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Cosmic string scaling in flat space
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We investigate the evolution of infinite strings as a part of a complete cosmic string network in flat
space. We perform a simulation of the network which uses functional forms for the string position and thus
is exact to the limits of computer arithmetic. Our results confirm that the wiggles on the strings obey a
scaling law described by universal power spectrum. The average distance between long strings also scales
accurately with the time. These results suggest that small-scale structure will also scale in an expanding
universe, even in the absence of gravitational damping.
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I. INTRODUCTION

During phase transitions in the early universe various
topological defects can form. In particular, cosmic string
networks are formed when symmetry is broken and the
vacuum manifold contains incontractible loops [1].
Fundamental or D-strings formed at the end of brane
inflation can also play the role of cosmic strings [2– 4].
Primordial string networks can produce a variety of obser-
vational effects: linear discontinuities in the microwave
background radiation, gravitational lensing, gamma ray
bursts, and gravitational radiation—both bursts and a sto-
chastic background (for a review of cosmic strings, see
[5,6]).

An evolving string network consists of two components:
long strings and subhorizon closed loops. The long string
component is characterized by the following parameters:
the coherence length ��t�, defined as the distance beyond
which the directions along the string are uncorrelated, the
average distance between the strings d�t�, and the charac-
teristic wavelength of the smallest wiggles on long strings,
lmin�t�. The standard picture of cosmic string evolution
assumes that all three of these scales grow proportionately
to the horizon size t and that the typical size of loops is set
by lmin�t�.

Previous simulations of strings in an expanding universe
[7,8] have only partially confirmed this model. The long
strings were observed to scale with

��t� � d�t� / t; (1)

but the short wavelength cutoff lmin and the loop sizes did
not scale, remaining at the resolution of the simulations. It
is not clear whether this is a genuine feature of string
evolution or a numerical artifact. A flat-space simulation
introduced in [9] and further developed in [10,11] had the
same problem. Moreover, the rate of growth of ��t� and
d�t� in that simulation showed dependence on the lower
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cutoff imposed on loop sizes, indicating that lack of reso-
lution at small scales can affect long string properties.

It is generally believed that in a realistic network the
scaling behavior of the cutoff scale lmin�t� will eventually
be enforced by the gravitational backreaction. However, it
has been recently realized that this backreaction is much
less efficient than originally thought [12] and that the cut-
off scale is sensitively dependent on the spectrum of small-
scale wiggles [13]. Thus, it becomes important to deter-
mine the form of the spectrum.

Here we have developed an algorithm and have per-
formed a cosmic string network simulation that lacks the
problem of smallest resolution scale. Rather than repre-
senting the string as a series of points which approximate
its position, we use a functional description of the position
which can be maintained exactly (except for the inevitable
inaccuracy of computer arithmetic) in flat space. After the
simulation has run for some time and the total length of
string has decreased, we expand the simulation volume, as
discussed below. This technique enables us to reach an
effective box size greater than 1000 times the initial corre-
lation length. Such a technique could also be used in
expanding-universe simulations.

The results of the simulation will be discussed in a series
of publications. In the current paper we present the algo-
rithm of our simulation and concentrate on the evolution of
infinite strings, focusing, in particular, on the spectrum of
small-scale wiggles. In Sec. II we describe the algorithm of
our simulation and its complexity. In Sec. III we show that
the spectrum of small wiggles exhibits scaling behavior. In
Sec. IV we analyze the behavior of the interstring distance
and correlation length, and show that they scale with the
time. In Sec. V we discuss what can be learned about the
expanding universe from this flat-space simulation.
II. NUMERICAL SIMULATION

A. Algorithm

The evolution of a cosmic string with thickness much
smaller than radius of its curvature can be described by the
Nambu action. In general, the equations of motion of
-1 © 2005 The American Physical Society
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cosmic strings cannot be solved analytically. However, in
flat space-time they are greatly simplified (see [5,6] for
detailed discussion). The Nambu action is invariant under
arbitrary reparametrization of the two-dimensional world
sheet swept by the string. We take the time t as one
parameter and a spacelike parameter � giving the position
on the string. With the usual parameter choice, the string
trajectory x�t; �� obeys

_x � x0 � 0; (2)

_x 2 � x02 � 1; (3)

with the equation of motion

�x� x00 � 0; (4)

where prime denotes differentiation with respect to � and
dot differentiation with respect to t.

