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Controlling chaos through compactification in cosmological models with a collapsing phase

Daniel H. Wesley,1,* Paul J. Steinhardt,1 and Neil Turok2

1Joseph Henry Laboratories, Princeton University, Princeton New Jersey, 08544, USA
2DAMTP, CMS, Wilberforce Road, Cambridge, CB3 0WA, United Kingdom

(Received 28 June 2005; published 29 September 2005)
*Electronic

1550-7998=20
We consider the effect of compactification of extra dimensions on the onset of classical chaotic
mixmaster behavior during cosmic contraction. Assuming a universe that is well-approximated as a four-
dimensional Friedmann–Robertson–Walker model (with negligible Kaluza–Klein excitations) when the
contraction phase begins, we identify compactifications that allow a smooth contraction and delay the
onset of chaos until arbitrarily close to the big crunch. These compactifications are defined by the de Rham
cohomology (Betti numbers) and Killing vectors of the compactification manifold. We find compactifi-
cations that control chaos in vacuum Einstein gravity, as well as in string theories with N � 1
supersymmetry and M-theory. In models where chaos is controlled in this way, the universe can remain
homogeneous and flat until it enters the quantum gravity regime. At this point, the classical equations
leading to chaotic behavior can no longer be trusted, and quantum effects may allow a smooth approach to
the big crunch and transition into a subsequent expanding phase. Our results may be useful for
constructing cosmological models with contracting phases, such as the ekpyrotic/cyclic and pre-big
bang models.
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I. INTRODUCTION

The behavior of spacetime near a big crunch singularity
has been a topic of research for many decades. The classic
studies of Belinskii, Khalatnikov, and Lifshitz (BKL) [1–
3] and others [4–12] have shown that the contraction to the
crunch can proceed either smoothly or chaotically. Chaos
arises when the universe is unstable to small inhomogene-
ities and anisotropies in curvature or matter fields. These
‘‘dangerous’’ perturbations grow and eventually dominate
the dynamics, driving the universe to an anisotropic state,
expanding along some axes and contracting along others.
The axes and their rates of contraction jump to new values
when new curvature or matter terms grow to dominate. The
jumps generally repeat an infinite number of times before
the big crunch itself. The chaotic, oscillatory evolution to
the big crunch is often known as ‘‘mixmaster’’ behavior or
‘‘BKL oscillations.’’

Models that generalize four-dimensional Einstein grav-
ity have been classified by whether they necessarily exhibit
chaotic behavior near a big crunch. This classification is
established assuming ‘‘generic’’ initial conditions, in
which there is a finite, but possibly small, energy density
in all fields present in the model. Additionally, one assumes
that the classical Einstein equations remain valid up to the
big crunch itself. Under these assumptions, it has been
shown that vacuum Einstein gravity in spacetime dimen-
sion less than eleven, as well as all uncompactified ten-
dimensional string theories and M-theory, will inevitably
suffer chaos as the big crunch is approached [4,5,13]. So
too will Einstein gravity containing only perfect fluids with
equation of state w< 1, where w � p=� is the ratio of the
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fluid’s pressure to its energy density. On the other hand,
there are cases where chaos is not inevitable. Among these
are Einstein gravity with a free massless scalar field, lead-
ing to w � 1, and a universe containing a perfect fluid with
equation of state w � 1 [14].

The presence of chaos during gravitational collapse is a
potential problem for cosmological models with a big
crunch/big bang transition, such as the ekpyrotic/cyclic
and pre-big bang scenarios [15–18]. In these models, the
universe undergoes collapse to a big crunch, followed by a
transition to the conventional big bang and subsequent
expansion. It is assumed that, during the collapsing phase,
the universe is nearly homogeneous and isotropic, with a
scale invariant perturbation spectrum. BKL oscillations
arising during the collapsing phase would destroy homo-
geneity and isotropy, producing a chaotic spacetime with
structure down to arbitrarily small scales. In this situation,
a big crunch/big bang transition is unlikely to be describ-
able in a deterministic manner, and it is questionable
whether a homogeneous and isotropic universe with the
long range correlations required by observations could
emerge [19]. Thus, avoiding chaos is an essential feature
of cosmological models with a collapsing phase.

We take the point of view that avoiding chaos all the way
to the big crunch is too restrictive a condition for viable
cosmological models. One expects classical general rela-
tivity to break down at a small but finite time before the big
crunch is reached, perhaps of order a Planck time tPL or
string time tS. After this point, quantum effects become
significant and we can no longer trust the classical physics
that predicts a chaotic approach to the big crunch. Provided
the universe evolves smoothly and nonchaotically until tPL,
it is conceivable that quantum gravity effects allow the
universe to pass smoothly through the big crunch and into a
-1 © 2005 The American Physical Society
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subsequent expanding phase. For example, recent work
[20] has revealed that the degrees of freedom present in
string and M-theory (extended objects such as strings and
branes) can evolve smoothly through certain types of big
crunch singularities. This suggests that chaotic behavior is
absent in the quantum gravity regime, and furthermore a
nonsingular transition from a big crunch to a big bang is
possible.

Our focus in the present work is on the classical evolu-
tion of the universe before tPL, and whether it is possible
for it to evolve smoothly so long as we can trust the
classical equations of motion. The evolution of the uni-
verse through the subsequent quantum regime, and the
transition to an expanding phase, are important though
unsettled issues. In this work we have nothing to add on
these topics. However, if chaos can be controlled during
the classical evolution of the universe, there remains the
hope that the subsequent quantum evolution will preserve
the long range correlations, isotropy, and homogeneity so
essential for cosmology.

In this paper, we consider models that are well described
by a classical, four-dimensional effective field theory long
before the big crunch. The four-dimensional metric is that
of a nearly homogeneous and isotropic Friedmann–
Robertson–Walker (FRW) universe, with small perturba-
tions to the metric, matter and Kaluza–Klein fields, and
with the Hubble radius H�1 much larger than the compac-
tification length scale Rc. We study the evolution of chaotic
behavior as the universe contracts, including the effects of
all massive Kaluza–Klein modes, and thus all of the de-
grees of freedom of the higher-dimensional theory. We
show that the emergence of chaos can be controlled pro-
vided the compactification manifold M satisfies certain
topological conditions. For these topologies, the dangerous
perturbations that formerly led to chaos acquire masses of
order the inverse of the compactification length scale, m�
1=Rc. The presence of mass terms slows the growth of
energy density in these fields, and prevents them from
becoming cosmologically relevant so long as the Hubble
parameter is larger than their mass. When the time until the
big crunch becomes less than Rc, or equivalently m<H,
the suppression ceases to operate, and the energy density in
the dangerous modes can grow at their usual unsuppressed
rate. However, since the energy density in these heavy
modes has been greatly suppressed relative to light modes
up to this point, they cannot dominate the energy density
until the universe has contracted further by an exponential
factor. Typically, the massive modes do not dominate
before we enter the quantum gravity regime at roughly
tPL, at which point the classical evolution equations cannot
be trusted. In these circumstances, we say that chaos has
been ‘‘controlled.’’

In this paper, we focus on a classical effect which
reduces the importance of chaos in compactified models.
This is especially relevant for models, such as string- or
063513
M-theory, in which the compactification of extra dimen-
sions is an essential element. An excellent example is given
by eleven-dimensional supergravity, whose bosonic sector
contains a four-form field strength in addition to the metric.
Without the four-form, pure eleven-dimensional gravity is
not chaotic. For some choices of the topology of the
compactification manifold, it is possible to remove the
light modes of the four-form field. For these topologies,
the previously chaotic eleven-dimensional supergravity
theory will behave like the nonchaotic eleven-dimensional
pure gravity theory.

More generally, when one studies a fully uncompactified
model, one finds that chaos arises from dangerous modes
that are nearly spatially homogeneous along all dimen-
sions. The energy density in these modes scales rapidly
enough to dominate the universe and cause chaos. As we
detail below, for some choices of the compactification
manifold, the classical equations of motion forbid spatially
homogeneous modes along the compact directions, for
topological reasons. In the four-dimensional effective the-
ory, this is reflected in the appearance of large mass terms
for the associated degrees of freedom. As we will show, as
long as the four-dimensional Hubble parameter is larger
than their mass, the energy density in these massive modes
grows far more slowly than the energy density in the light
modes which dominate the dynamics. As the Hubble radius
falls below the compactification length scale, the energy in
the massive modes begins to grow more quickly, but due to
its relative suppression, it remains dynamically irrelevant
all the way to the Planck time. In the present work, we
focus exclusively on the classical evolution of fields and
find that it suffices to control chaos. It is possible that
quantization, by imposing a further constraint on the initial
perturbations, would further suppress chaos. The quantum
production of heavy Kaluza–Klein modes is, naı̈vely at
least, completely negligible all the way to the Planck time.

In this work, we consider both pure Einstein gravity and
models with additional matter fields. We focus on p-form
matter fields, with exponential couplings to a scalar ‘‘dila-
ton’’ field �, defined by the action,

S � �
1

�p� 1�!

Z
e��F2

p�1

��������
�G
p

dDx; Fp�1 � dAp;

(1)

with � a constant [21]. Supergravity and string models
commonly include p-form fields with couplings of this
type. In the following, we will always use ‘‘p’’ to denote
the number of indices on the gauge potential Ap. While
many models that generalize four-dimensional Einstein
gravity contain fermionic fields, throughout this work we
will focus exclusively on the bosonic sector. We will also
neglect more exotic terms in the p-form action such as
Chapline–Manton couplings and Chern–Simons terms,
which at any rate we do not expect to be relevant for chaos
[7]. Another important type of matter, the perfect fluid, has
-2
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been discussed elsewhere [14], and is not affected by the
compactification of extra dimensions.

