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Rotating boson stars and Q-balls
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We consider axially symmetric, rotating boson stars. Their flat-space limits represent spinning Q-balls.
We discuss their properties and determine their domain of existence. Q-balls and boson stars are stationary
solutions and exist only in a limited frequency range. The coupling to gravity gives rise to a spiral-like
frequency dependence of the boson stars. We address the flat-space limit and the limit of strong
gravitational coupling. For comparison we also determine the properties of spherically symmetric
Q-balls and boson stars.
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I. INTRODUCTION

Nontopological solitons [1] or Q-balls [2] represent sta-
tionary localized solutions in flat space possessing a finite
mass. In the simplest case they arise, when a complex
scalar field has a suitable self-interaction, mimicking the
interaction with other fields [1]. The global phase invari-
ance of the scalar field theory is associated with a con-
served charge Q, corresponding, for instance, to particle
number [1]. Q-balls thus represent nontopological solitons
with charge Q.

Spherically symmetric Q-balls exist only in a certain
frequency range, !min <!s < !max, determined by the
properties of the potential [1–3]. At a critical value of
the frequency, both mass and charge of the Q-balls assume
their minimal value, from where they monotonically rise
towards both limiting values of the frequency. Considering
the mass of the Q-balls as a function of the charge, there
are thus two branches of Q-balls, merging and ending at
the minimal charge and mass. Q-balls are stable along the
lower branch, when their mass is smaller than the mass of
Q free bosons [1].

When gravity is coupled toQ-balls, boson stars arise [3–
6]. The presence of gravity has crucial influence on the
domain of existence of the classical solutions. Stationary
spherically symmetric boson stars also exist only in a
limited frequency range, !0���<!s < !max, where �
denotes the strength of the gravitational coupling. They
show, however, a different type of critical behavior. For the
smaller frequencies the boson stars exhibit a spiral-like
frequency dependence of the charge and the mass, ap-
proaching finite limiting values at the centers of the spirals.
When the maximal value of the frequency is approached,
the charge and the mass of the boson stars tend to zero
[3,4].

We here determine the dependence of the stationary
spherically symmetric boson stars on the strength of the
gravitational coupling � and, in particular, determine the
dress: ZARM, Universität Bremen, Am Fallturm,
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domain of existence of the boson stars as a function of �,
including the limit �! 1 and the flat-space limit.

Recently, the existence of rotating Q-balls was demon-
strated [7]. These correspond to stationary localized solu-
tions in flat space possessing a finite mass and a finite
angular momentum. Interestingly, their angular momen-
tum is quantized, J � nQ [7,8]. Possessing even or odd
parity, their energy density forms one or more tori.

Rotating boson stars exhibit angular momentum quanti-
zation as well, J � nQ [8]. Previously they have been
obtained only for potentials without solitonic flat-space
solutions, and only for a restricted frequency range [8–
11]. Here we consider rotating boson stars which possess
flat-space counterparts. Our main objectives are to clarify
whether rotating boson stars exhibit an analogous fre-
quency dependence as nonrotating boson stars, and to
determine their domain of existence. For that purpose,
we compute numerically sequences of rotating boson stars
for constant values of the gravitational coupling strength,
focusing on fundamental solutions with rotational quantum
number n � 1 and even parity.

In Sec. II we recall the action, the general equations of
motion, and the global charges. In Sec. III we present the
stationary axially symmetric ansatz for the metric and the
scalar field, we evaluate the global charges within this
ansatz, and present the boundary conditions for the metric
and scalar field functions. We discuss stationary spheri-
cally symmetric Q-ball and boson star solutions in Sec. IV,
and present our results for rotating Q-ball and boson star
solutions in Sec. V. Section VI gives our conclusions. In the
appendixes we address two auxiliary functions employed
in the numerical integration (Appendix A), and we present
the systems of differential equations (Appendix B) and the
components of the stress-energy tensor (Appendix C).
II. ACTION, EQUATIONS, AND GLOBAL
CHARGES

A. Action

We consider the action of a self-interacting complex
scalar field � coupled to Einstein gravity
-1 © 2005 The American Physical Society
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16�G
�

1

2
g�����;��;� ���;��;�� �U�j�j�

�

�
�������
�g
p

d4x; (1)

where R is the curvature scalar,G is Newton’s constant, the
asterisk denotes complex conjugation,

�;� �
@�

@x�
; (2)

and U denotes the potential

U�j�j� � �j�j2�j�j4 � aj�j2 � b�

� ���6 � a�4 � b�2�; (3)

with j�j � �. The potential is chosen such that nontopo-
logical soliton solutions [1], also referred to as Q-balls [2],
exist in the absence of gravity. As seen in Fig. 1, the self-
interaction of the scalar field has an attractive component,
and the potential has a minimum, U�0� � 0, at � � 0 and
a second minimum at some finite value of j�j. The boson
mass is given by mB �

������
�b
p

.

B. Equations

Variation of the action with respect to the metric leads to
the Einstein equations

G�� � R�� �
1

2
g��R � �T��; (4)

with � � 8�G and stress-energy tensor T��

T�� � g��LM � 2
@L
@g��

(5)

� �g��

�
1

2
g�����;��;� ���;��;�� �U���

�

� ���;��;� ���;��;��:
(6)

Variation with respect to the scalar field leads to the matter
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FIG. 1. The potential U��� is shown for � � 1, a � 2, and
b � 1:1, respectively b � 1.
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equation, �
��

@U

@j�j2

�
� � 0; (7)

where � represents the covariant d’Alembert operator.
Equations (4) and (7) represent the general set of
Einstein-Klein-Gordon equations.