The general solution to these equations can be described
by separating left- and right-moving waves:

x �t; �� �
1

2
�a��� t� � b��� t��; (5)

with

a 02 � b02 � 1: (6)

With this solution in hand we can follow the evolution of
each string in the network exactly. Having computed a and
b from the initial conditions we can find the position of
each string at any later time t.

When their trajectories intersect, strings can exchange
partners with some probability p. For gauge theory strings,
p is essentially 1, but fundamental strings and 1-
dimensional D-branes can have substantially lower p. In
the present analysis we are concerned only with p � 1.
Smaller p will be the subject of a future paper.

Such an intercommutation introduces discontinuities
(kinks) in the functional forms of the a and b describing
the strings. We update the form accordingly and once again
string positions can be computed exactly. This procedure
was used by Scherrer and Press [14] and Casper and Allen
[15] to simulate the evolution of a single loop; here we use
it for a network.

In the expanding universe, small loops which are pro-
duced at intercommutations will almost never encounter
another string and so will not rejoin to the network. To
capture this feature in a flat-space simulation, we explicitly
disallow loops of length l < �t to rejoin the network, as
was done in [10,11]. Here, � is a constant (typically taken
as 0.25) and t is the time which has so far been simulated.
Of course the results of such a technique can be trusted
only if they are not sensitive to the particular choice of k,
and that expectation is confirmed below.

To generate initial conditions we use the Vachaspati-
Vilenkin prescription [16] in a periodic box of size L,
usually 100 in units of the initial correlation length.
063514
Where the string produced by that technique crosses
straight through a cell we use a straight segment and where
it enters a cell and exits through an adjacent face we use a
quarter circle. However, to simplify the implementation we
replace the quarter circle with K straight segments (con-
necting points lying on the quarter circle). In the present
paper we useK � 2. We expect our results to be insensitive
to the choice of K, and in fact tests with K � 4 showed no
significant difference.

An initially static string of length l will collapse into a
double loop at time t � l=4 [17]. To prevent such a col-
lapse we perturb the initial conditions by giving small
initial velocities to the part of the string inside each cell
in the normal direction to the local plane of the string.

B. Implementation

To represent the piecewise linear form of a and b we
store the constant values of a0 and b0 for each segment,
together with values for a�0� and b�0�. To perform an
intercommutation we introduce 2 points for each of a0

and b0 and then concatenate or split the lists of a0 and b0

depending on whether two strings are joining into one or
one string is splitting in two.

The world sheet of the piecewise linear string consists of
flat pieces that we call diamonds glued together along four
lines each, two constant values of a��� t� and two con-
stant values of b��� t�. Each diamond has some extent in
space and time. At any moment, we have a list of all
diamonds that intersect the current time. With each dia-
mond we store the space-time position of the corners, so
that we do not have to integrate a0 and b0 to find the string
position.

When the current time exceeds the ending time of some
diamond we discard that diamond and generate a new one
in the future light cone of the old one with the starting time
of the new diamond equal to the ending time of the
discarded diamond. When each new diamond is generated,
we check it for intersections with every existing diamond.
To accomplish this in unit time, we divide the entire
simulation box into small boxes a little bit larger than the
largest extent of any single diamond. With each box we
store a list of diamonds that intersect it. Each diamond can
intersect at most 7 boxes. When the diamond is created we
check each box that it intersects for possible
intercommutations.

This algorithm does not necessarily generate intercom-
mutations in causal order, so when we detect one we store
its parameters in a time-ordered list of pending intercom-
mutations. When the current time reaches the time of a
pending intercommutation, the intercommutation is then
performed. If instead we find an intercommutation in the
backward light cone of a pending one, we invalidate the
pending one when the earlier one is performed.

To be able to quickly determine the length of a newly
created loop, we store the a0 and b0 values in a ‘‘skip list’’
-2
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[18], which permits integration of the displacements in �
and updating for intercommutations, both in time propor-
tional to logl.

The complexity of the above algorithm can be calculated
in the following matter. In a box of size L in units of initial
correlation length, L3 random phases are generated. There
are 3L3 edges and each of them has a probability of 8/27 to
have a string. On average we have �8=9�L3 of total string
length in the box of volume L3. Most of the string length is
in a single long string which is constantly intercommuting
with itself and with other loops. To store a0 and b0 for all
strings in the network, we need on average 2�8=9�L3K data
points and about the same number of diamonds. Thus the
memory usage scales as L3K.