In Sec. II, we review some results regarding the emer-
gence of chaos during gravitational collapse that are re-
quired in later sections. This section is primarily concerned
with distinguishing between chaotic and nonchaotic mod-
els. Most importantly, we define the gravitational, electric
and magnetic stability conditions that must be satisfied if a
theory is to avoid chaotic behavior. In Sec. III, we intro-
duce some key aspects of models with ‘‘controlled chaos,’’
that are the subject of the current work. We establish that
giving masses to dangerous modes prevents them from
causing chaos. We then describe how the masses of these
fields are determined by the compactification manifold.
With these results established, we present our central
new results in Sec. IV. These are the ‘‘selection rules’’
that determine a subset of stability conditions that must be
satisfied in order to control chaos. These rules express the
precise correspondence between the properties of the com-
pactification manifold, and the chaotic behavior of the
lower-dimensional theory after compactification. In
Sec. V, we give examples with specific compactification
manifolds that are able to control chaos in vacuum Einstein
gravity, string theories with N � 1 supersymmetry, and
M-theory. We summarize our conclusions in Sec. VI, and
suggest some areas for further research.
II. REVIEW OF GRAVITATIONAL AND p-FORM
CHAOS

The essential principle underlying the emergence of
chaos is that, near a big crunch, solutions to the Einstein
equations are strongly unstable to perturbations. This phe-
nomenon may be studied using a suitably general metric,
such as the generalized Kasner metric,

ds2 � �dt2 �
XD�1

j�1

t2pj��j�2; (2)

where D is the dimension of spacetime, the �j �
�j��x�dx� are independent of time, and the big crunch
occurs at t � 0. The Kasner exponents pj may be spatially
varying, but upon substituting (2) into the Einstein equa-
tions, one finds the pj are constrained by the Kasner
conditions

XD�1

j�1

pj � 1;
XD�1

j�1

p2
j � 1: (3)

The first condition defines the Kasner plane, the second
defines the Kasner sphere, and we may term their inter-
section the Kasner circle. For these anisotropic metrics it
will be convenient to define the analogue of the Hubble
parameter in the conventional, isotropic FRW solution.
Using (2), the metric on equal time hypersurfaces is given
by h�� �

P
jt

2pj�j��j�, allowing us to define
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H �
d
dt

log
���
h
p
; where h � deth��: (4)

The first Kasner condition implies that H � t�1 for any
choice of the Kasner exponents. We will find this Hubble
parameter a useful guide to the typical dynamical time
scale of the gravitational field.

The Kasner metric (2) has been widely used as a tool to
understand the behavior of generic spacetimes near a big
crunch singularity [1–9,12]. It is an approximation, to
leading order in t, of an exact solution of the Einstein
equations, in which we have neglected the influence of
spatial derivatives and curvature terms. To check whether
this approximation is consistent, we substitute the Kasner
metric into the Einstein equations, and check that terms
corresponding to spatial derivatives and curvature appear
at subleading order in t. This corresponds to spatial deriva-
tives and curvature terms becoming irrelevant as the big
crunch is approached. It has been shown rigorously [7] and
numerically [12] that, when these terms are subleading,
solutions to Einstein’s equations asymptotically approach
Kasner form as t! 0.

A useful feature of generalized Kasner universes is that
the conditions determining whether the curvature terms are
irrelevant can be expressed entirely in terms of the Kasner
exponents. The Einstein tensor for the Kasner metric (2)
may be split into purely time derivative terms, and terms
arising from the curvature of the spatial slices. Details of
this decomposition are given in [1,2]. One finds that the
time derivative terms all scale as t�2, while the terms
arising from spatial curvature scale as t�2�pi�pj�pk�, for
all triplets i; j; k. Dangerous components of the curvature
are those whose corresponding terms in the Einstein equa-
tions grow more rapidly than t�2, as t! 0, thus invalid-
ating the Kasner approximation. These dangerous
curvature terms are absent provided that the gravitational
stability conditions

pi � pj � pk < 1; all triples i; j; k; (5)

are satisfied. If the stability conditions are satisfied, then
the evolution is guaranteed to be smooth and Kasner-like
all the way to the big crunch. These conditions turn out to
be very restrictive; in the absence of matter, it is only
possible to simultaneously satisfy (3) and (5) when the
spacetime dimension is greater than ten [4].

When the gravitational stability conditions are not sat-
isfied, then spacetime will exhibit chaotic behavior.
Violation of the gravitational stability conditions (5) means
that the generalized Kasner solution (2) is invalid, and so
we must find a different description. One useful picture
recasts the evolution of the metric in terms of geodesic
motion of a point mass, undergoing reflections from a set
of sharp walls [8]. The free flight of the point between wall
collisions is described by the Kasner metric, where the
Kasner exponents give the momentum components of the
moving point. Collisions with walls correspond to spatial
-3
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curvature terms temporarily dominating the Einstein equa-
tions, and result in a sudden change in the Kasner expo-
nents. The motion of the point in the chamber defined by
these walls is chaotic, and so the dynamics of spacetime is
as well.

It is useful to distinguish more precisely between the
various possibilities with respect to the stability conditions
(5). A model is chaotic if the stability conditions cannot be
satisfied for any choice of Kasner exponents satisfying the
Kasner conditions. We will also term models chaotic when
the stability conditions are only satisfied at isolated points
on the Kasner circle. For example, it is possible to almost
satisfy the stability conditions in any spacetime dimension
with the so called ‘‘Milne’’ solutions, in which a single
Kasner exponent is unity and the rest are zero. This leads to
marginally dangerous curvature components that scale ex-
actly as t�2. Thus, one might argue that if these curvature
components are not dominant initially, they will remain
subdominant all the way to the crunch, and chaos will not
arise. However, since this occurs only for isolated points on
the Kasner circle, any small perturbation of the Kasner
exponents away from the Milne solution results in a vio-
lation of the stability conditions and the emergence of
chaos. These solutions are thus not practically useful
from the perspective of avoiding chaos in cosmological
models, since they do not admit the small inhomogeneities
and anisotropies that must be present in any physically
realistic scenario. Therefore, we consider a model non-
chaotic only when there exists an open region of the
Kasner circle in which all of the stability conditions are
satisfied.

The presence of matter can either enhance or suppress
chaos. Three important examples are a free massless scalar
field, p-form fields, and perfect fluids. The first, a scalar
field, suppresses chaos by modifying the Kasner condi-
tions. A homogeneous, massless scalar field � coupled to
the Kasner metric will evolve as

��t� � �0 � p� logt; (6)

with the constants �0 and p� determined by the initial
conditions. Including the stress energy from � in the
Einstein equations results in the new Kasner conditions

XD�1

j�1

pj � 1;
XD�1

j�1

p2
j � 1� p2

�: (7)

While the scalar field ‘‘Kasner exponent’’ p� enters the
Kasner conditions, it does not enter the gravitational stabil-
ity conditions (5). It is now possible to find pj that satisfy
these stability conditions in any spacetime dimension D.
For example, the isotropic choice

p� �

�������������
D� 2

D� 1

s
; pj �

1

D� 1
; (8)

satisfies all of the stability conditions. Moreover, there is a
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finite, open neighborhood on the Kasner circle surrounding
the isotropic solution where the stability conditions are
satisfied. Essentially, there are two key properties of the
scalar field that enable it to suppress chaos. The scalar field
has an isotropic stress energy tensor, and therefore does not
enhance any preexisting anisotropy in the Kasner metric.
Also, the scalar field energy density scales as t�2, and thus
grows sufficiently rapidly to remain relevant near the big
crunch.

The addition of p-form fields coupled to � tends to
enhance chaos. A p-form field strength with p > 1 has
an anisotropic stress energy tensor, which tends to enhance
any preexisting anisotropy in the Kasner metric. If the
p-form field dominates the energy density, then it tends
to drive the universe to anisotropic oscillations and then
chaos. A homogeneous p-form evolves simply, and its
dynamics depend on whether it has a time index (an
electric p-form) or whether all indices are spatial (a mag-
netic p-form). Using the equation of motion and the
Bianchi identity, one finds

�Fp�1�
tj1j2...jp �

e������
h
p ; �Fp�1�j1j2...jp�1

� const. (9)

Using these solutions, we may construct the stress energy
tensor for the p-form field, and compare its time depen-
dence with the t�2 leading dependence of the homogene-
ous terms in the Einstein equations. Note that, unlike the
scalar field, we do not include the gravitational backreac-
tion from the p-form fields, and merely check if it remains
subdominant if subdominant initially. One finds that the
p-form energy scales more slowly than t�2, and therefore
cannot cause chaos, when the following p-form stability
conditions are satisfied;

X
p

pj �
�p�

2
> 0 �electric�; (10a)

X
p�1

pj �
�p�

2
< 1 �magnetic�: (10b)

The electric conditions involve a sum of p distinct Kasner
exponents, corresponding to the p spatial indices of an
electric p-form field strength. The magnetic conditions
likewise involve a sum over p� 1 distinct Kasner expo-
nents. Thus, for each p- or �p� 1�-tuple of Kasner ex-
ponents, there will be a corresponding stability condition.
The inequalities (10) are often referred to individually as
the electric or magnetic stability conditions. If they are
violated, then chaos will arise.

The inclusion of a matter component with w � 1 can
suppress chaos [14]. The w � 1 fluid suppresses chaos by
growing rapidly to dominate the energy density of the
universe. Once it dominates, the power-law Kasner solu-
tion (2) is replaced by a solution of the approximate form
-4
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ds2 � �dt2 � t4=��D�1��1�w�	
XD�1

j�1

exp�cjt�w�1�=�w�1����j�2

(11)

where the cj are arbitrary constants. When w> 1, this
solution converges rapidly to isotropy as t! 0. Near the
big crunch, this solution may be thought of as a Kasner
universe with Kasner exponents

pj �
2

�D� 1��1� w�
: (12)

The gravitational stability conditions are clearly satisfied in
this case, and thus chaos does not arise. The p-form case is
somewhat more subtle, and depends on whether we realize
the w> 1 fluid by introducing a potential for the dilaton�,
or as a separate matter component that does not couple to
the p-forms. In either case, for any p-form and coupling �,
there is a corresponding wcrit�p; ��, for which chaos is
eliminated when w>wcrit.
III. MASSIVE MODES, CHAOS, AND
COMPACTIFICATION

In this section, we will distinguish a subclass of the
chaotic models, those with ‘‘controlled’’ chaos. The salient
feature of controlled chaos is that dangerous modes are
suppressed, relative to t�2, for an adjustable epoch of
cosmic history. In these models, dangerous modes acquire
a mass m, and their contribution to the total energy density
of the universe is suppressed so long as m=H > 1. These
masses arise through compactification, and are of order
R�1
c , with Rc the characteristic length scale of the com-

pactification manifold M. In a universe with Kasner met-
ric (2), H � t�1. Thus, in these models chaos cannot
emerge until t
 Rc, and it is possible to ensure that chaos
does not arise before the Planck time tPL. In Sec. III A, we
discuss how the growth of dangerous modes is suppressed
by mass terms, and estimate the suppression factor. We
give a simple argument based on a scalar field in an
isotropic universe, leaving a discussion of the general
p-form case to the appendix. Secs. III B and III C describe
the mechanism by which compactification gives the re-
quired masses to p-form and metric degrees of freedom. In
both cases, massless modes in the lower dimension can
only exist when M admits p-form or vector fields with
certain special properties. In Sec. IV, we use these results to
give the ‘‘selection rules’’ that express the correspondence
between these special properties of M and the chaotic
properties of the compactified theory.