C. Global charges

The mass M and the angular momentum J of stationary
asymptotically flat space-times can be obtained from their
respective Komar expressions [12],

M �
1

4�G

Z
�
R��n

�	�dV; (8)

and

J � �
1

8�G

Z
�
R��n

�
�dV: (9)

Here � denotes an asymptotically flat spacelike hypersur-
face, n� is normal to � with n�n� � �1, dV is the natural
volume element on �, 	 denotes an asymptotically time-
like Killing vector field, and 
 denotes an asymptotically
spacelike Killing vector field [12]. Replacing the Ricci
tensor via the Einstein equations by the stress-energy
tensor yields

M � 2
Z

�

�
T�� �

1

2
g��T��

�
n�	�dV; (10)

and

J � �
Z

�

�
T�� �

1

2
g��T��

�
n�
�dV: (11)

A conserved charge Q is associated with the complex
scalar field �, since the Lagrange density is invariant under
the global phase transformation

�! �ei� (12)

leading to the conserved current

j� � �i���@����@����; j�;� � 0: (13)
III. ANSATZ AND BOUNDARY CONDITIONS

A. Ansatz

To obtain stationary axially symmetric solutions, we
impose on the space-time the presence of two commuting
Killing vector fields, 	 and 
, where

	 � @t; 
 � @’ (14)

in a system of adapted coordinates ft; r; �; ’g. In these
coordinates the metric is independent of t and ’, and can
be expressed in isotropic coordinates in the Lewis-
Papapetrou form [13]
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ds2 � �fdt2 �
l
f

�
g�dr2 � r2d�2� � r2sin2�

�

�
d’�

!
r
dt
�

2
�
: (15)

The four metric functions f, l, g, and! are functions of the
variables r and � only.

The symmetry axis of the space-time, where 
 � 0,
corresponds to the z axis. The elementary flatness condi-
tion [14]

X;� X;�

4X
� 1; X � 
�
� (16)

then imposes on the symmetry axis the condition [13]

gj��0 � gj��� � 1: (17)

For the scalar field � we adopt the stationary ansatz [8]

��t; r; �; ’� � ��r; ��ei!st�in’; (18)

where ��r; �� is a real function, and !s and n are real
constants. Single-valuedness of the scalar field requires

��’� � ��2�� ’�; (19)

thus the constant n must be an integer, i.e., n �
0;�1;�2; . . . . We refer to n as a rotational quantum
number. When n � 0, the phase factor exp�in’� prevents
spherical symmetry of the scalar field �.

Thus to obtain stationary axially symmetric boson stars
a system of five coupled partial differential equations needs
to be solved. This set of equations is presented in
Appendix B 2. In contrast, for the Q-balls of flat space
the metric is the Minkowski metric, i.e.,f � l � g � 1,
! � 0. Here, at least in principle, only a single partial
differential equation for the scalar field function needs to
be solved.

For stationary spherically symmetric boson stars n � 0,
and the scalar field function � depends only on the radial
coordinate, � � ��r�. The metric then simplifies as well,
since g 	 1 and! 	 0, and the nontrivial metric functions
f and l depend only on the radial coordinate, f � f�r�, l �
l�r�. Thus for stationary spherically symmetric solutions
one obtains a much simpler system of three coupled ordi-
nary differential equations. This set of equations is pre-
sented in Appendix B 1.

B. Mass, angular momentum, and charge

The mass M and the angular momentum J can be read
off the asymptotic expansion of the metric functions f and
!, respectively, [15]

f � 1�
2MG
r
�O

�
1

r2

�
; ! �

2JG

r2 �O
�

1

r3

�
; (20)

i.e.,
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M �
1

2G
lim
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1

2G
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r2!: (21)

This is seen by considering the Komar expressions Eqs. (8)
and (9), with unit vector n� � �1; 0; 0; !=r�=

���
f
p

, and vol-
ume element dV � 1=

���
f
p
jgj1=2drd�d’, leading to [16]
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Z
�
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�������
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�
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f
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�

�
@!
@r
�
!
r
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d�; (22)

and similarly

J� lim
r!1

2�
16�G

Z �

0

�
l3=2

f2 r
2sin3�

�
!�r

@!
@r

����������r
d�: (23)

Insertion of the asymptotic expansions of the metric func-
tions then yields expressions (21).

Alternatively, the mass M and the angular momentum J
can be obtained by direct integration of the expressions
(10) and (11),

M �
Z

�
�2T�� � 

�
�T

�
� �n�	

�dV;

�
Z
�2Ttt � T

�
� �jgj1=2drd�d’; (24)

corresponding to the Tolman mass, and

J � �
Z
Tt’jgj

1=2drd�d’: (25)

The conserved scalar chargeQ is obtained from the time
component of the current,

Q � �
Z
jtjgj1=2drd�d’

� 4�!s

Z 1
0

Z �

0
jgj1=2 1

f

�
1�

n
!s

!
r

�
�2drd�: (26)

From Eq. (25) for the angular momentum J and Eq. (26)
for the scalar charge Q, one obtains the important quanti-
zation relation for the angular momentum,

J � nQ; (27)

derived first by Schunck and Mielke [8], by taking into
account that Tt’ � njt, since @’� � in�. Thus a spheri-
cally symmetric boson star has angular momentum J � 0,
because n � 0.

C. Boundary conditions

The choice of appropriate boundary conditions must
guarantee that the boson star solutions are globally regular
and asymptotically flat, and that they possess finite energy
and finite energy density.
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For spherically symmetric boson stars boundary condi-
tions must be specified for the metric functions f�r� and
l�r� and the scalar field function ��r� at the origin and at
infinity. At the origin one finds the boundary conditions

@rfjr�0 � 0; @rljr�0 � 0; @r�jr�0 � 0: (28)

Note, that for spherically symmetric boson stars the scalar
field has a finite value �0 at the origin,

��r� � �0 �O�r
2�: (29)

For r! 1 the metric approaches the Minkowski metric

�� and the scalar field assumes its vacuum value � � 0.
Accordingly, we impose at infinity the boundary conditions

fjr!1 � 1; ljr!1 � 1; �jr!1 � 0: (30)

