaugelike symmetries
possess supersymmetry. Such an example is a gauge theory
with an antisymmetric field, which often appears in string
theory. Since the action of the antisymmetric gauge field
can be written in terms of differential forms, it will be
straightforward to show the N � 2 supersymmetric struc-
ture of the theory. It turns out that the N � 2 supersym-
metry is actually enhanced, in particular, dimensions and
that the N � 2 supersymmetry algebra given in Section II
can be extended to an N � 4 supersymmetry algebra by
adding a duality operator. The results will be reported
elsewhere [15].

We finally make comments on some previous works
related to this paper. Howe et al. [16] discussed an N �
2 worldline supersymmetry for a relativistic spin N=2
particle and succeeded to present field equations for mass-
less and massive antisymmetric tensors in arbitrary space-
time dimensions. The N � 2 worldline supersymmetry
seems to have some connections to the N � 2 supersym-
metry found in this paper, but a direct relation between
them is not clear. Shaposhnikov and Tinyakov [13] con-
sidered a gauge invariant theory with a noncompact extra
dimension with a weight function depending on the extra-
dimensional coordinate and observed that mass eigenfunc-
tions for A��x; y� satisfy a similar equation to Eq. (4.30).
They, however, missed the full supersymmetric structure,
since they worked on the gauge A5�x; y� � 0. Although we
found an N � 2 quantum-mechanical supersymmetry in
the spectrum of gauge fields, a similar N � 2 supersym-
metric structure has already been found in the spectrum of
spinor fields. Jackiw and Rebbi [17] showed that a dynami-
cal localization of a chiral fermion can occur in a nontrivial
soliton background and that mode functions for left-
handed and right-handed spinors are governed by an N �
2 supersymmetric quantum mechanics, though they did
not use the word ‘‘supersymmetry.’’ Arkani-Hamed and
Schmaltz [18] considered a five-dimensional fermion
coupled to a background scalar that has the dependence
on the extra-dimensional coordinate and explicitly con-
structed a Hamiltonian and N � 2 supercharges that
form an N � 2 supersymmetry algebra. The connection
-9
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between the de Rham cohomology and the quantum-
mechanical superalgebra was argued by R. P. Malik in
the context of noncommutative geometry [19].
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APPENDIX: HODGE DECOMPOSITION
THEOREM

In this appendix, we give a simple proof of the Hodge
decomposition theorem by use of the eigenfunctions of the
differential operators dyd and ddy.

Since dyd is a Hermitian operator, the eigenfunctions
will form a complete set. Thus, any k form A�k� can be
expanded as

A�k� � !�k�0 �
X0

nk

ank!
�k�
nk ; (A1)

where

d!�k�0 � 0; (A2)

dyd!�k�0 � �m
�k�
nk �

2!�k�nk for m�k�nk � 0: (A3)

Here,
P0
nk

denotes the summation over all eigenstates with

m�k�nk � 0. Since ddy is also a Hermitian operator, !�k�0 can
be expanded as

!�k�0 � ��k�0 �
X0

nk�1

bnk�1
��k�nk�1

; (A4)

where

dy��k�0 � d��k�0 � 0; (A5)

ddy��k�nk�1
� �m�k�1�

nk�1
�2��k�nk�1

for m�k�1�
nk�1

� 0: (A6)

It is convenient to further introduce the eigenfunctions of
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ddy for k� 1 forms and dyd for k� 1 forms as

ddy��k�1�
nk � �m�k�nk �

2��k�1�
nk ; (A7)

dyd!�k�1�
nk�1

� �m�k�1�
nk�1
�2!�k�1�

nk�1
: (A8)

As shown in Section II,!�k�nk and ��k�nk�1
are related to ��k�1�

nk

and !�k�1�
nk�1

as

m�k�nk !
�k�
nk � dy��k�1�

nk or m�k�nk �
�k�1�
nk � d!�k�nk ; (A9)

m�k�1�
nk�1

!�k�1�
nk�1

� dy��k�nk�1
or m�k�1�

nk�1
��k�nk�1

� d!�k�1�
nk�1

:

(A10)

A k form satisfying Eqs. (A5) is called a harmonic k form
which can be expanded, in terms of a complete set of the
harmonic k forms f��k�p ; p � 1; 2; � � � ; bkg, as

��k�0 �
Xbk
p�1

cp�
�k�
p : (A11)

The integer bk, which is the number of the independent
harmonic k forms, is called the kth Betti number and is
known as a topological number of the manifold.

We have thus found that any k form A�k� can be expanded
as

A�k� �
Xbk
p�1

cp�
�k�
p �

X0

nk

ank!
�k�
nk �

X0

nk�1

bnk�1
��k�nk�1

�
Xbk
p�1

cp�
�k�
p �

X0

nk

ank
m�k�nk

dy��k�1�
nk

�
X0

nk�1

bnk�1

m�k�1�
nk�1

d!�k�1�
nk�1

: (A12)

This implies that any k form has the decomposition of the
form

A�k� � ��k�0 � d
y��k�1� � d	�k�1�: (A13)

This completes a proof of the Hodge decomposition
theorem.
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