In the following, we assume that spacetime has the form
R1;3 �M, with M a compact manifold. Indices
M;N; P . . . denote directions in the total spacetime R1;3 �
M, while �; � . . . denotes directions along R1;3 and
m; n; p . . . along M. GMN denotes the total metric, with
h�� the metric on R1;3 and fmn the metric on M. In later
063513
sections we will need to distinguish between coordinate
indices and tangent space indices on R1;3 �M. We use
A;B;C . . . for tangent space indices along the full space,
�;�::: for those along R1;3, and a; b::: for those along M.

A. Massive and massless modes

The suppression of massive modes in a collapsing uni-
verse may be illustrated using the equation of state w. This
is defined as the ratio of the pressure to energy density for a
perfect fluid

w �
p
�
�

Tjj
�T0

0

; (13)

where we assume that we are in the comoving frame where
the stress energy tensor is diagonal. As we are primarily
interested in cosmological models, it is sufficient to
consider the case where the universe is an isotropic, four-
dimensional FRW model after compactification. Con-
servation of stress energy implies that the energy density
� of a perfect fluid with equation of state w depends on the
scale factor a as

� � �0a�3�1�w�; (14)

where �0 is the energy density when a is unity. In a
contracting universe, the component with the largest w
grows most rapidly, and eventually dominates the total
energy density. A homogeneous, massive scalar field has
a perfect fluid stress energy with equation of state

w �
_�2 �m2�2

_�2 �m2�2
: (15)

From Eqs. (14) and (15) it is readily seen that the energy
density of a massive scalar field must scale more slowly
than that of a massless one. A massless scalar field will
always have w � 1, and thus its energy density � scales
with a as �� a�6. The energy density of a massive scalar
will scale with an effective w between zero and unity,
depending on the ratio m=H. When m=H� 1, far from
the big crunch, the scalar field’s dynamics is dominated by
the mass term in its potential. Using hi to denote the time
average, the virial theorem implies that h _�2i � m2h�2i,
and therefore w � 0 [22]. Thus the energy density in the
massive field scales as �� a�3, far more slowly than the
massless field. Near the crunch, when m=H
 1, the mass
term has a negligible effect on the field’s dynamics. In this
limit, _�2 � m2�2, and w approaches unity from below. In
this regime, the energy density in massive and massless
fields will scale identically with time.

Using this equation of state argument, we can estimate
the exponential suppression of the energy density in mas-
sive fields. The basic process by which dangerous modes
are suppressed, and then grow near the big crunch is
illustrated in Fig. 1. Although we have discussed only the
scalar case above, the same w � 0 scaling when m=H > 1
-5
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FIG. 1. Scaling of the energy density in dangerous modes
before and after compactification. Without a mass, a dangerous
mode scales more rapidly than t�2 and eventually dominates the
energy density of the universe, as illustrated in A. With a mass,
the dangerous mode scales much more slowly than t�2, until a
time t1 at which m � H, as seen in B. After this point, the mode
will scale as usual. The chaos is controlled when the dangerous
energy density cannot catch up to 1=t2 before the Planck regime
is reached at tPL.
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obtains for general p-form fields, as discussed in the
appendix, and so this estimate applies to those fields as
well. It is important to emphasize that, while the energy
density in massive modes is always growing, it grows more
slowly than the t�2 scaling required for the field to be
cosmologically relevant. Therefore, if we wish to estimate
the importance of a given energy component, we should
consider the ratio of the energy density in the component to
t�2. This quantity, t2��t�, may be thought of as measuring
the ratio of the energy density in a given component to the
total density, for

t2��t� �
��t�

H2 �
��t�
�tot�t�

; (16)

where we have used Planck units. Only when t2��t� is
increasing as t! 0 can a given component grow to domi-
nate the universe.

We begin by choosing a reference time t0, at the begin-
ning of the contracting phase. We consider a model where
the four-dimensional effective theory begins to contract
with a background equation of state �w, so that

a�t� � �t=t0�2=3�1� �w�; (17)
063513
where we have normalized a � 1 when t � t0. Combining
this with (14), one finds that for massive modes

t2��t� � �t2��t�	0  �t=t0�
2 �w=�1� �w�; �m=H > 1�; (18)

where �t2��t�	0 denotes t2��t� evaluated at t0. This equa-
tion is valid up until m=H� 1, when the mass terms are
becoming irrelevant. Denoting by t1 the time at whichm �
H, one finds

t1
t0
� RcH0; (19)

where we have taken m � 1=Rc. We then have

�t2��t�	1 � �t
2��t�	0  �RcH0�

2 �w=�1� �w�; �m=H� 1�:

(20)

This equation shows the suppression in the fractional en-
ergy density in massive modes during the period in which
m=H > 1. The suppression is controlled by the ratio of the
compactification length scale Rc to the Hubble horizon
LH � 1=H0 at the beginning of the contracting phase.

As we approach the big crunch, we have m=H < 1, and
the dangerous modes can grow as usual. We parametrize
this growth by an exponent 	, so that

t2��t� � �t=t1��	�t2��t�	1; �m=H < 1�: (21)

when 	 > 0, a mode will grow and eventually dominate the
energy density of the universe. One can see by comparing
(21) to our discussion in Sec. II that 	 is merely twice the
amount by which a given mode violates the stability con-
ditions. Typically, 	 will be of order one. Now we define a
time teq, at which the dangerous modes have grown suffi-
ciently so that the fractional energy density in dangerous
modes is equal to that at the beginning of the contracting
phase, or

�t2��t�	eq � �t2��t�	0: (22)

Using (20) and (21) we find

teq � t0�RcH0�
1�2 �w=	�1� �w� (23)

Finally, we define a time tdom, at which the dangerous
modes formally dominate the universe, corresponding to
t2��t� � 1. Then one finds

tdom � teq��t2��t�	0�1=	: (24)

Chaos is controlled provided that the dangerous modes do
not dominate before a Planck time from the big crunch,
corresponding to tdom < tPL.

Having established the formulas we will need for our
estimate, we may now insert reasonable values for our
variables. Let us assume the contraction phase begins
when the Hubble parameter is of order the present value
H0 (as occurs in ekpyrotic and cyclic models). Then,
1=H0 � 1061 LPL. As a first example, we assume that �w �
1 during the contraction as is characteristic of compactifi-
-6
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cations of Kasner universes. A typical value for 	 that
arises from working with the p-form spectrum of string
models and gravity is 	 � 2, although the precise value of
	 will of course depend on the specific model under
consideration. If we take Rc � 10  LPL, as an example,
then we find the suppression factor (20) at H �m to be

�RcH0�
2 �w=�1� �w� � 10�60: (25)

The dangerous modes grow to have the same fractional
energy density as they had at the beginning of the contract-
ing phase at the time

teq � 10�29tPL: (26)

Thus, the dangerous modes cannot grow to be even as
relevant as at the beginning of cosmic contraction, until
the universe is well within the quantum regime. We would
need to approach even closer to the big crunch for these
modes to dominate the universe, but at this point we no
longer expect our classical equations to be valid.

As another example, we consider a case with large
compact dimensions, where m is of order the weak scale,
10�16MPL, which corresponds to taking Rc � 1016LPL.
Now we find that the suppression when the Hubble radius
equals the compactification scale is,

�RcH0�
2 �w=�1� �w� � 10�45; (27)

and,

teq � 10�6tPL: (28)

Again, we will be well within the quantum gravity regime
before the dangerous modes can potentially dominate. If
�w� 1 during the contraction phase, as occurs in ekpyrotic
and cyclic models, the dangerous modes are suppressed by
a much greater factor than in these examples, as is evident
from the expressions above.

As a final relevant issue, note that we have taken the
mass m of the dangerous modes to be constant in time.
Generally we expect that the massm of a given field will be
time dependent. This occurs since the field’s mass is de-
termined by the compactification manifold M, and M
will be evolving with time during cosmic contraction.
Let us say that the mass m�t� evolves as

m�t� � m0

�
t
t0

�
b
; (29)

during the contracting phase, where for simplicity we take
�w � 1. Then, because the energy density will go like ��
m=a3, we find that

t2� � �t2�	0

�
t
t0

�
1�b

(30)

However, the time t1 at which m=H� 1 is now

t1�b1 �
tb0
m0

; (31)
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and therefore the suppression when m=H� 1 is

�t2�	1
�t2�	0

� �H0=m0� � �H0Rc;0�; (32)

where Rc;0 is the characteristic length of M when t � t0.
This is precisely the factor found in the case where m is
constant in time (20). The difference is that the time t1, at
which m=H � 1, shifts. This shift compensates for the
different growth rate of �, with the net result that the
suppression factor remains the same.

From the equations above, it is clear that there is a
potential problem if b <�1, which would lead to t2�
increasing during the contracting phase. However, our
assumption that the universe is of Kasner type excludes
this possibility. Field masses m are related to the compac-
tification length scale Rc by m� 1=Rc. In a Kasner uni-
verse, we expect that Rc � tp, with p a Kasner exponent, or
average of several Kasner exponents. However, the Kasner
conditions (3) and (7) imply that p � 1, and thus m must
vary more slowly than 1=t. This implies that b � �1, and
so the suppression operates as before.

B. The p-form spectrum

Having established that the massless modes are the only
relevant modes near the big crunch, we now describe how
these massless modes are determined in terms of the com-
pactification manifold M. The story is familiar from the
study of higher-dimensional models of particle physics
[23–25] although we discuss some special features of the
time dependent situation which must be taken into account.
A useful feature of the p-form mass spectrum is that the
existence of massless modes is determined entirely by the
topology of M, and not by its metric. This simplifies the
task of finding manifolds M that lead to controlled chaos,
since we need only specify their topological properties.