For rotating axially symmetric boson stars appropriate
boundary conditions must be specified for the metric func-
tions f�r; ��, l�r; ��, g�r; ��, and!�r; ��, and the scalar field
function ��r; �� at the origin, at infinity, on the positive z
axis (� � 0), and, exploiting the reflection symmetry with
respect to �! �� �, in the xy plane (� � �=2). At the
origin we require

@rfjr�0 � 0; @rljr�0 � 0; gjr�0 � 1;

!jr�0 � 0; �jr�0 � 0:
(31)

At infinity the boundary conditions are

fjr!1 � 1; ljr!1 � 1; gjr!1 � 1;

!jr!1 � 0; �jr!1 � 0;
(32)

and for � � 0 and � � �=2, respectively, we require the
boundary conditions

@�fj��0 � 0; @�lj��0 � 0; gj��0 � 1;

@�!j��0 � 0; �j��0 � 0;
(33)

and for even parity solutions

@�fj���=2 � 0; @�lj���=2 � 0; @�gj���=2 � 0;

@�!j���=2 � 0; @��j���=2 � 0; (34)

while for odd parity solutions �j���=2 � 0.
IV. STATIONARY SPHERICALLY SYMMETRIC
SOLUTIONS

Stationary spherically symmetric solutions are obtained
when n � 0. The set of coupled nonlinear ordinary differ-
ential equations, given in Appendix B 1, is solved numeri-
cally [17], subject to the above boundary conditions,
Eqs. (28)–(30). Because of the power law falloff of the
metric functions, we compactify space by introducing the
compactified radial coordinate

�r �
r

1� r
: (35)
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The numerical calculations employ a collocation method
for boundary-value ordinary differential equations, using
the damped Newton scheme for a sequence of meshes,
until the required accuracy is reached [17].

A. Solutions in flat space: Q-balls

Spherically symmetric Q-balls have been studied before
(see e.g. [1,2,7], or [3] for a review). We here review their
main features, to be able to better demonstrate the effects
of gravity and rotation.

Recalling first the mass M of the Q-balls,

M � 4�
Z 1

0
Tttr2dr

� 4�
Z 1

0

!2

s�
2 ��02 �U����r2dr; (36)

where the prime denotes differentiation with respect to r,
and their charge Q,

Q�!s� � 8�!s

Z 1
0
�2r2dr; (37)

we follow the discussion in [7] to obtain the limits for the
frequency !s

!2
min <!2

s < !2
max; (38)

while correcting for the missing factor of 2 in the field
equation [18,19]. The equation of motion for the scalar
field [18],

0 � �00 �
2

r
�0 �

1

2

dU���
d�

�!2
s�; (39)

is equivalent to [18]

1

2
�02 �

1

2
!2
s�

2 �
1

2
U � E � 2

Z r

0

�02

r
dr; (40)

where E is an integration constant, and effectively de-
scribes a particle moving with friction in the potential [18]

V��� �
1

2
!2
s�2 �

1

2
U���: (41)

The first necessary condition for Q-balls to exist is then
V00�0�< 0 [7] and yields the maximal frequency !max [18]

!2
s < !2

max 	
1

2
U00�0� � �b; (42)

while the second condition is that V��� should become
positive for some nonzero value of � [7], i.e., [18]

!2
s > !2

min 	 min
�

U���=�2� � �

�
b�

a2

4

�
: (43)

Turning now to the Q-ball solutions, we specify the
potential parameters as [7]

� � 1; a � 2; b � 1:1: (44)

Fixing the value of !s in the allowed range, one obtains a
sequence of Q-ball solutions, consisting of the fundamen-
tal Q-ball and its radial excitations [7]. The boson function
-4
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� of the fundamental Q-ball has no nodes, while it has k
nodes for the kth radial excitation.

Focusing on the fundamental Q-ball solutions and their
first radial excitations, we exhibit in Fig. 2 the dependence
of the charge Q on the frequency !s. As seen in the figure,
at a critical value !cr the charge assumes its minimal value
Qcr. The charge diverges both when !s ! !min and when
!s ! !max [1].

Figure 2 also exhibits the mass M as a function of the
charge Q. The region close to the critical value Qcr is
exhibited in Fig. 3 for the fundamental Q-balls and their
first radial excitations. The lower branches correspond to
values of the frequency !s < !cr, while the upper
branches represent the values !s > !cr. When the mass
is smaller than the mass of Q free bosons, M<mBQ, the
solutions are stable [1]. When !s ! !max, the upper
branches approach the mass M � mBQ of Q free bosons
from above [1].
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FIG. 2. Left: The charge Q is shown as a function of the frequ
excitations (k � 1). Also shown are the limiting values of the frequen
the charge Q for fundamental Q-balls (k � 0) and their first radial
M � mBQ. The upper branches of the mass M are not discernible (
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FIG. 3. The mass M is shown as a function of the charge Q for fu
(k � 1, right) in the region close to their corresponding critical valu
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The scalar field function � and the energy density Ttt of
the fundamental Q-balls are shown in Fig. 4 for several
values of the frequency !s including !cr. The energy
density of theQ-balls is shell-like. Along the upper branch,
with increasing charge and mass the maximum of the
energy density decreases while moving outwards, whereas
along the lower branch, with increasing charge and mass
the maximum of the energy density increases while mov-
ing outwards, which is strongly correlated with the steep
falloff of the scalar field function. Radially excited Q-balls
with k nodes possess k� 1 energy shells [7].

B. Solutions in curved space: boson stars

When the scalar field is coupled to gravity, boson
stars arise (see e.g. [5,9] for reviews). Spherically symmet-
ric boson stars, based on a self-interacting boson field
with a potential U, Eq. (3), have been considered by
Friedberg, Lee, and Pang [4]. For their choice of the
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ency !s for fundamental Q-balls (k � 0) and their first radial
cy, !min and !max. Right: The mass M is shown as a function of
excitations (k � 1). Also shown is the mass for Q free bosons,
on this scale) from the mass of Q free bosons.
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potential parameters the minima of the potential are de-
generate, yielding for the minimum value of the frequency
!min � 0. In contrast, for our choice of parameters,
Eq. (44), the potential has a global and a local minimum,
and !min > 0. The different form of the potential has
consequences for some features of the boson stars, as
discussed below.