We use a ‘‘calendar queue’’ [19] to store the list of
diamonds, which allows us to find the diamond with the
earliest ending time and to insert a new diamond into the
list, both in constant CPU time. Thus the entire procedure
of finding the oldest diamond, removing it, replacing it
with a new diamond, and checking that diamond for inter-
commutations requires only a constant amount of CPU
time. When an intercommutation takes place, the runtime
is proportional to the logarithm of the length of the strings
involved, because of the skip list, but intercommutations
are sufficiently rare that the time spent searching for inter-
commutations dominates over the time spent performing
them.

The lifetime of a diamond depends on the lengths of the
segments on its edges, which are typically 1=K. Thus every
time 1=K we need to process of order L3K diamonds. We
typically simulate the network for cosmic time of the order
of the light crossing time of the box L. Therefore, the final
overall running time of the program scales as L4K2.

Tufts has a Linux computation cluster on which we
performed our simulations. Each of 32 nodes has a dual
2.8 GHz CPU and 3 GBytes of usable memory. Each run of
the simulation runs on a single node. The memory con-
strains the box size to about 100 in initial correlation
length, and it takes about 5 hours to evolve the network
for one light crossing time of such a box. The existence of
multiple nodes allows 32 simulations to be run simulta-
neously, so that we can do about 150 runs in a day.

The code is written entirely in ANSI C, so it is easily
portable across different platforms. It was successfully
tested and ran on Windows and Linux PCs.

C. Expansion of the box

In the previous section we have pointed out that the
boundary effects become important when the cosmic
time of the simulation is of order L. To avoid problems
that have nothing to do with physics of the process, we
would like all of the length scales of the network to be
much smaller than the size of the box. In the discussion
below, we propose a technique that allows us to overcome
063514
boundary effects and push the effective box size and thus
the running time of the simulation to larger values.

Since small loops smaller than a threshold are not al-
lowed to rejoin the network, we can remove them from the
simulation when they are produced, and therefore decrease
the total string length. The computer memory used by
simulation is proportional to the total string length divided
by the average size of the segments. Each intercommuta-
tion introduces four kinks and thus decreases the average
size of the segments. This process increases the memory
used by simulation by a small constant amount. On the
other hand when string loops decouple from the simula-
tion, the memory is freed on average by the amount pro-
portional to their length. In the following discussion we
shall assume that the memory usage of the simulation is
proportional to the string length only, since we found that
the decrease of the segment size gives only a small correc-
tion to the calculations and does not change the general
idea.

Suppose that the string network is in the scaling regime.
If so, the interstring distance grows linearly with t, and thus
the total string length in long strings decays as t�2.
Therefore, by some time t1, when the string length has
decreased by a factor of 8 the interstring distance has
grown by a factor of

���
8
p

. If we are only interested in
behavior of infinite strings we can expand the box at time
t1 from initial size L3 to �2L�3 and continue the evolution
further.

The simplest way to expand the box it to create 8
identical replicas of the box of size L3 at time t1 and to
glue them together to form a box of size �2L�3. This
introduces correlations on the super horizon distances
that we should disturb by some mechanism to avoid similar
evolution of 8 boxes. If we do not do anything and continue
the evolution, the result will not be different from evolution
of a single box where boundary effects become important
at some time of order L.

There are several ways that one can think of to disturb
the periodicity. The most promising approach that we have
found, that does the least violence to the network is the
following. Right after the expansion we change the inter-
commutation probability to p � 0:5 for some fraction of
the elapsed time and then change intercommutation proba-
bility back to p � 1. The time during which we force the
intercommutation probability to be a half should be at least
the interstring distance in order to introduce enough en-
tropy into the system. The hope is that after p � 1 is
switched back on, the system will quickly return to the
properties appropriate to p � 1

By the above described procedure, the expansion takes
place roughly when the total string length in long strings
has decreased by 8. The average time of expansions is the
same regardless of the initial box size L, so if we choose
L> t1 the first expansion would take place before the
boundary effects become important. However, the effective
-3
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box size grows in steps given by a power law t2=3, and
therefore, regardless of initial L, the effective box size
would eventually become smaller than current time. In
order to be able to run the simulation longer we have to
be able to expand the box sooner. In fact, if we could have
expanded the box when the total length in long strings has
decreased by 4, the effective box size would grow linearly
with time. This can be achieved if we also modify the string
at the time of expansion by removing half of the points of
long strings to increase the average size of the segments by
two.