1. Time independent compactification

First, we will review the situation for the time indepen-
dent case. For clarity, we will neglect here the exponential
coupling to the dilaton field, which amounts to an overall
multiplication by e�� of the Lagrangian density. The cou-
pling is fully accounted for in the analysis given in the
appendix. The action for a p-form gauge potential Ap in
4� n dimensions is

S � �
1

�p� 1�!

Z
dAp  dAp

��������
�G
p

d4�nx; (33)

where Ap can depend on all coordinates, and has indices
along both R1;3 and M,

Ap � �Ap�x
�; xm�	�1�2...�ra1a2...ap�r : (34)

The conventional compactification analysis begins with an
expansion of the p-form Ap as
-7
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Ap �
X

r�s�p

X
i

��i�r ^ �
�i�
s (35)

using a basis of s-forms ��i�s , with indices and coordinate
dependence only along M

��i�s � ��
�i�
s �xm�	a1a2...as : (36)

The abstract index i labels the s-form under consideration,
and when M is compact it takes discrete values, infinite in
number. The ‘‘coefficients’’ in this expansion are r-forms
��i�r , that depend on the noncompact coordinates on R1;3,
and have indices along R1;3 only

��i�r � ��
�i�
r �x��	�1�2...�r: (37)

It is convenient to choose the gauge dy��i�s � 0, and select
the ��i�s to be eigenfunctions of the Hodge–de Rham
Laplacian � � ddy � dyd on M, with eigenvalues ��i�s

���i�s � ��i�s �
�i�
s : (38)

The ��i�s are normalized so thatZ
M
��i�s  �

�j�
s

�������
�f

p
dnx � 	ij: (39)

Substituting the expansion (35) into the original action (33)
results in

S � �
X
i;s

1

�r� 1�!

Z
�d��i�r  d��i�r � �

�i�
s �

�i�
r  �

�i�
r �

�
�������
�h
p

d4x; (40)

where we have rescaled the ��i�r by a constant in order to
canonically normalize the kinetic terms. This demonstrates
that a single p-form in 4� n dimensions yields many
r-forms ��i�r after compactification, whose masses m�i�r
are related to the eigenvalues ��i�s by �m�i�r �2 � ��i�s . These
are the ‘‘Kaluza–Klein’’ modes. The operator � has a
positive semidefinite spectrum on manifolds which, like
M, have a Euclidean metric. Therefore the effective
masses are all real.

The �p� s�-forms with zero effective mass are deter-
mined entirely by the topology of M, and not by its metric
structure. As discussed above, massless �p� s�-forms
arise from s-forms�s satisfying ���i�s � 0, conventionally
termed ‘‘harmonic’’ forms. Hodge’s theorem [26,27] states
that the number of harmonic s-forms is equal to the di-
mension of H s�M�, the sth de Rham cohomology class of
M. The dimension dimH s�M� is also known as the sth
Betti number of M, conventionally denoted bs�M�. This
is a topological invariant, which does not change under
smooth deformations of M and its associated metric struc-
ture. The Poincaré duality theorem [28,29] gives a simple
geometric interpretation of these cohomology classes; the
quantity dimH s�M� counts the number of s-dimensional
063513
submanifolds that can ‘‘wrap’’ M, and cannot be smoothly
contracted to zero. In this counting, two submanifolds are
considered equivalent if one can be smoothly deformed
into the other. Thus, for every inequivalent noncontractible
submanifold of M with dimension s, a p-form gives rise to
a massless �p� s�-form field after compactification.

2. Time dependent compactification

The case where the compactification manifold M
changes with time introduces new features, but in the end
does not substantially modify the conclusions reached
above. The main difference is that it is no longer possible
to assume that the eigenbasis of forms ��i�s defined by (38)
depends only on the compact coordinates xm. In particular,
the forms will depend on time. This introduces additional
cross terms which must be taken into account. Below, we
will neglect the variation of M along directions xM other
than time. We denote by djM the exterior derivative tan-
gent to the manifold M. Thus,

d��j�s � djM��i�s � dt ^ _��i�s : (41)

We may now use our freedom to choose the basis modes
��i�s , and define the modes ��i�s �t� with ��i�s �t�> 0 to be the
instantaneous eigenforms of the Hodge–de Rham opera-
tor, restricted to act on M only,

�jM��i�s �t� � ��i�s �t��
�i�
s �t�: (42)

We find it convenient to relax the requirement that the zero
modes ��i�s �t� with ��i�s � 0 be eigenforms of the Hodge–
de Rham Laplacian. Instead, we will merely require that
they be representatives of the de Rham cohomology of M.
Inspection of the reduced action shows that this condition
is sufficient to guarantee that the zero modes still result in
massless form fields. Furthermore, we adopt the normal-
ization conventionZ

M
��i�s  �

�j�
s

�������
�f

p
dnx � 	ij

Z �������
�f

p
dnx: (43)

This differs from the usual normalization convention (39)
by only a multiplicative constant in the static case. It has
the advantage of not introducing any spurious time depen-
dence of the ��i�s from the changing volume of M.
Maintaining this normalization condition requiresZ

M

_��i�s  �
�j�
s

�������
�f

p
dnx � 0: (44)

With these conventions and definitions, we find that the
p-form action (33) splits into two parts, S1 and S2, with

S1 � �
X
s;i

1

�r� 1�!

Z
d��i�r  d��i�r

� ��i�s �t��
�i�
r  �

�i�
r

��������
�G
p

d4�nx (45)

and
-8
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S2 � �
X
s;i

2

�r� 1�!

Z
���i�r ^ _��i�s �  � _��i�r ^ �

�i�
s �

� ���i�r  �
�i�
r �� _��i�s  _��i�s �

��������
�G
p

d4�nx; (46)

where terms that are identically zero due to mismatched
indices are not included. Again, we have rescaled the ��i�r
to obtain canonically normalized kinetic terms. The terms
in S2 threaten to substantially modify the action in the time
dependent case. However, these terms vanish or are negli-
gible. The first term is zero due to our normalization
convention (43) and its consequence (44). The second
term is a contribution to the effective mass of ��i�r . For
the ��i�s � 0 modes, the representatives ��i�s of the de Rham
cohomology are time-independent, and so the _�2 terms
vanish. When ��i�s > 0, the additional contribution to the
effective mass will be positive, but since these modes are
already massive it will not change the qualitative features
of their behavior. Thus, time dependent compactifications
do not substantially modify the p-form spectrum; massless
modes are still given by the de Rham cohomology of M.

C. The gravitational spectrum

A key property of Kaluza–Klein reduction is that de-
grees of freedom in the full metric GMN appear in lower
dimensions as metric, vector, and scalar degrees of free-
dom. As in the p-form compactification discussed above,
the masses of these fields depend on the properties of the
compactification manifold M. In contrast to the p-form
case, the masses are not determined by the cohomology of
M, but by the existence of Killing fields on M. The
properties of Kaluza–Klein reduction, along with our dis-
cussion of chaos in Sec. II, provide some useful simplifi-
cations. Since some of the metric degrees of freedom in the
higher-dimensional theory appear as zero- and one-forms,
chaos arising from these degrees of freedom can be sup-
pressed if they acquire a mass, just as in the conventional
p-form case.

As an explicit example of the reduction process, and of
how chaos in higher and lower dimensions are related, we
consider below the simple case with a single extra dimen-
sion [3]. The Kaluza–Klein reduction begins with a repar-
ametrization of the metric

GMN �
e�q�g�� � e

2q�A�A� e2q�A�
e2q�A� e2q�

 !
; (47)

where we assume that A� and � are independent of the
fifth dimension. We substitute this metric into the
Einstein–Hilbert action and integrate over the fifth dimen-
sion. The coefficient q �

��������
2=3

p
is chosen so that the scalar

field � has a canonically normalized kinetic term in the
resulting action
063513
S �
Z
R�g� � �@��2 �

1

4
e
��
6
p
�F��F��

�������
�g
p

d4x; (48)

with F�� � @�A� � @�A�. This describes Einstein gravity
coupled to a scalar field �, and a vector field with
�-dependent coupling. It can be seen that all of the five-
dimensional metric degrees of freedom in (47) are repro-
duced in this four-dimensional action. Furthermore, the
vector term in the action possesses an exponential coupling
to �, of the type introduced in (1). Our starting point, the
five-dimensional pure gravity theory, is chaotic since the
gravitational stability conditions cannot be satisfied for any
choice of the Kasner exponents. After reduction, chaos also
inevitably arises since the gravitational and one-form
stability conditions cannot be satisfied simultaneously.
Thus violations of the gravitational stability conditions in
five dimensions can appear as violations of the p-form
stability conditions in four dimensions. As we will discuss
in more detail below, the preservation of chaos is not a
generic feature of Kaluza–Klein reduction in dimensions
greater than one.

The example above is limited to a single extra dimen-
sion, and neglects metric modes that depend on the fifth
coordinate. Below, we consider the general case, and cal-
culate the effective masses of all Kaluza–Klein vector
fields with an arbitrary number of extra dimensions. We
will find that these masses are zero only when M pos-
sesses Killing vectors. This calculation parallels standard
treatments of Kaluza–Klein reduction [23], but in these
treatments the fact that M may not possess isometries is
often not emphasized. For n > 1 extra dimensions, we will
generalize the decomposition (47) using the vielbein for-
malism. We begin by defining one-form fields eA �
eM

AdxM so that

ds2 � eAeB
AB; (49)

with 
AB the �4� n�-dimensional Minkowski metric. The
eM

A are chosen so that

h�� � e��e��
��; (50a)

fmn � emaenb	ab; (50b)

e�a � Kaj�xm�Aj��x��; (50c)

em
� � 0; (50d)

where 	ab is the Euclidean flat space metric. The Kaj are a
basis for vector fields on M, indexed by j, that depend
only on the compact coordinates xm. The coefficients in
this expansion are the Aj�, which depend only the non-
compact coordinates x�. The Aj�, known as Kaluza–Klein
vectors, will emerge after compactification as vector fields
on the noncompact space R1;3. The commutators of the
Kaj define a set of structure constants fjkl

�Kj; Kk	 � fjkl K
l: (51)

The calculation is most conveniently carried out using an
-9
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orthonormal basis fêa; ê�g given by

ê � � e� êa � ea � KajAj�dx�; (52)

in which the line element assumes the simple form ds2 �

ê�ê�
�� � ê
aêb	ab. In the event that some of the Kaj are

Killing fields on M, then the lower-dimensional theory
will possess a gauge symmetry. The Killing fields are
generators of the isometry group of M, and this isometry
group reemerges as the gauge group in the lower-
dimensional theory. This motivates the definition of a
‘‘field strength’’ Fi�� as

Fi � dAi �
1

2
fijkAj ^ Ak: (53)

In the general case, the Killing fields alone do not provide a
full basis for vector fields on M. Thus, in addition to the
massless modes (if any) of the gauge theory, there will also
be an infinite set of massive gauge fields in the lower-
dimensional theory.