To demonstrate the effects of gravity on the spherically
symmetric solutions, we exhibit in Fig. 5 the charge Q as a
function of the frequency !s for the fundamental boson
star solutions at a given value of the gravitational coupling
constant �.

For solutions in curved space the frequency !s is also
bounded from above by !max, Eq. (42), since the scalar
field exhibits asymptotically an exponential falloff only for
!s < !max. However, for the smaller values of !s a new
phenomenon occurs, as compared to flat space [4], where
the solutions approach monotonically the limiting lower
value !min, Eq. (43). Denoting the minimal value of the
 0
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FIG. 5. The charge Q is shown as a function of the frequency !s f
(left), and in the frequency range of the spiral (right), for the gravit
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frequency for boson stars by !0���, we observe that it
differs from !min, except for a single value of the gravita-
tional coupling �. For larger values of �, !0���>!min,
while for smaller values of �, !0���<!min. (Note, that
the latter case does not occur for a potential with degener-
ate minima, since there !min � 0.) Moreover, in the pres-
ence of gravity the solutions do not approach mono-
tonically the minimal value !0���. Instead one observes
an inspiralling of the boson star solutions towards a limit-
ing solution at the center of the spiral at a frequency
!lim���>!0��� [4].

In Fig. 6 we exhibit the charge Q as a function of the
frequency!s, for the fundamental boson star solution (k �
0) for several values of the gravitational coupling constant
�, and also for the first radial excitation (k � 1) for � �
0:2. While the presence of a spiral is a genuine property of
boson stars, the location and the size of the spiral depend
on the gravitational coupling strength � and on the node
number k.
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ational coupling constant � � 0:2.
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The mass M has an analogous dependence on the fre-
quency!s as the chargeQ, as seen in Fig. 7, where we also
exhibit the frequency dependence of the value of the scalar
field at the origin��0�. The end points of��0� in the figure
correspond to the numerical values obtained closest to the
centers of the spirals. We cannot decide numerically, how-
ever, whether the limiting solutions have indeed finite
values �lim�0� [20].

When the mass M is considered as a function of the
charge Q, we observe a cusp structure [4], as illustrated in
Fig. 8. For smaller values of � (e.g., � � 0:2) we observe
two sets of cusps. The first set of cusps is related to the
single cusp present in flat space, which occurs at the
minimal value of the charge Qmin, where the upper and
lower branch of the Q-ball merge. But whereas the upper
branch extends infinitely far in flat space, it extends in
curved space only up to a second cusp, reached at a second
critical value of the charge, where this upper branch
merges with a third branch extending down to zero. For
larger values of � (e.g., � � 1) this set of two cusps, which
1.0

10.0

100.0

1000.0
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FIG. 7. The mass M (left) and the value of the scalar field at the o
fundamental boson stars (k � 0) for the values of the gravitational co
0.1, 0.2, 0.4, 1 (right).
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is a remainder of the flat-space solutions, is no longer
present.

The second set of cusps is related to the spirals, present
only in curved space. Labeling these cusps of the spirals
consecutively N � 1; 2; . . . , we exhibit the charge Q, the
massM, and the frequency!s of the boson star solutions at
these cusps in Table I, for several values of the gravita-
tional coupling constant �.

Focusing on the limiting solutions at the centers of the
spirals, we exhibit in Table II the limiting values of the
frequency !lim, the charge Qlim, and the mass Mlim for
several values of the gravitational coupling constant �. For
small gravitational coupling we extract the following �
dependence,

!lim � c!0 � c
!
1 �

1=2 � c!2 ��O��
3=2�;

Qlim�
3=2 � cQ0 � c

Q
1 �

1=2 � cQ2 ��O��
3=2�;

Mlim�
3=2 � cM0 � c

M
1 �

1=2 � cM2 ��O��
3=2�;

(45)
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1e-01
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1e+02

0.1 0.3 0.5 0.7 0.9 1.1

φ(
0)

ωs

κ = 0.02
κ = 0.10
κ = 0.20
κ = 0.40
κ = 1.00

rigin ��0� (right) are shown as functions of the frequency !s for
upling constant � � 0:1, 0.2, 0.4, 1 (left), respectively � � 0:02,

-7



TABLE I. Physical characteristics of the first six cusps of the
fundamental boson star solutions (k � 0) for gravitational cou-
pling constants � � 0:1 (upper), � � 0:2 (second), � � 0:4
(third), � � 1 (fourth).

N QN M !s

1 685.5000 351.6320 0.34338
2 331.3000 221.3990 0.42424
3 391.9200 246.5870 0.40352
4 378.2500 241.0480 0.40776
5 380.8700 242.1160 0.40693
6 380.4000 241.9250 0.40708

N QN M !s

1 119.2400 122.9620 0.89402
2 78.1580 88.3579 0.89343
3 84.8980 94.4262 0.89000
4 83.4960 93.1796 0.89067
5 83.7470 93.4033 0.89047
6 83.7090 93.3694 0.89048

N QN M !s

1 29.3040 28.1273 0.63000
2 15.7880 19.1084 0.76800
3 17.8630 20.6836 0.74018
4 17.4580 20.3833 0.74497
5 17.5280 20.4361 0.74416
6 17.5170 20.4273 0.74429

N QN M !s

1 12.2180 12.5360 0.93000
2 5.6059 7.24552 0.86000
3 6.3314 7.87359 0.85305
4 6.1911 7.75446 0.85290
5 6.2148 7.77456 0.85304
6 6.2108 7.77104 0.85302
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FIG. 8. The mass M is shown as a function of the charge Q for fundamental boson stars (k � 0) for the values of the gravitational
coupling constant � � 0:2 (left) and � � 1 (right).
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illustrated in Fig. 9. For small gravitational coupling we
thus obtain a different � dependence, as compared to [4]. In
particular, in the limit �! 0 the limiting frequency !lim

assumes a finite value, 0<!lim�0�<!min. We attribute
this difference to the fact that, for a potential with degen-
erate minima, as employed in [4], !min � 0.