Each string consists of about the same number of left-
and right-moving kinks, and our job is to replace it with
half as many points that represent a smoothed version of
the original string. One possibility is to remove three out of
every four kinks (both left and right moving) and connect
the remaining points with straight segments. Then each of
the remaining points is decomposed into two kinks, one
left and one right moving. At this point we still have a
freedom to give new segments any velocities we like in the
direction orthogonal to the tangent vector of the string. To
set each new segments with new velocities we find an
average velocity of old four segments and project it to
the transverse plane of the new segment. This algorithm
shortens the string length since we replace four consecutive
segments with a single straight segment. Although the
interstring distance defined as a 1=

����
�
p

becomes larger after
smoothing, the real interstring distance, that describes the
average distance between nearby long strings, does not
change.

The expansion of the box technique with smoothing can
be carried on over and over again until we run into another
problem of periodic boundary conditions, but the effective
box size would be somewhat larger. The new problem has
to do with the fact that overall linkage of the initial box is
zero. However, we would like to think of our box as a small
part of an infinite space. This means that the overall linkage
of the box should be some random number with distribu-
tion peaked around zero, but not identically zero. On the
other hand, the zero linkage of the box results in very odd
configurations of the network at late times: for any long
string with linkage in, say, the positive x direction, there
must be another string close by linked in the negative x
direction. This effect leads to overproduction of small
loops, because the configuration is not stable and long
strings would tend to unlink themselves. It prevents us
from expanding the box indefinitely.

III. SCALING PROPERTIES

We will primarily be concerned with the amplitude of
small wiggles on infinite strings. To have a time-
independent description of these wiggles, we will consider
wiggles in the functions a and b. With a very long loop of
string, we can define a Fourier transform of the tangent
vector,
063514
A �k� �
1��������
2�l
p

Z l

0
d�a0���e�ik� (7)

where l is the loop length, and k � kn � 2�n=l for n an
integer. We will work in the limit where l! 1, so that k
becomes a continuous variable, but because our functions
do not fall off at large �, we will have to retain the
parameter l.

There will be some level of correlation between different
modes. For example, since modes of similar size can
collectively form a loop we would expect a large mode
which had survived on a long string to be accompanied by
smaller than average modes of similar wave number.
Nevertheless, we can get some idea of the string shape
by ignoring such correlations and taking

hA�k� �A��k0�i �
�
c�k� k � k0

0 k � k0;
(8)

where the averaging is over realizations of the string net-
work. Because of the factor 1=

��
l
p

in Eq. (7), c�k� does not
depend on l,

c�k� �
1

2�

Z l

0
d�eik�C���; (9)

where C��� is the correlation function

C��� � ha0�0�a0���i: (10)

The values A�k� for different k have no correlation. In the
limit l! 1, these different points become arbitrary close,
so A�k� is everywhere discontinuous. However, c�k� is a
continuous function, and c��k� � c�k� since C��� is real.

The inverse transformation to (7) is

a 0��� �

�������
2�
l

s X1
n��1

eikn�A�kn� (11)

From Eqs. (6) and (8),

1 � ha0���2i �
2�
l

X1
n��1

c�kn� 	
Z 1
�1

dkc�k�: (12)

Similar relations apply for b0���.
We can define a ‘‘spectral power density’’,

P�k� � 2kc�k� (13)

so that Z 1
0
P�k�d lnk � 1: (14)

The quantity P�k� is the fractional contribution to the
energy density of the string from modes in a logarithmic
interval around k.

For Vachaspati-Vilenkin initial conditions, it has been
shown that properties of long strings are similar to prop-
erties of a random walk [16]. Computing the power spec-
trum for a random walk of step size h gives
-4
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FIG. 2. The network of long strings at time 100 of a simulation
run in a box of size 100 in units of initial correlation length.
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P�k� �
4

�kh
sin2�kh=2�

!