In order to derive the mass spectrum in the lower di-
mension explicitly, we may use the vielbeins to decompose
the gravitational action in 4� n dimensions. The spin
connections are

!̂ab � !ab �
1

2
�rbK

j
a �raK

j
b�A

j
�e

�; (54a)

!̂a� �
1

2
Kj
aF

j
��e

� �r�bK
j
a�A

j
�ê

�; (54b)

!̂�� � !�� �
1

2
Kj
bF

j
��ê

b; (54c)

where!ab and!�� are the spin connections defined by the
metrics fmn on M, and h�� on R1;3, respectively. Using
these spin connections to compute the Ricci scalar, one
obtains

R�G� � R�h� � R�f� �
1

4
Kj
aKkaFj��Fk��

� 2r�cK
j
d�r

�cKkd�Aj�Ak�: (55)

We see that a mass term for the Aj has appeared. Upon
integrating over the compact coordinates, one arrives at the
Jordan frame action

S �
Z �

W�f�R�h� � S�f� �
1

4
�jkF

j
��Fk�� � �jkA

j�Ak�

�
�

���
h
p
d4x: (56)

where,
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W�f� �
Z
M

���
f

p
dnx (57a)

S�f� � �
Z
M
R�f�

���
f

p
dnx (57b)

�jk �
Z
M
KjaK

a
k

���
f

p
dnx (57c)

�jk � 2
Z
M
r�cKjd�r

�cKd�
k

���
f

p
dnx: (57d)

The W�f� factor may be removed by a rescaling of the
metric h��, putting the action in the Einstein frame form.
The S�f� term will yield a system of scalar fields, of which
� in our five-dimensional reduction (48) is an example.
Applying the Gram–Schmidt orthonormalization process
to the Kj, one can reduce �jk � 	jk, giving the vectors a
canonical kinetic term. Thus, we see Kaluza–Klein reduc-
tion of pure gravity results in a theory with scalars and
vector fields, generalizing the n � 1 result discussed
above.

Of crucial importance to the present work is that mass-
less Kaluza–Klein vectors are in one-to-one correspon-
dence with Killing fields on M, or equivalently the zero
eigenvalues of �jk. This follows from the fact that �jk
functions as a mass matrix for the Kaluza–Klein vector
fields. Since �jk is symmetric, we are guaranteed that m2

will be real for all modes. In our discussion of p-form
fields, we were able to apply powerful results regarding the
Hodge–de Rham operator � that guaranteed that m2 � 0,
regardless of the topology and metric structure of M. In
the present situation, we have no guarantee that the masses
of Kaluza–Klein vectors will satisfy m2 � 0, or equiva-
lently that the eigenvalues of the mass matrix are
nonnegative.

In this work we will assume that all eigenvalues of the
mass matrix are nonnegative, so that m2 � 0 for all
Kaluza–Klein vectors. In the general case, it is necessary
to compute �jk and �jk for each manifold of interest, and
then check that this assumption holds on a case-by-case
basis. A simple example is provided by the n-torus Tn.
Realizing the torus as Rn=Zn, with coordinates ��1 . . .�n�
ranging on �0; 2��, a convenient basis for vector fields on
Tn is provided by

K�a;n� �

���
2
p
�̂a

�2��n=2

�
cosn�; for n � 0;
sinn�; for n < 0;

(58)

where n 2 Z, the �̂a are unit vectors associated to each
coordinate, and �a; n� label each basis field, replacing the
abstract indices used above. Substituting this into (57) we
find

��a;n��b;m� � 	ab	nm; (59a)

��a;n��b;m� � 2n2	ab	nm: (59b)

The Kaluza–Klein vector fields are therefore canonically
normalized, with masses

���
2
p
n for n � 0; 1; 2 . . . , showing
-10
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our assumption is valid in this case. More sophisticated
examples may be found in the literature [23]. As we will
explain in more detail below, the m2 � 0 assumption will
enable us to treat p-forms and Kaluza–Klein vectors on the
same footing.

IV. SELECTION RULES FOR THE STABILITY
CONDITIONS

With the tools developed in the previous sections, we are
now prepared to discuss conditions on M that result in
controlled chaos. We will show that the gravitational,
electric, and magnetic stability conditions, introduced in
Sec. II, are modified by compactification. Not all of the
stability conditions remain relevant, and only a subset need
be satisfied to ensure that chaos is controlled. This subset is
defined by the ‘‘selection rules’’ that are the focus of this
section. The selection rules that determine when a stability
condition remains relevant are given for matter fields in
Sec. IVA, and for gravitational modes in Sec. IV B. The
selection rules, in turn, are determined by the de Rham
cohomology (in the p-form case) and existence of Killing
vectors (in gravitational case) of the compactification
manifold M. Here, we focus on discussing the origin of
the selection rules. Once established, we will use them to
find compactifications that control chaos in Sec. V.

A. The p-form selection rules

The discussion in Sec. III enables us to define selection
rules for the electric and magnetic stability conditions.
Each component of the p-form field results in an electric
or magnetic stability condition, which expresses whether
the energy density in that component scales rapidly enough
to dominate the energy density of the universe and cause
chaos. If this component gains a mass by compactification,
then we have shown that it scales too slowly to be cosmo-
logically relevant, and therefore we should ignore the
corresponding stability condition. Thus we should ignore
all electric and magnetic stability conditions involving
indices that do not correspond to massless p-form modes.
This results in the following selection rule,
T
he p-form Selection Rule: When dimH s�M� � 0
for some s, ignore the subset of p-form stability con-
ditions, X

p

pj �
1

2
�p� > 0 �electric�; (60a)

X
p�1

pj �
1

2
�p� < 1 �magnetic�; (60b)

with s Kasner exponents along the compact space M.
Retain only those stability conditions with s exponents
along M and dimH s�M� � 0.
In this section, we will use the results of previous

sections to prove this rule, and give some simple examples
of its use.
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This rule arises from considering the p-form modes that
give rise to massless fields after compactification. A
p-form Ap gives rise to a massless r-form �r if and only
if Ap is of the form

Ap � �r ^ �s (61)

where �s 2H s�M�, and r� s � p. Since d�s � 0, this
gauge potential results in the field strength

Fp�1 � �d��r�1 ^ �s: (62)

When the energy density of this field is calculated, one
finds a stability condition involving exactly s Kasner ex-
ponents along M, and the remainder along R1;3. Since
only stability conditions of this type correspond to mass-
less modes, they are the only ones that should be retained.

The case (62) deals only with field strengths having at
least one index along the noncompact space R1;3. In fact,
the same selection rule applies when all indices of the field
strength are along M. In this case, the field strength must
satisfy the Bianchi identity and the Gauss law,

dFp�1 � 0; dyFp�1 � 0: (63)

Field strengths of this type are commonly termed ‘‘nonzero
modes’’ [24]. The conditions (63) imply that Fp�1 is
harmonic, and by Hodge’s theorem the number of such
forms is given by dimH p�1�M�. When dimH p�1�M�
vanishes, we cannot have a p-form field strength with all
indices along M, and we should therefore delete the
corresponding stability condition, with �p� 1� Kasner
exponents along M. Thus this case falls under the
p-form selection rule as well.

The selection rule may be illustrated by comparing
compactification on a sphere Sn and a torus Tn . These
manifolds encompass the best and worst case scenarios for
controlling chaos through compactification. The sphere has
the minimum number of massless modes for any orientable
compact manifold, while the torus has massless modes for
every dimension and involving every combination of in-
dices on M. Therefore compactification on Tn and Sn will
have very different influences on chaotic behavior.

Compactification on Tn does not modify any of the
p-form stability conditions. The cohomology classes of
the torus are

dimH r�Tn� �
n!

r!�n� r�!
; 0 � r � n: (64)

If we realize the torus as Rn=Zn, with coordinates
�1; . . . �n, then we may choose the following set of gen-
erators for the rth de Rham class,

!r � d�j1
^ d�j2

^ . . . ^ d�jr ; (65)

where fjrg are any set of distinct indices on Tn. Therefore,
massless modes exist for p-form fields with any combina-
tion of indices along the Tn. Anyp-form stability condition
-11
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that appears in the noncompactified theory will remain in
the compactified theory.

By contrast, compactification on a sphere Sn, with n >
1, deletes many of the stability conditions. The sphere has
only two nonzero cohomology groups, each of unit dimen-
sion;

dimH r�Sn� �
�

1; for r � 0 and r � n
0; otherwise.

(66)

The class H 0�Sn� is generated by the constant scalar
function on Sn, while the class H n�Sn� is generated by
the volume form

!n �
���
g
p

d�1 ^ d�2 ^ . . . ^ d�n; (67)

where gmn is the metric, g � detgmn, and �j the coordi-
nates on the sphere. Massless modes therefore contain
either no indices along the Sn, or all indices at once. This
implies that the only surviving stability conditions are
those with either no internal Kasner exponents, or all
internal Kasner exponents together. In the case where n >
p, none of the internal Kasner exponents appear at all, and
only those stability conditions involving Kasner exponents
on R1;3 survive.

Our statement of the selection rule is the strongest
possible in the generic case, and fortunately also the
most conservative in terms of deleting the minimum num-
ber of stability conditions. Manifolds with a specific rela-
tionship between the frames �a appearing in (2) and the
cohomology representatives of M may require that we
delete additional p-form stability conditions. For example,
consider the case in which M factors as M �
M1 �M2, both topologically and metrically. A straight-
forward application of the selection rules results in retain-
ing all stability conditions with s indices along M
whenever dimH s�M� � 0. These stability conditions
correspond to p-form modes with s1 indices along M1

and s2 indices along M2, with s1 � s2 � s. However, in
general a massless mode will not exist for every choice of
s1 and s2, and therefore we may be able to delete additional
stability conditions. We should only retain the even smaller
subset of stability conditions with s1 Kasner indices along
M1 and s2 indices along M2 when dimH s1�M1� � 0
and dimH s2�M2� � 0. Generally, however, we do not
expect any special relationship between the �j and the
cohomology classes. In this example, we have imposed
the condition by hand that the �j point only along exactly
one of M1 or M2. Examples such as this one must be
considered on a case-by-case basis, and lie beyond the
scope of our selection rule.