To address the � dependence of the domain of existence
of the (fundamental) boson star solutions, corresponding to
the interval 
!0���; !max�, we exhibit in Fig. 10 the charge
Q as a function of the frequency!s for a large set of values
of the gravitational coupling constant �, including the flat-
space limit. Interestingly, for values of the frequency !s
close to !max, the flat-space values are not approached
monotonically from below with decreasing �. Here a
weak coupling to gravity can lead to an increase of the
mass of the boson star solutions.

As � increases, !0��� tends to a finite value !0�1�,
smaller than!max. Fixing!s 2 
!0�1�; !max� we observe
that the scalar field scales like 1=

����
�
p

for large values of �.
In order to obtain the solutions in the limit �! 1, we
TABLE II. Physical characteristics of the limiting solutions at
the centers of the spirals for the fundamental boson stars (k � 0)
for a set of decreasing values of the gravitational coupling
constant �.

� !lim Qlim Mlim

1.0000 0.85302 6.2114 7.7718
0.4000 0.74427 17.5180 20.4285
0.2000 0.56135 70.8330 63.2038
0.1000 0.40707 380.4600 241.9480
0.0200 0.25981 1:136� 104 4433.790
0.0100 0.23529 4:011� 104 1:401� 104

0.0020 0.20754 5:954� 105 1:802� 105

0.0010 0.20172 1:797� 106 5:262� 105

0.0002 0.19451 2:181� 107 6:119� 106

0:2� 10�5 0.18924 2:326� 1010 6:316� 109

-8



1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Q

ωs

κ = 0.0000
κ = 0.0002
κ = 0.0020
κ = 0.0100
κ = 0.0200
κ = 0.1000
κ = 0.2000
κ = 0.4000
κ = 1.0000

FIG. 10. The charge Q (left) and the mass M (right) are shown as f
for a set of decreasing values of the gravitational coupling constant

 0

 5

10

15

0.7 0.8 0.9 1.0 1.1

κ 
Q

ωs

κ    ∞
κ = 1

FIG. 11. Left: The scaled charge �Q is shown as a function of th
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therefore introduce the scaled scalar field �̂�r� �
����
�
p
��r�.

Substituting ��r� in the field equation and taking the limit
�! 1, we find that all terms nonlinear in �̂�r� vanish.
Similarly, in the Einstein equations all terms of higher than
second order in �̂�r� vanish and the dependence on �
cancels. Thus we end up with a set of differential equations
identical to the original one, except that � � 1 andU��̂� �
�b�̂2. Solving this set of differential equations for fixed �b
and varying !s, we again find a spiral pattern for the
(scaled) charge Q̂ � �Q, shown in Fig. 11. This analysis
yields

!0�1� � 0:805; !lim�1� � 0:883:

Considering now the domain of existence in the limit
�! 0, we note that we must distinguish two intervals here,

!0���; !min� and 
!min; !max�. We observe from Fig. 10,
that the limiting flat-space values of the charge Q are
approached in a continuously increasing interval, extend-
ing to the full interval 
!min; !max� in the limit �! 0. In
the interval 
!0�0�; !min� there are no flat-space solutions,
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possessing finite charge or mass. As noted above, the
limiting values of the charge Qlim and the mass Mlim at
the centers of the spirals diverge with ��3=2, when �! 0.
We therefore determine the properties of the solutions in
the limit �! 0 in the interval 
!0�0�; !min� by scaling the
charge and the mass with �3=2 for a sequence of solutions,
corresponding to decreasing values of �. Convergence
towards the limiting values of the scaled charge is demon-
strated in Fig. 11 [21]. Thus also in the limit �! 0 we find
a spiral pattern for the (scaled) charge Q̂ � �3=2Q. This
analysis yields

!0�0� � 0:172; !lim�0� � 0:189:

We remark that for a potential with degenerate minima, as
employed in [4], only the single interval 
!min; !max�
needs to be considered, since !min � 0, implying appar-
ently !0�0� � !lim�0� � !min � 0.
V. ROTATING AXIALLY SYMMETRIC
SOLUTIONS

Rotating axially symmetric solutions are obtained when
n � 0. We solve the set of coupled nonlinear elliptic partial
differential equations, given in Appendix B 2, numerically
[22], subject to the above boundary conditions, Eqs. (31)–
(34), employing the compactified radial coordinate,
Eq. (35). The numerical calculations are based on the
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FIG. 12. The scalar field��r; �� for fundamental rotating Q-balls w
(right) is shown as a function of the coordinates � � r sin� and z �
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FIG. 13. The energy density Ttt for fundamental rotating Q-balls w
(right) is shown as a function of the coordinates � � r sin� and z �
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Newton-Raphson method. The equations are discretized
on a nonequidistant grid in �r and �. Typical grids used
have sizes 100� 20, covering the integration region 0 �
�r � 1 and 0 � � � �=2.

A. Rotating Q-balls

The existence of rotating Q-balls has been shown by
Volkov and Wöhnert [7]. Based on the ansatz (18) for the
scalar field � [8], one obtains for rotating Q-ball solutions
the field equation [18]

�
@2

@r2 �
2

r
@
@r
�

1

r2

@2

@�2 �
cos�

r2 sin�

@
@�
�

n2

r2sin2�
�!2

s

�
�

�
1

2

dU���
d�

; (46)

the mass [7]

M � 2�
Z 1

0

Z �

0

�
!2
s�

2 � �@r��
2 �

1

r2 �@���
2

�
n2�2

r2sin2�
�U���

�
r2dr sin�d�; (47)

and the charge

Q � 4�!s

Z 1
0

Z �

0
�2r2dr sin�d�: (48)
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TABLE III. Physical properties of fundamental Q-balls with
charge Q � 410 and quantum numbers n � 0–2.

n !s J M

0 0.5927 0 293.8
1 0.6931 410 363.4
2 0.7940 820 414.7

ROTATING BOSON STARS AND Q-BALLS PHYSICAL REVIEW D 72, 064002 (2005)
Their angular momentum satisfies the quantization relation
J � nQ.