�
kh=2 kh
 1
2=��kh� on average kh
 1:

(15)

We create our initial conditions with straight segments of
length 1 and piecewise linear approximations to curved
segments of length �=4. However, we have some correla-
tion between successive segments, so the effective corre-
lation length of the random walk in the initial conditions is
h 	 1:62 as shown in Fig. 1. We do not attempt here to fit
the small-scale power spectrum, which depends on the
detailed choice of the piecewise linear string.

How should the structures on a string evolve at late
times? If there is a scaling regime, and if a certain fraction
of the power is between wave numbers k and k0 at time t,
then the same fraction of the power will be found between
wave numbers k=� and k0=� at time �t. This implies that
P�k� is a function of kt alone.

Any function P�kt�would give scaling, but we can make
some guesses about the shape of this function. First of all,
on scales larger than horizon (i.e., kt� 1), we have a
random walk, so P�kt� / kt. The function P�k� outside
the horizon is increasing with time, but that is just a result
of the smoothing of the string on smaller scales and our
definition of the power.

Inside the horizon, we expect loop production to smooth
the string. If there are large excursions in a and b at any
scale, we expect them eventually to overlap with each other
in such a way as to intercommute and produce a loop. The
loop will then be removed from the string and the power at
that scale will decrease because it has gone into the loop.
The typical angle that such excursions make with the
general direction of the string is given by an integral of
P�k� over a range of wave numbers describing the size of
10
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FIG. 1. Initial power spectrum. The spectrum at large scales is
well fit by the random walk spectrum with step size h � 1:62.
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the wiggle. We thus expect that this process will reduce
P�k� below some critical value independent of k, at which
the wiggles are large enough to produce loops.

If that were the only smoothing process, we would
expect a constant spectrum P�kt�. But even a very small-
amplitude structure can be smoothed by other processes,
such as loop emission at cusps. If the large-scale structure
would produce a cusp, then small wiggles can produce
instead a self-intersection that emits a loop. The process
is similar to the emission of vortons at cusps [20]. If a
region of string has particularly large wiggles, it is more
likely to be emitted into a loop by this process, so there will
be gradual smoothing even on scales that are already quite
smooth. Thus we might expect some decline below the flat
spectrum.

In Fig. 2, we show a picture of the network of long
strings at the end of a run without expansion of the box
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FIG. 3. Evolution of the power spectrum from the initial con-
ditions in steps of 10 to t � 100 in a box of size 100.
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FIG. 4. Final power spectrum for rejoin cutoff constant � �
0:125 (dashed line), 0.25 (solid line), and 0.5 (dotted line).
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FIG. 6. Evolution of the power spectrum vs k at late times with
expansion of the box technique.
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technique, and in Fig. 3, we see the power spectrum at
different times. The production of small loops constantly
reduces the power on the scale of the initial correlation
length.

In Fig. 4, we compare the power spectra at t � 100 for
various values of the cutoff � which controls how small a
loop is allowed to rejoin the network. We see that the
choice of this cutoff has little effect on the results. In
fact, even allowing all rejoining has a fairly minor effect.

In Fig. 5, we see a picture of the network of long strings
at time 960, after 4 doublings of the box size, and in Fig. 6,
we plot the evolution of the power spectrum. We also show
the evolution of power spectrum vs kt in Fig. 7, to dem-
onstrate that all spectral lines cluster along some universal
power spectrum. This demonstrates that the power spec-
trum at late times is a function of kt alone, just like we
would expect for a scaling network. The slowly declining
part of the spectrum has a small power law dependence,
 0
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FIG. 5. Part of the network of long strings at time 960 after 4
doublings of the box size.
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which is presumably a result of processes such as loop
emission near cusps. The best-fit power law is

P�kt� � 0:25�kt��0:18; (16)

which is only a small correction to the flat spectrum.
We cannot see this power law extend to arbitrarily large

kt, since we are smoothing the string at small scales as part
of the expansion procedure. But we conjecture that without
this smoothing we would find the form shown in Fig. 7 with
the power law decline eventually extending to arbitrarily
large kt. In that case, at late times the power spectrum will
fall off smoothly to very low levels, rather then coming to a
sudden end at some scale lmin. Because the exponent in
Eq. (16) is negative there will be no small-scale divergence
in the integral in Eq. (14).
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FIG. 7. Evolution of the power spectrum vs kt at late times
with expansion of the box technique.
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FIG. 9. Average distance between long strings d�t� computed
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IV. LENGTH SCALES

From the discussion above we expect structures on each
string to scale, and we also expect that the properties of the
network as a whole should exhibit scaling. Thus any char-
acteristic length must be proportional to the time t.