B. The gravitational selection rules

The selection rules for the gravitational stability condi-
tions arise in a manner similar to those for the p-form
modes. We identify the degree of freedom corresponding to
each stability condition, and then ignore the stability con-
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dition if the degree of freedom gains a mass through
compactification. Unlike the p-form case, in general one
must also check that the masses gained in this way satisfy
m2 � 0, as discussed at the end of Sec. III C. In this way,
we arrive at a selection rule for the gravitational stability
conditions,
T
he Gravitational Selection Rule: When M possesses
no Killing vectors, retain only the subset of gravitational
stability conditions

pi � pj � pk < 1; all triples i; j; k; (68)

with all three Kasner exponents along R1;3, or all three
along M, and ignore stability conditions with a mixture
of exponents along both R1;3 and M
In proceeding, we are guided by the Kaluza-Klein re-

duced Jordan frame action (56). Clearly, gravitational
stability conditions involving three Kasner exponents
along the R1;3 should be retained, as the corresponding
modes do not gain a mass from compactification. These
represent the metric degrees of freedom in the lower-
dimensional theory. Stability conditions involving three
Kasner exponents along the compact direction should
also be retained. Physically, these correspond to metric
degrees of freedom on compact space M. While these
appear as scalar fields in the lower-dimensional theory,
they can result in a subtle form of chaos. Violations of
these stability conditions appears as a chaotic system of
interacting scalars in the lower-dimensional theory. Thus,
to ensure that all degrees of freedom are evolving smoothly
to the big crunch, we should retain these stability
conditions.

Compactification can delete the ‘‘mixed’’ stability con-
ditions, those with Kasner exponents along both R1;3 and
M. These appear as the kinetic and mass terms for the
Kaluza–Klein vectors in (56). When the compact space M
possesses no Killing vectors, then these vector fields ac-
quire a mass and become cosmologically irrelevant. When
M possesses even one Killing vector, then in general none
of the mixed stability conditions can be discarded. This is
because a single Killing field will generally involve all
indices along M, and also results in a vector field with
arbitrary indices on R1;3. As in the p-form case, there can
be special cases where additional stability conditions may
be deleted. However, as we are more interested in the
generic case we will not discuss examples here.
V. EXAMPLES

The previous sections have established that compactifi-
cation allows us to ignore a number of the gravitational and
p-form stability conditions. At this point, it is natural to ask
if there are examples where enough stability conditions are
deleted to control chaos. We show below that this is indeed
the case, by giving explicit examples from both pure
Einstein gravity and the low-energy bosonic sectors of
-12
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string theory. We will discuss several solutions with con-
trolled chaos in string models with N � 1 supersymmetry
in ten dimensions, and will show how these solutions are
interrelated by string duality relationships.

For simplicity, we focus on regions on the Kasner sphere
near what we will term ‘‘doubly isotropic’’ solutions.
These are solutions in which a Kasner exponents take the
value pa, and b take the value pb, with a� b � D� 1. In
the absence of a dilaton, the Kasner conditions (3) result in
a quadratic equation for pa and pb, and therefore two
solutions for each choice of a and b. When a dilaton is
present, then there are two one-parameter families of pa
and pb, which depend on the value of the dilaton ‘‘Kasner
exponent’’ p�. Only models that are isotropic in three
noncompact directions are of interest cosmologically, and
so we fix a � 3. The Kaluza–Klein reduction of such
models results in an isotropic universe with p1 . . .p3 �
1=3, corresponding to a FRW universe dominated by a
component with equation of state w � 1.

It is important to emphasize that the specific examples
that we will discuss are only representative points of an
open region on the Kasner circle for which chaos is con-
trolled, chosen so that the Kasner exponents assume a
particularly simple, symmetric form. For a given compac-
tification, the selection rules define a reduced set of stabil-
ity conditions, which in turn define an open region of the
Kasner circle for which all stability conditions are satisfied.
When this open region is nonempty, then chaos is con-
trolled. Thus, there will be choices of the Kasner exponents
with controlled chaos in open neighborhoods of all of the
solutions discussed herein.

A. Pure gravity models

The simplest case, with n � 1 extra dimensions, is also a
somewhat exceptional one. This is because there is exactly
one compact one-dimensional manifold, the circle S1.
Regardless of the metric on the S1, it will always possess
a Killing vector, and so no gravitational stability conditions
can be deleted. Furthermore, H 1�S1� is nonzero, and so no
p-form stability conditions are deleted. Therefore, all cha-
otic models remain chaotic when compactified on S1. To
eliminate chaos when n � 1, we must consider a more
general class of spaces than manifolds.

For Einstein gravity without matter, a simple example
that eliminates chaos when n � 1 is given by the orbifold
S1=Z2, previously discussed in Ref. [14]. If we take a
coordinate � on S1, ranging from ���;�	, then the orbi-
fold results from identifying the S1 under the reflection
�! ��. This takes G�� ! �G��, and thus the Killing
field is projected out, giving mass to all the Kaluza–Klein
vectors. The resulting action for massless fields in four
dimensions is then

S �
Z
R�g� � �@��2

�������
�g
p

d4x; (69)
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in comparison with the classic Kaluza–Klein result (48).
Being only Einstein gravity with a scalar field, this theory
is not chaotic. We will discuss compactification on this
particular orbifold in more detail when we discuss string
and M-theory solutions with controlled chaos.

When we have n > 1 extra dimensions, then chaos can
be eliminated by compactifying on a manifold without
continuous isometries, and therefore without Killing vec-
tors. This deletes the mixed gravitational stability condi-
tions, as discussed in Sec. IV B. The remaining stability
conditions are always satisfied in the neighborhood of
doubly isotropic solutions. This is subject to the assump-
tion, discussed at the end of Sec. III C, that the mass matrix
for the Kaluza–Klein vector modes has no negative
eigenvalues.

While we have seen that the masses of Kaluza–Klein
vectors are determined by isometric properties of M, there
is a useful class of manifolds for which these properties are
themselves determined by the topology, specifically by the
de Rham cohomology. In this case, the gravitational and
p-form selection rules are determined entirely by the co-
homology of M. These are the Einstein manifolds, for
which,
RMN � �gMN; (70)
with � arbitrary. When M is Einstein, the number of
Killing vectors is given by dimH 1�M� [30]. Chaos will
thus be controlled in a neighborhood of doubly isotropic
solutions when dimH 1�M� � 0. There are many ex-
amples of Einstein manifolds with this property; among
them are the complex projective spaces CPn with the
Fubini–Study metric, and the Calabi–Yau spaces.

B. String models

For string models with N � 1 supersymmetry in ten
dimensions (Type I and heterotic), the simple class of
doubly isotropic solutions is sufficient to give examples
of solutions with controlled chaos. As we will discuss in
more detail below, some of our solutions are related to
others through standard string duality relationships.
Interestingly, we find that theories with N � 2 supersym-
metry (Type II) do not admit compactifications that lead to
controlled chaos with doubly isotropic solutions.
Unfortunately, we have found no examples where the
compactification manifold could be a Calabi–Yau,
although solutions with controlled chaos and Calabi–Yau
compactification may exist for nondoubly isotropic
choices of the Kasner exponents.

In the following, we will always give the Kasner expo-
nents in the Einstein conformal frame. Conventionally, the
bosonic sector of string theory actions is presented in the
‘‘string frame’’ form
-13
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Sstring �
Z  

e�2��R�G�S�� � 4�@��2	 �
X
j

e�
�S�
j �F2

pj�1

!

�
�������������
�G�S�

p
d10x; (71)

where the ��S�j are the string frame couplings to the dilaton
field, and G�S� the string frame metric. One arrives at the
‘‘Einstein frame’’ action by the transformation,

G�E�MN � e��=2G�S�MN (72)

resulting in

SEinstein �
Z  

R�G�E�� � �@��2 �
X
j

e�
�E�
j �F2

pj�1

!

�
�������������
�G�E�

p
d10x (73)

where we have defined

� � �=
���
2
p
; (74a)

��E�j �
���
2
p �

��S� �
8� 2pj

4

�
; (74b)

The field �, which we shall refer to as the dilaton below, is
canonically normalized, and the couplings between the
dilaton and p-forms have transformed. In the following,
we will always use the Einstein frame couplings, and so
will drop the superscript �E� for clarity in notation.

A theme common to our examples is the compatibility of
our results concerning controlled chaos and the duality
relationships connecting various string theories. In
Sec. V B 1 we first examine the E8 � E8 heterotic theory
in detail. Through a combination of string duality relation-
ships and compactifications we will be able to discuss its
limits in eleven, ten, five and four dimensions. In particu-
lar, the S-duality relating the E8 � E8 heterotic string and
M-theory [31,32] is made apparent by relating the ten-
dimensional heterotic solution with controlled chaos and
the compactification of eleven-dimensional M-theory on
S1=Z2. We will then discuss all compactifications of dou-
bly isotropic solutions with controlled chaos for string
theories with N � 1 supersymmetry in ten dimensions.
We give four representative solutions, two each for the
heterotic and Type I theories. We show that these four
solutions organize into two pairs of solutions, related by
the S-duality connecting the heterotic SO(32) and Type I
strings [25].

It is important to keep in mind some features of the space
of string solutions with controlled chaos. Each compacti-
fication we discuss, defined by the vanishing de Rham
cohomology classes, defines an open region on the
Kasner circle where chaos is controlled. Our restriction
to doubly isotropic models, in turn, takes a one-
dimensional ‘‘slice’’ out of this open region. In our ex-
amples, we give a representative point from the slice where
the Kasner exponents assume a convenient and symmetric
063513
form. Thus we have found the compactifications that admit
doubly isotropic solutions, but the choices of Kasner ex-
ponents are not unique.