In their pioneering study [7] Volkov and Wöhnert show
that for a given value of n there are two types of solutions,
possessing different parity. They exhibit examples of fun-
damental rotatingQ-balls with quantum numbers n � 1–3,
and both even and odd parity. They do not study the
frequency dependence of rotating Q-ball solutions,
however.

We illustrate the scalar field ��r; �� and the energy
density Ttt�r; �� of fundamental rotating Q-balls with
charge Q � 410, quantum numbers n � 1 and 2, and
even parity in Figs. 12 and 13. For rotating Q-balls the
scalar field � must vanish at the origin, as seen in Eq. (47).
The energy density Ttt of even parity rotating Q-balls is
toruslike. (For odd parity a double-torus arises [7].) The
massM, the angular momentum J, and the frequency!s of
these rotating Q-balls are exhibited in Table III together
with the properties of the corresponding nonrotating
Q-ball. The properties of radially excited rotating Q-balls
have not yet been studied [7].

We here address the frequency dependence of rotating
Q-ball solutions. We focus on fundamental rotating
Q-balls with quantum number n � 1 and even parity. In
Fig. 14 we show the charge Q as a function of the fre-
quency !s for these fundamental rotating Q-balls. We
observe the same upper limiting value !max, Eq. (42), for
the frequency !s, as for nonrotating Q-balls, which again
1e+01

1e+02

1e+03

1e+04

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Q

ωs

n = 0
n = 1

FIG. 14. The charge Q is shown as a function of the frequency !
(right) for fundamental rotating Q-balls with quantum number n � 1.
fundamental nonrotating Q-balls. The upper branches of the mass M
M � mBQ (right).
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ensures asymptotically an exponential falloff of the scalar
field �. For a given frequency !s the charge of a rotating
Q-ball is larger than the charge of a nonrotatingQ-ball. We
thus conjecture that the frequency of rotating Q-balls is
also limited by the minimal frequency !min, Eq. (43).
Unfortunately, for rotating Q-balls the numerical accuracy
decreases considerably for large values of the charge Q,
refraining us from approaching !min more closely.

The mass of the rotating Q-balls shows the same cusp
structure as the mass of nonrotating Q-balls. Only the
minimal charge Qmin of the rotating Q-balls is larger
than the minimal charge of the nonrotating Q-balls,
Qmin�n � 1�>Qmin�n � 0�. We conclude, that the set of
rotatingQ-balls exhibits the same general pattern as the set
of nonrotating Q-balls.

B. Rotating boson stars

We now turn to rotating boson stars, obtained when
gravity is coupled to the rotating Q-ball solutions. We
expect that the set of rotating boson stars also exhibits
the same general pattern as the set of nonrotating boson
stars. Previously [8,11] rotating boson stars were obtained
(only for a �4 potential and) only for a limited range of the
frequency!s. Therefore neither a spiral structure nor cusps
were observed.

We here focus on fundamental rotating boson stars with
rotational quantum number n � 1 and even parity. We
exhibit in Fig. 15 the charge Q as a function of the
frequency !s for fundamental rotating and nonrotating
boson stars at gravitational coupling � � 0:2.

Again, the frequency !s of the solutions is bounded
from above by !max, Eq. (42), ensuring an asymptotically
exponential falloff of the scalar field. Furthermore, as for
the nonrotating boson stars, we observe for the rotating
boson stars for the smaller values of the frequency !s a
backbending toward larger values of !s, also leading
 0
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s (left) and the mass M is shown as a function of the charge Q
For comparison, the chargeQ and the massM are also shown for

are not discernible (on this scale) from the mass ofQ free bosons,
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TABLE IV. Physical characteristics of the first two cusps of
the fundamental rotating (n � 1) boson star solutions for gravi-
tational coupling constants � � 0:1 (upper), � � 0:2 (second),
and � � 0:3 (third). Deviations from the relation J � nQ are
due to numerical inaccuracy.

N QN M J !s

1 237.2 179.3 237.3 0.4325
2 35.2 66.7 35.1 0.9700

N QN M J !s

1 111.0 99.3 111.0 0.5100
2 23.3 44.4 23.3 0.9700

N QN M J !s

1 910.9 516.5 911.1 0.3400
2 76.4 138.8 75.7 0.9450
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FIG. 15. The charge Q (left) and the mass M (right) are shown as functions of the frequency !s for fundamental rotating (n � 1)
and nonrotating boson stars at the gravitational coupling � � 0:2.
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apparently to an inspiralling of the solutions towards a
limiting solution. Unfortunately, numerical accuracy does
not allow a better determination of the spiral and the
corresponding limiting values. Comparison of the rotating
and nonrotating sets of solutions shows that the location of
the spiral of the rotating solutions is shifted towards larger
values of the frequency !s.

The mass M has an analogous dependence on the fre-
quency !s as the charge Q, as seen in Fig. 15. When the
mass M of the rotating boson stars is considered as a
function of the charge Q, we observe an analogous cusp
structure as for the nonrotating boson stars, as illustrated in
Fig. 16. For smaller values of � (e.g., � � 0:2) we observe
two sets of cusps. The first set of cusps is again related to
the cusp present in flat space, occurring at the minimal
value of the chargeQmin, where the upper and lower branch
of the rotating Q-ball merge. In curved space the upper
branch extends again only up to a second cusp, reached at
another critical value of the charge, where this upper
branch merges with a third branch extending down to
zero. For larger values of � (e.g., � � 1) this set of two
cusps, which is a remainder of the flat-space solutions, is
no longer present.