We will consider two such lengths. The first is the
average distance between strings, which we define in a
simple fashion [21]

d�t� �
���������
1=�

q
: (17)

where � is the length of infinite strings per unit volume. In
the case of our simulation box of size L,

d�t� �
�����������������
L3=L�t�

q
; (18)

where L�t� is the total string length of long strings. To
compute d�t�, we have to specify which strings are ‘‘long,’’
but fortunately the result is insensitive to the exact defini-
tion. The result for length cutoff 0:25t is shown in Fig. 8.
The distance is a linear function of t, but the t-intercept is
not at t � 0. Instead the best-fit line is

d�t� � 0:096�t� 8:2�: (19)

Thus it appears that, at late times, the typical string dis-
tance is only about 1=10 of the elapsed time since the start
of the simulation (here called t � 0). Since our initial
conditions had an interstring distance of about 1, they
correspond to an initial setting of the natural time parame-
ter of about 10.

In Fig. 9, we show the interstring distance computed for
various values of the threshold used to define long strings.
We see that changing this parameter has little effect on the
distance computation.
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FIG. 8. Interstring distance d�t� at various times (points). The
line is d�t� � 0:096�t� 8:2�.

063514
With expansion of the box we can run for much longer.
Figure 10 shows the interstring distance out to time 1000.
The evolution remains linear, but there is a jump each time
the box is expanded.

The second scale is a correlation length ��t�, such that
the tangent vectors to the string at two points separated by
distance ��t� still have significant correlation. To minimize
the dependence of this measure on structure at very small
scales, we proceed as follows. Let r��; l� be the integral of
the tangent vector a0 between � and �� l, or equivalently
the total displacement in a between those points,

r ��; l� � a��� � a��� l� (20)

One can use b in precisely the same way. A measure of the
correlation at separation l is given by the dot product
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FIG. 10. Interstring distance d�t� with expansion of the box.
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FIG. 12. Correlation length ��t� with expansion of the box
technique. The best-fit straight line is ��t� � 0:34t.
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between successive segments,

C�l� � hr̂��; l� � r̂��� l; l�i (21)

where r̂ � r=jrj. The average physical separation between
points on scales l is given by

r�l� � hjr��; l�ji: (22)

We define the correlation length ��t� to be r�l� at the scale
where C�l� � 0:2. The choice of the relatively small value
0.2 is motivated by attempting to reduce the contribution of
small scales as much as possible while still having a
threshold that one can clearly distinguish from no
correlation.

In Fig. 11 we show the linear growth of ��t�. The best-fit
straight line is

��t� � 0:41t: (23)

The same quantity is plotted in Fig. 12 with box expansion.
A different correlation length scale was defined by

Austin, Copeland, and Kibble [21], who used

�� �
Z 1

0
d�C��� (24)

The scale behaves similarly to ��t� in our simulation,
except that there are significant jumps at each expansion
because smoothing eliminates the small-scale structure.

One way to interpret this situation is to take the part of
the run before the final expansion as preparation of initial
conditions for the part that comes afterward. Our initial
configuration was not very close to the configuration of the
scaling network because there is too much structure at the
initial correlation length. After the last expansion, if our
choice of the initial condition matches the one of the
scaling network, we would get into the scaling regime
fast enough before running into the problem of finite box
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FIG. 11. Correlation length ��t�. The evolution is very nearly
linear with ��t� � 0:41t.
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size. With this interpretation we would not have to worry
too much about jumps in d�t� (or in ��t�, although the
definition above mostly eliminates those).

V. DISCUSSION

Given our results for flat space, what can we say about
the situation in an expanding universe? We might hope that
our results could be taken over into an expanding space-
time with our spatial and temporal coordinates becoming
conformal distances and comoving time, but there is po-
tentially an important difference because the expansion of
the universe can damp the oscillating wiggles.