1. The heterotic string and M-theory

Here we focus on the E8 � E8 heterotic theory, in the
neighborhood of a specific choice of Kasner exponents.
Using string duality relationships and compactification, we
will discuss the various guises of this solution in eleven,
ten, five, and four dimensions, summarized in Table I.
While the solution we discuss also controls chaos for the
SO(32) heterotic theory in ten dimensions, string dualities
for this theory do not enable us to discuss the five-
dimensional and M-theory limits. To begin, we consider
the heterotic theory in Einstein frame, where it contains the
metric GMN , dilaton �, one-form A1, and two-form B2.
The dilaton couples to the one- and two-forms via expo-
nential couplings of the type (1), with �1 � �1=

���
2
p

, and
�2 � �

���
2
p

. Before compactification, one finds violations
of the electric and magnetic stability conditions for the
choice of Kasner exponents

p1 . . .p3 � 0; p4 . . .p9 � 1=6;

p� �
��������
5=6

p
�10D�:

(75)

We assume that p1 . . .p3 lie along the noncompact space-
time R1;3, and p4 . . .p9 lie along the compact manifold
M. In this solution, the magnetic stability conditions are
violated for the magnetic component of H3 � dB2 with all
three indices along M. None of the gravitational stability
conditions are violated.

Applying the selection rules introduced in Sec. IV, we
find that chaos is controlled by compactifying on a six-
manifold M with H 3�M� � 0, such as S6 or CP3. The
choice of CP3 has the advantage that it has H 1�CP3� � 0,
and is an Einstein manifold if given the Fubini–Study
metric. This manifold may therefore be a useful starting
point for models that differ from the doubly isotropic ones.
Unfortunately, a Calabi–Yau space will always have
dimH 3�M� � 0, and is thus unsuitable for rendering
this solution nonchaotic.

The four-dimensional limit of the solution (75) pos-
sesses a simple form. This is obtained by compactifying
on the six-manifold M, resulting in

p1 . . .p3 � 1=3; �4D�: (76)

This describes a collapsing, flat FRW universe dominated
by a perfect fluid with w � 1. The w � 1 component is a
combination of the dilaton and the volume modulus arising
from the Kaluza–Klein reduction of the heterotic theory on
the six-manifold M.

String duality relationships imply that the (strongly
coupled) E8 � E8 heterotic theory is obtained by compac-
tifying M-theory on the orbifold S1=Z2 [31–33].
Phenomenology implies that the orbifold S1=Z2 is some-
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TABLE I. The solution discussed in the text for the E8 � E8 heterotic string in various
dimensions. The Kasner exponent p� is a combination of the dilaton and volume modulus
for the compactified dimensions. Chaos is controlled provided that H 3�M� � 0.

Theory Spacetime Dim p1 . . .p3 p4 . . .p9 p10 p�

M-theory R1;3 �M� S1=Z2 11 �0:1206 0.0662 0.9644   

het E8 � E8 R1;3 �M 10 0 1=6   
��������
5=6

p
Braneworld R1;3 � S1=Z2 5 0.0105    0.9686 0.2486
FRW R1;3 4 1/3      

��������
2=3

p
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what larger than the compactification six-manifold M.
Thus, depending on the scale of interest, the strongly
coupled heterotic theory can appear four-, five-, or
eleven-dimensional. The five- and eleven-dimensional lim-
its of the solution (75) are not as simple as the ten and four-
dimensional views, but are nonetheless instructive.

This duality relationship implies that the heterotic string
in ten dimensions can be described by eleven-dimensional
M-theory on R1;3 �M� S1=Z2. The eleven-dimensional
lifting of (75) to M-theory yields Kasner exponents whose
precise expression is not very illuminating, but whose
approximate numerical values are

p1 . . .p3 � �0:1206; p4 . . .p9 � 0:0662;

p10 � 0:964 42 �11D�:
(77)

This describes a rapidly shrinking orbifold, a slowly con-
tracting six-manifold M, and a slowly expanding non-
compact space.

To see that the compactification of M-theory on R1;3 �
M� S1=Z2 leads to controlled chaos requires us to con-
sider some subtle features of the theory. The bosonic sector
of M-theory includes only the graviton and a four-form
field strength F4 � dA3. Our selection rules are only
strictly applicable to the case where the compactification
space is a manifold, an assumption which fails to include
orbifolds such as S1=Z2. The approach most convenient
here follows usual techniques [31–33] for determining the
spectrum after compactification. Specifically, we compac-
tify M-theory on S1, and then impose the identification
�! ��. The presence of the Chern–Simons term A3 ^
F4 ^ F4 in the M-theory Lagrangian requires that F4 !
�F4 under parity transformations, of which the identifica-
tion �! �� is an example. Thus, the massless compo-
nents of F4 on R1;3 �M� S1=Z2 are those with exactly
one index along the S1=Z2.

Before compactification, the eleven-dimensional solu-
tion given above violates the p-form stability conditions
for three components of the four-form field. The first and
second are electric, with the first having three indices along
R1;3, and the second having two along R1;3 and one along
M. The third is magnetic, with one index along S1=Z2 and
three along M. The magnetic component is rendered
massive by the condition H 3�M� � 0, and so we can
neglect this stability condition. The two electric compo-
063513
nents are rendered massive since they do not have exactly
one index along the S1=Z2, and their stability conditions
can be neglected as well. Thus, chaos is controlled in the
M-theory limit.

The five-dimensional guise of our solution, obtained by
Kaluza–Klein reducing the eleven-dimensional form on
the six-manifold M, describes a ‘‘braneworld’’ with struc-
ture R1;3 � S1=Z2. This yields the solution,

p1 . . .p3 � 0:010 48; p10 � 0:9686;

p � 0:248 04: �5D�
(78)

The scalar field  is the volume modulus of the six-
manifold M. This solution describes a nearly static R1;3

and a rapidly contracting orbifold. This solution bears a
suggestive similarity to the setup studied in the ekpyrotic/
cyclic scenario. In these models, near the big crunch, the
five-dimensional spacetime approaches the Milne solution,

p1 . . .p9 � 0; p10 � 1: (79)

This solution is in fact on the boundary of the open region
of the Kasner sphere for which our example solution (75)
exhibits controlled chaos. This is predicated on the as-
sumptions that w � 1 in the four-dimensional theory all
the way to the big crunch, and that compactification is the
only mechanism for controlling chaos. In the ekpyrotic/
cyclic scenarios, there is a long w� 1 phase during the
contraction, in which the energy density in p-form modes
is exponentially suppressed [14]. This suppression further
reduces the time tdom at which dangerous modes can for-
mally dominate the universe. Therefore, in the full model,
the onset of chaos will be delayed far beyond what our
estimates, based only on the compactification mechanism,
would suggest.

2. The heterotic and Type I strings

Having focused in detail on a single compactification of
a single string theory, we now focus on finding all com-
pactifications with controlled chaos and doubly isotropic
Kasner exponents. There are four doubly isotropic ex-
amples with controlled chaos, with representative choices
of the Kasner exponents summarized in Table II. The E8 �
E8 and SO(32) heterotic theories exhibit the same chaotic
behavior, since their p-form spectrum and couplings to the
dilaton are identical; these theories differ only in the gauge
-15
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groups for their non-Abelian gauge multiplets. One may
also include the ten-dimensional (noncritical) bosonic
string, which contains only the Neveu–Schwarz fields of
the heterotic string and no gauge fields. One finds that
chaos is controlled in the ten-dimensional bosonic string
in the same solutions (A and D) as in the heterotic string.

In the absence of any compactification, these examples
are all chaotic. None of them suffer from gravitational
chaos, and in all cases the chaotic behavior arises from
the p-form fields alone. Upon compactification to four
dimensions, these models all result in a FRW universe
dominated by a free scalar field with w � 1.

The examples given in Table II include not only models
that go to weak coupling at the crunch, (A and C) but also
models where the dilaton runs to strong coupling (B and
D). The fact that the solutions include both those where the
string theory goes to strong and weak coupling is interest-
ing from a model building perspective. The dilaton is never
static in the solutions discussed here, a feature also found
in some cosmological models based on string theory. In the
ekpyrotic/cyclic models, for example, the string coupling
goes to zero at the big crunch. In pre-big bang models, on
the other hand, the dilaton goes to strong coupling at the
crunch. Thus the controlled chaos mechanism may be
relevant to both scenarios.

The heterotic SO(32) and Type I symmetry is respected
by our examples here. Under this duality, the string frame
actions of the heterotic SO(32) and Type I theories are
related by [25]

G�I�MN � e��hG�het� (80a)

��I� � ���het� (80b)

with the p-form fields remaining unchanged. Carefully
working through the resulting transformation of the
Einstein frame Kasner exponents, one finds that the spatial
Kasner exponents are unchanged, while p�I�� � �p

�het�
� .

Therefore, S-duality exchanges the pairs of solutions
A$ B and C$ D.
TABLE II. Representative string theory solutions with con-
trolled chaos and isotropic behavior along the noncompact and
compact directions. Each compactification leads to open regions
of the Kasner circle with controlled chaos, and we have given a
representative point for each open region here. The string
theories which exhibit controlled chaos for each solution are
shown, as well as the Betti numbers bj � dimH j�M� of M
that are required to vanish.

Sol’n p1 . . .p3 p4 . . .p9 p� Theories Xero Betti

A 0 1=6
��������
5=6

p
heterotic b3

B 0 1=6 �
��������
5=6

p
Type I b3

C 1=3 0
��������
2=3

p
Type I b1; b2

D 1=3 0 �
��������
2=3

p
heterotic b1; b2

063513
The properties of string theories regarding controlled
chaos appear correlated to their supersymmetry properties
in ten dimensions. The N � 1 theories, (heterotic, Type I,
and M-theory on S1=Z2) possess simple compactifications
that control chaos. The Type IIA/B theories and uncom-
pactified M-theory, with N � 2 supersymmetry, have no
doubly isotropic solutions with controlled chaos. As we
have not exhaustively examined the Kasner sphere, we
cannot say for certain whether there exist solutions that
control chaos for the N � 2 theories.