The second set of cusps is again related to the spirals,
present only in curved space. Labeling these cusps again
consecutively N � 1; 2; . . . , we exhibit the charge Q, the
massM, and the frequency!s of the boson star solutions at
the first two cusps in Table IV, for the gravitational cou-
pling constants � � 0:1, 0.2, and 0.3. Numerical problems
inhibit a better resolution of this cusp structure (with regard
to the larger values of N).

Addressing finally the � dependence of the domain of
existence of the rotating boson star solutions, we exhibit in
Fig. 17 the charge Q and the mass M as functions of the
frequency !s for several values of the gravitational cou-
pling constant �, including the flat-space limit. Again, we
064002
observe that for values of the frequency !s close to !max,
the flat-space values are not approached monotonically
from below with decreasing �.

We observe from Fig. 17 that rotating (n � 1) boson
stars also exist only in an interval 
!0���; !max�. To obtain
the lower bound !0��� in the limit �! 1, we again
introduce the scaled scalar field �̂�r� �

����
�
p
��r�, and sub-

stitute ��r� in the field equations. Taking the limit �! 1,
and solving the new set of differential equations, we find
for the rotating (n � 1) boson stars the lower bound
!0�1� � 0:677. The (scaled) charge Q̂ � �Q of these
solutions is shown in Fig. 18. Concerning the domain of
existence in the limit �! 0, we expect a similar pattern as
for the nonrotating boson stars. For � < 0:06, for instance,
we observe that !0���<!min. Numerical problems, how-
ever, prevent us from obtaining reliable results for very
small values of �.
-12
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FIG. 17. The charge Q (left) and the massM (right) are shown as functions of the frequency!s for the fundamental rotating (n � 1)
boson stars for several values of the gravitational coupling constant �. Also shown are the limiting flat-space values.
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FIG. 18. The scaled charge �Q is shown as a function of the
frequency !s for rotating (n � 1) boson stars in the limit �!
1. For comparison the scaled charge Q is also shown for
nonrotating boson stars.
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VI. CONCLUSIONS

We have addressed boson stars and their flat-space limit,
Q-balls. To illustrate the effects of gravity and rotation, we
have first recalled the main features of nonrotatingQ-balls.
Second, we have added gravity to obtain nonrotating boson
stars. Third, we have added rotation to obtain rotating
Q-balls, and finally we have added both gravity and rota-
tion to obtain rotating boson stars. Our main emphasis has
been to study the general pattern displayed by these regular
extended objects, and to determine their domain of
existence.

Spherically symmetric Q-balls and boson stars exist
only in a limited frequency range. Whereas both mass
and charge of Q-balls assume a minimal value at a critical
frequency, from where they rise monotonically towards
both smaller and larger frequencies, boson stars show a
different type of behavior. Their mass and charge tend to
zero when the maximal frequency is approached, while for
smaller values of the frequency, charge and mass exhibit a
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spiral-like frequency dependence, leading to limiting solu-
tions with finite values of the mass Mlim, the charge Qlim,
and the frequency !lim, depending on the gravitational
coupling constant �.

Denoting the domain of existence of spherically sym-
metric boson stars by 
!0���; !max�, we observe that, when
�! 1, the lower limiting value of the frequency !0���
tends to a finite value !0�1�<!max, obtained by solving
the set of field equations for the scaled scalar field

����
�
p
��r�.

For small values of �, on the other hand, the domain of
existence consists of two parts, 
!0���; !min� and

!min; !max�. In the limit �! 0, the lower limiting value
of the frequency !0��� tends to a finite value, !0�0�<
!min. In the interval 
!0�0�; !min� there are no flat-space
solutions, possessing finite charge or mass. The limiting
values of the spirals, Qlim and Mlim, diverge with ��3=2

when �! 0. (For a potential with degenerate minima [4]
only the single interval 
!min; !max� needs to be consid-
ered, since !min � 0.)

Spherically symmetric Q-balls and boson stars possess
radial excitations. Their systematic study has not yet been
performed. We have, however, considered the first radial
excitations of Q-balls and the first radial excitations of
boson stars at a given gravitational coupling. This indicates
that radially excited Q-balls and boson stars possess an
analogous frequency dependence and critical behavior as
the corresponding fundamental solutions.

Rotating Q-balls and boson stars possess a quantized
angular momentum, J � nQ. For each rotational quantum
number n there are even and odd parity solutions. Here we
have focused on solutions with n � 1 and even parity.
These rotating Q-balls show a frequency dependence and
critical behavior analogous to the nonrotating Q-balls.
Likewise, the rotating boson stars show a frequency de-
pendence and critical behavior analogous to the nonrotat-
ing boson stars. In particular, on the one hand we observe
that the mass and charge of rotating boson stars tend to zero
when the maximal frequency is approached, and on the
other hand we see a spiral-like frequency dependence for
the mass and charge for the smaller values of the frequency.
Unfortunately, numerical inaccuracies increase along the
spirals, preventing a reliable construction of their interior
parts.

Rotating (n � 1) boson stars also exist only in an inter-
val 
!0���; !max�. In the range of � considered, the lower
limiting value !0��� of rotating boson star solutions is
larger than the lower limiting value !0��� of nonrotating
boson star solutions. In the limit �! 1, the lower bound
!0��� is again obtained by solving the set of field equations
for the scaled scalar field

����
�
p
��r�.