A simple model [13] would be to imagine that inter-
commutations act at the horizon scale to produce a spec-
trum in which P depends only on kt as we found above. A
mode thus enters the horizon with P�kt� � P when k�
1=t, where t is the conformal time. Assuming that the mode
is not affected by larger wavelength modes that are being
damped as in [22], its comoving k is unchanged. Comoving
mode amplitudes, however, decrease with the increase of
the scale factor, so we find the amplitude goes as

ak
a0
�

�
tk
t0

�
�
�

1

�kt0��
(25)

where tk is the time where the mode entered the horizon, ak
is the scale factor at that time, t0 and a0 are the present time
and scale factor, and the exponent � gives the dependence
of scale factor on time, a�t� � t� with � � 1 in the
radiation-dominated universe and � � 2 in the matter-
dominated universe. The amplitude appears squared in
P�k�, so in this model we would find P�k� � k�2 for
radiation dominated and k�4 for matter dominated.

This model is overly simplistic, and in reality the inter-
actions between intercommutations and expansion are
more complex. Nevertheless we expect that expansion
-8



COSMIC STRING SCALING IN FLAT SPACE PHYSICAL REVIEW D 72, 063514 (2005)
can only make the string smoother than in the flat-space
case, so there will be a scaling solution in the expanding
universe, even without gravitational damping. We expect
the spectrum to have a power law form with exponent
between the values above and the flat-space result given
by Eq. (16).

In upcoming publications we will discuss the questions
of loop production and fragmentation, the average velocity
and effective mass density of long strings, and the evolu-
063514
tion of strings with different intercommutation probabil-
ities p < 1.

ACKNOWLEDGMENTS

We are grateful to Noah Graham for helpful discussions
and to Jordan Ecker for help with part of the computational
system. This work was supported in part by the National
Science Foundation.
[1] T. W. B. Kibble, J. Phys. A 9, 1387 (1976).
[2] S. Sarangi and S. H. Tye, Phys. Lett. B 536, 185 (2002); N.

Jones, H. Stoica, and S. H. Tye, J. High Energy Phys. 01
(2002) 036.

[3] E. J. Copeland, R. C. Myers, and J. Polchinski, J. High
Energy Phys. 06 (2004) 013.

[4] G. Dvali and A. Vilenkin, J. Cosmol. Astropart. Phys. 03
(2004) 010.

[5] A. Vilenkin and E. P. S. Shellard, Cosmic Strings and
Other Topological Defects (Cambridge University Press,
Cambridge, England, 2000).

[6] M. B. Hindmarsh and T. W. B. Kibble, Rep. Prog. Phys.
58, 477 (1995).

[7] D. P. Bennett and F. R. Bouchet, Phys. Rev. D 41, 2408
(1990)

[8] B. Allen and E. P. S. Shellard, Phys. Rev. Lett. 64, 119
(1990).

[9] A. G. Smith and A. Vilenkin, Phys. Rev. D 36, 990 (1987).
[10] M. Sakellariadou and A. Vilenkin , Phys. Rev. D 30, 2036

(1990).
[11] V. Graham, M. Hindmarsh, and M. Sakellariadou, Phys.
Rev. D 56, 637 (1997).

[12] K. D. Olum and X. Siemens, Nucl. Phys. B611, 125
(2001); B645, 367 (2002).

[13] K. D. Olum, X. Siemens, and A. Vilenkin, Phys. Rev. D
66, 043501 (2002).

[14] R. J. Scherrer and W. H. Press Phys. Rev. D 39, 371 (1989)
[15] P. Casper and B. Allen Phys. Rev. D 52, 4337 (1995).
[16] T. Vachaspati and A. Vilenkin, Phys. Rev. D 30, 2036

(1984).
[17] T. W. B. Kibble and N. Turok, Phys. Lett. 116B, 141

(1982).
[18] W. Pugh, Commun. ACM, 33(6), 668 1990).
[19] R. Brown, Commun. ACM 31(10), 1220 (1988).
[20] K. Olum, J. J. Blanco-Pillado, and X. Siemens, Nucl.

Phys. B599, 446 (2001).
[21] D. Austin, E. J. Copeland, and T. W. B. Kibble Phys. Rev.

D 48, 5594 (1993)
[22] C. Stephan-Otto, K. D. Olum, and X. Siemens, J. Cosmol.

Astropart. Phys. 05 (2004) 003.
-9