It is natural to expect that the N � 1 and N � 2 string
theories will have different characteristics with respect to
controlled chaos. There is a useful formulation of the
dynamics of gravity near a big crunch, discussed briefly
in Sec. II. In this formulation, the dynamics of metric and
p-form fields is recast as the motion of a billiard ball in a
hyperbolic space, undergoing reflections from a set of
walls. The walls correspond to p-form kinetic terms and
curvature terms in the Einstein equations. The positions
and orientations of these walls are identical for all of the
N � 1 theories, and different from the common set of
walls shared by the N � 2 theories [6]. Our suppression
of the energy density in massive p-form and gravitational
modes amounts to ‘‘pushing back’’ these walls. Thus, it is
not surprising that we should find that N � 1 and N � 2
models have different characteristics with respect to con-
trolling chaos.
VI. CONCLUSIONS

The results presented here build on the many years of
previous research in the behavior of general relativity near
a big crunch. Previous research has primarily focused on
‘‘local’’ properties of theories with gravity, such as the
dimensionality of spacetime, or the types and interactions
of matter fields, and has revealed how these influence the
emergence of chaos. Here we have investigated ‘‘global’’
features, in particular, the topology of spacetime. We have
found that these features can lead to a suppression of chaos
in many models of interest. The control of chaos can be
expressed simply in terms of selection rules for the gravi-
tational and p-form stability conditions. These in turn can
be used to find compactifications of chaotic theories in
which chaos is suppressed right up to the quantum gravity
regime.

Our results bear an intriguing connection to some cos-
mological models that are founded on current ideas in
string and M-theory. Among the simple examples of string
theory solutions with controlled chaos, we find those that
resemble both the ekpyrotic/cyclic and pre-big bang sce-
narios. For future models, this work suggests a method to
control chaotic behavior near a big crunch that does not
require postulating additional interactions and matter
fields, or depending on higher order corrections to the
Einstein equations. While this work sheds no light on the
behavior of these models in the quantum gravity regime or
-16
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through the big crunch/big bang transition, it provides a
natural mechanism that ensures that the universe evolves
smoothly so long as classical physics may be trusted.

Recent work suggests that maintaining this smooth con-
traction during the classical regime may be sufficient to
allow a nonsingular quantum evolution through a big
crunch/big bang transition. One approach to this problem
[20] begins from the fact that, in string and M-theory, the
degrees of freedom during the quantum regime are very
different from those of the classical regime studied here.
The fundamental degrees of freedom are extended objects,
such as strings and branes. As one approaches the scale set
by their tension, classical general relativity breaks down,
and these extended objects become the relevant degrees of
freedom. In particular, it is the evolution of these strings
and branes that one should study near the big crunch.
Working within the context of the ekpyrotic/cyclic sce-
nario, it was found in Ref. [20] that if the universe is
sufficiently smooth and homogeneous at the beginning of
the quantum regime, the fundamental excitations (M2
branes) evolve smoothly through the big crunch with neg-
ligible backreaction. This suggests that a sufficiently
smooth ‘‘in’’ state can evolve through the big crunch to a
smooth ‘‘out’’ state, precisely what one requires for cos-
mology. This result complements the present work. The
mechanism described herein can be viewed as providing
the required conditions for smooth classical evolution be-
fore the Einstein equations break down, preparing the
universe for nonsingular quantum evolution through the
big crunch.

Our results have further implications for high energy
theory and phenomenology. String models and M-theory
require compactification in order to produce the correct
number of observed noncompact dimensions. Obtaining
the correct low-energy physics, such as N � 1 supersym-
metry in four dimensions or the correct number of lepton
generations, puts constraints on the compactification mani-
fold M, many of which are topological in nature.
Controlling chaos through compactification in cosmologi-
cal models with a collapsing phase places additional con-
straints on M. We are currently investigating whether
these two set of constraints are compatible. For example,
the existence of solutions with compactification on a
Calabi–Yau space would suggest that chaos can be con-
trolled in string models with a realistic low-energy
spectrum.

These results also inspire more speculative scenarios.
When the universe enters a chaotic regime, the Kasner
exponents will undergo an infinite number of ‘‘jumps’’ to
different points on the Kasner sphere as the big crunch is
approached. We also might expect that the topology of M
is changing at the same time. For example, there are
situations in string theory where the topology of M can
change dynamically, such as the conifold or flop transi-
tions. If the combination of Kasner exponents and topology
063513
lead to controlled chaos, then the universe will subse-
quently contract smoothly to the big crunch. In this way,
the universe will have dynamically selected not only some
properties of M, but also a ‘‘preferred’’ cosmological
solution near the big crunch. Analysis of such a scenario
would require a much deeper understanding of cosmology
in the quantum gravity regime than is currently available,
clearly an important topic for further research.
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APPENDIX: HAMILTONIAN FORMULATION OF
p-FORM DYNAMICS

Below, we treat the case of a general p-form field with
coupling to the dilaton �, in a collapsing universe. We
concern ourselves with the case where spacetime is iso-
tropic, as this is the cosmologically relevant situation after
compactification. We show that far from the big crunch, the
energy density in massive fields evolves like that of a
pressureless fluid, �� 1=�comoving volume�. We will
first recast the p-form dynamics in Hamiltonian form.
This allows us to apply the virial theorem and stress energy
conservation to obtain the scaling in energy density far
from the crunch. The p-form action with mass term and
dilaton coupling is

S � �
1

�p� 1�!

Z
�dA  dA�m2A  A�e��

��������
�G
p

dDx;

(A1)

where we have fixed the coordinate gauge so that ds2 �

�n2dt2 � jkdxjdxk. We choose the canonical coordi-
nates to be the gauge potential A�1...�p . The corresponding
canonical momenta are

�j1...jp � �Ftj1...jpne��
����

p

(A2)

Passing to the Hamiltonian, we find

H �
1

2

Z
~n�� �� e2��F�B�  F�B� � e2��m2A  A

� e2��At�2...�p@a�a�2...�p�dD�1x (A3)

where we use a rescaled lapse function ~n � ne���=
����

p

,
and denote the magnetic components of Fp by F�B�. Dot
products are taken with respect to the metric MN . The last
term in the integral shows that the ‘‘electric’’ gauge field
modes Atj2...jp�1

appear as Lagrange multipliers necessary
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to enforce the Gauss’s law constraint, but are otherwise
nondynamical [34]. We will choose the Coloumb gauge,
in which Atj2...jp � 0; and drop this constraint term from
now on.

The Hamiltonian is in fact exactly that of a set of simple
harmonic oscillators. After decomposing the functions Ap
in an appropriate orthonormal set of Fourier components,
different Fourier modes decouple and the Hamiltonian is
quadratic in � and A. The electric field modes appear as
the kinetic terms, and the magnetic field and mass terms
correspond to the potential of the oscillators. The oscillator
potential is time dependent, both due to the appearance of
e2�� and individual metric components in the magnetic
and mass terms.

We are primarily interested in the dynamics of the
p-form far from the big crunch. In this regime, we may
view the changing scale factors as slowly varying parame-
ters in our Hamiltonian. They will change the spring con-
stants on a time scale given by t, the proper time to the big
crunch. The dynamical time scale (typical period) for the
oscillator Hamiltonian is given by the mass term. Thus, we
expect that the fractional change in the fundamental fre-
quencies! of the oscillator system over a typical cycle will
be

	!
!
�

1

!t
(A4)

Provided we are at a time t� !�1, we will be in the
adiabatic regime, and we may take the oscillation frequen-
cies to be constants. This corresponds to the m=H� 1
regime that we have concerned ourselves with throughout
this paper.

To find how the energy density scales with time, we
apply the virial theorem and stress energy conservation.
The adiabatic condition (A4) implies that we may neglect
the time variation of the metric and dilaton over a single
cycle. For our Hamiltonian, the virial theorem then implies
that the time average hi of the potential energy is equal to
that of the kinetic energy, or

h� �i � e2��hF�B�  F�B� �m2A  Ai: (A5)

In the virialized system, there are two possible regimes,
corresponding to either the F�B�  F�B� term or the m2A  A
term dominating. We will consider both of these cases in
turn.

The stress energy for the p-form field is

T�� �
e��

�p� 1�!

�
�p� 1�F��2...�pF

��2...�p �
1

2
	��F

2

� pm2A��2...�p�1
A��2...�p�1 �

m2

2
	��A2

�
(A6)

We will find it convenient to break the stress energy into
three parts,
063513
T�� � T�E��� � T�B��� � T�m��� (A7)

corresponding to the energy in electric modes, magnetic
modes, and the mass term. It is sufficient to consider a
single component of Fp, since different components will
be uncorrelated and therefore will have vanishing time
average. The electric modes give rise to a contribution

T�E��
� � 	�

� e��

2�p� 1�!
jF2
�E�j

�
�1 if F�E�has index �;
�1 otherwise.

(A8)

while the magnetic modes give,

T�B��
� � 	�

� e��

2�p� 1�!
F2
�B�

�
�1 if F�B�has index �;
�1 otherwise,

(A9)

and the mass term yields

T�m��� � 	��
e��

2�p� 1�!
m2A2

�
�1 if A has index �;
�1 otherwise.

(A10)

Note that F�B� cannot have any timelike indices, nor can A
thanks to our gauge choice. Thus the contributions to the
energy density � � �T0

0 are all positive.
First, we consider the case where the mass term domi-

nates in the virial relationship (A7). This corresponds to
inhomogeneities in the p-form field being negligible. The
virial result implies that hjF2

�E�ji � m2hA2i. Because of our

gauge choice, A and F�E� have the same combination of p
spatial indices, and therefore contributions to the pressure
components Tjj coming from T�E�jj and T�m�jj exactly cancel.
The vanishing pressure reveals that the effective equation
of state is that of dust, w � 0.

When the magnetic terms dominate the virial result
(A7), we obtain a slightly different effective equation of
state. Here it is necessary to average over polarizations of
Fp, since unlike F�E� and A, F�E� and F�B� do not enjoy any
relationships between their indices. Regardless of polar-
ization, the sum of stress energy tensors T�E� and T�B� has
vanishing trace. This, combined with isotropy, implies the
pressure components are given by Tjj � �T

0
0=�D� 1�.

This corresponds to the equation of state of radiation,
which in four-dimensional spacetime is w � 1=3.

Physically, this result may be understood in simple
terms. Far from the big crunch, the contraction of space
is very slow in comparison to the mass of the p-form field.
Thus, the corresponding particles are far from being rela-
tivistic, and behave as a dust of approximately comoving
mass points. Their energy density therefore scales in in-
verse proportion to the comoving volume. The case where
magnetic components dominate the virial relationship cor-
responds to a relativistic gas of particles. This yields the
equation of state of radiation, as we expect.
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