For small values of �, we also observe an analogous
pattern for the rotating boson stars as for the nonrotating
boson stars. Numerical problems prevent us, however,
from obtaining reliable results for the domain of existence
for very small values of �.
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A systematic study of the frequency dependence of
rotating boson stars with higher rotational quantum num-
ber n and with both parities is still missing and represents a
numerical challenge. While the energy density of rotating
boson stars with n � 1 and even parity has a toruslike
structure, the energy density of rotating boson stars with
n � 1 and odd parity should have a double-torus structure.
For radially excited rotating boson stars the structure of the
energy density may involve concentric tori. Their construc-
tion remains an open challenge, as well.
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APPENDIX A: AUXILIARY FUNCTIONS

In order to be able to calculate boson star solutions for a
given value of the charge Q, we define 2 auxiliary func-
tions, ��r; �� and !s�r; ��. The equation of motion for the
function ��r; �� consists of the Laplacian acting on ��r; ��
and a source term, which is proportional to the charge
density, Eq. (26),

�jgj1=2grr�;r�;r � �jgj
1=2g���;��;�

� �jgj1=2

�
gtt � gt’

n
!s

�
�2: (A1)

Integration yields
Z �

0
�jgj1=2grr�;r�

��������
1

0
d��

Z 1
0
�jgj1=2g���;��

��������
�

0
dr

� �
Z 1

0

Z �

0
jgj1=2

�
gtt � gt’

n
!s

�
�2drd�; (A2)

and with jgj1=2 � l3=2gr2 sin�=f and Eq. (26) we obtain
Z �

0
�sin�l1=2r2�;r�

��������
1

0
d��

Z 1
0
�sin�l1=2�;��

��������
�

0
dr�

Q
4�!s

:

(A3)

Making use of the asymptotic expansion for the function
��r; ��,

� � �1 �
C
r
�O

�
1

r2

�
� . . . ; (A4)

with constants C and �1, and thus asymptotically r2�;r !
�C, we obtain

C
Z �

0
sin�d� � 2C �

Q
4�!s

: (A5)

This then yields the connection between the function
��r; �� at infinity, the frequency !s, and the charge Q,�

r2�;r!s �
Q
8�

���������r!1
� 0: (A6)

Since we cannot impose the value of the frequency !s,
-14
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when we impose the value of the charge, we need to solve
for the frequency !s. The frequency !s is a constant. An
adequate equation is therefore that the Laplacian of !s
vanishes,

�jgj1=2grr!s;r�;r � �jgj1=2g��!s;��;� � 0: (A7)

The appropriate set of boundary conditions for these two
auxiliary functions are

@r!sjr�0 � 0; 8�r2�;r!sjr!1 � Q;

@�!sj��0 � 0; @�!sj���=2 � 0;
(A8)
@r�jr�0 � 0; �jr!1 � �1;

@��j��0 � 0; @��j���=2 � 0;
(A9)

and �1 is an arbitrary constant.
When instead of the charge Q a value for the frequency

!s is imposed, use of the auxiliary functions is not neces-
sary, but convenient, since the charge is then obtained
directly. In this case, the same set of boundary conditions
is appropriate except for

!sjr!1 � !1; (A10)

and !1 is the required value.
APPENDIX B: SYSTEM OF DIFFERENTIAL
EQUATIONS

1. Spherically symmetric solutions

For the spherically symmetric boson stars we obtain the
following set of coupled nonlinear ordinary differential
equations:

@2
rf � �

1

2

1

fl

�
4�fl2U��� � 8�!2

sl2�2 �
4

r
fl@rf

� 2l@rf� f@rl@rf
�
; (B1)
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@2
rl � �

1

2

1

fl

�
8�l3U��� � 8�!2

s
l3

f
�2 �

6

r
fl@rl

� f�@rl�2
�
; (B2)
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1

2

1

fl

�
2!2

s
l2

f
�� l2

@U���
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�
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r
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� f@rl@r�
�
: (B3)
For the auxiliary functions the equations are

0 � �
f
l

�
@2
r��

2

r
@r��

1

2l
@rl@r�

�
�

1

f
�2; (B4)
0 �
f
l

�
@2
r!s �

2

r
@r!s �

1

2l
@rl@r!s

�
: (B5)
2. Axially symmetric solutions

For the rotating boson stars we obtain the following set
of coupled nonlinear partial differential equations:

r2@2
rf� @

2
�f � �

1

2

1

fl

�
4�r2fl2U��� � 8�n2l2g!2�2

� 16�rn!sl2g!�2 � 8�r2!2
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� 2sin2�l2!2 � 4rfl@rf� 2
cos�
sin�
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� fl@�f� 2l�r2�@rf�
2

� �@�f�2� � r2f@rl@rf� 4rsin2�l2!@r!

� 2sin2�l2�r2�@r!�2 � �@�!�2�
�
; (B6)
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-15



BURKHARD KLEIHAUS, JUTTA KUNZ, AND MEIKE LIST PHYSICAL REVIEW D 72, 064002 (2005)
r2@2
rl�@2

�l��
1

2

1

fl

�
8�r2l3gU����8�

1

sin2�
n2fl2g�2

�8�n2 l
3g
f
!2�2�16�rn!s

l3g
f
!�2

�8�r2!2
s
l3g
f
�2�6rfl@rl�4

cos�
sin�

fl@�l

�f�r2�@rl�
2��@�l�

2�

�
; (B8)

r2@2
r!�@2

�!��
1

2

1

fl

�
�8�

1

sin2�
n2flg!�2

�8�r
1

sin2�
n!sflg�2�4fl!�4rfl@r!

�6
cos�
sin�

fl@�!�4l�r2@rf@r!�@�f@�!�

�3f�r2@rl@r!�@�l@�!�

�4rl!@rf�3rf!@rl
�
; (B9)

r2@2
r�� @

2
�� � �

1

2

1

fl

�
�r2l2g

@U���
@�

� 2
1

sin2�
n2flg�� 2

l2g
f
�!n� r!s�

2�

� 4rfl@r�� 2
cos�
sin�

fl@��

� f�r2@rl@r�� @�l@���
�
: (B10)

For the auxiliary functions the equations are
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APPENDIX C: STRESS-ENERGY TENSOR

1. Spherically symmetric solutions

The nonvanishing components of the stress-energy ten-
sor for nonrotating boson stars read

Ttt �
�
fU��� �!2

s�2 �
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l
�@r��2

�
; (C1)
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2. Axially symmetric solutions

The nonvanishing components of the stress-energy ten-
sor for rotating boson stars read
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