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Dark matter from early decays
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Two leading dark matter candidates from supersymmetry and other theories of physics beyond the
standard model are WIMPs and weak scale gravitinos. If the lightest stable particle is a gravitino, then a
WIMP will decay into it with a natural lifetime of order a month�M2

pl=M
3
weak. We show that if the bulk of

dark matter today came from decays of neutral particles with lifetimes of order a year or smaller, then it
could lead to a reduction in the amount of small scale substructure, less concentrated halos and constant
density cores in the smallest mass halos. Such beneficial effects may therefore be realized naturally, as
discussed by Cembranos, Feng, Rajaraman, and Takayama, in the case of supersymmetry.
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I. INTRODUCTION

We have many independent lines of observational evi-
dence that point to the existence of dark matter in the
universe. The dark matter particle, however, has not been
observed. Most theories of physics beyond the standard
model that have new physics at the weak scale, naturally
predict the existence of WIMP (Weakly Interacting
Massive Particle) dark matter. The weak interaction
cross-section endows the WIMP with the right relic density
to make up a substantial fraction of the energy density of
the universe. Thus most cosmological studies of dark
matter assume that it is a stable cold particle with interac-
tion cross-sections comparable to the weak interaction
cross-sections.

Within theories of physics beyond the standard model,
one also has the gravitino (or other gravitationally coupled
particles). Recent work by Feng, Rajaraman and Takayama
[1] provided an interesting twist to the old dark matter tale.
They observed that if the gravitino is the lightest super-
symmteric particle (LSP), then the next lightest particle
(NLSP) can decay into the gravitino with a lifetime that is
long since the gravitino couples only gravitationally. The
natural time scale for this decay is M2

pl=M
3
weak� month.

This opens up the possibility that at least a fraction of the
dark matter we observe today comes from decays when the
universe was days to years old. We note that similar models
may be constructed in the context of cosmologies with
extra dimensions [2]. Two early universe constraints on
these models are that the electromagnetic decay products
must not distort the black body spectrum appreciably and
the light element abundances from BBN must match with
observations. Recent work has shown that there are regions
of parameter space where all these conditions may be met
[3–7]. In the present work we work out the late time
consequences of these decays.

Another way to get dark matter to decay around similar
epochs is to kinematically suppress the decays such that the
lifetime is orders of magnitude larger than the ‘‘natural’’
time scale. Profumo et al. [8] provided the first example of
such a decay that arises in supersymmetric theories. The
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consider the decay of stau into the LSP with a mass
splitting smaller than the tau lepton mass. In this case,
the two-body decay is forbidden and the stau can only
decay into 4 daughter particles. The 4-body decay of a
charged slepton is suppressed by the NLSP-LSP mass
splitting as �M=�M�8. Thus with �M=M� 10�3, the
stau lifetime is of order a few weeks [8].

Sigurdson and Kamionkowski [9] and then Profumo et
al. [8] worked out the impact of the charged stau decay on
the matter and CMB power spectrum. They found that the
dark matter power spectrum was suppressed due to the
coupling of the charged NLSP to the photon-baryon sys-
tem. This coupling damps the matter power spectrum once
a perturbation mode enters the horizon.

In this paper we point out that the large suppression of
the matter power spectrum is possible even if the NLSP is
not charged. Unless the mass splitting between the NLSP
and LSP is fine-tuned to be small, we point out that the
decay will impart a large velocity to the LSP. Effectively
the LSP will act like warm dark matter. This leads to a cut-
off in the matter power spectrum. We calculate shape of the
power spectrum given the lifetime and the masses of the
particles involved.

We also calculate the effect of the smaller phase-space
density that results from this decay on dark matter halos.
They could (for small enough primordial phase-space den-
sity) be instrumental in shaping the smallest mass halos,
lowering the fraction of mass in subhalos, and reducing the
concentration of larger mass halos. Stringent constraints on
these decays come from the requirement that the universe
be reionized by a redshift of six or higher. If the present
hints [10] for early reionization are borne out by future
data, then this could rule out a big chunk of the super-
symmetric parameter space in which the gravitino is the
lightest particle.

Cembranos et al. [11] show that the beneficial effects
mentioned above may be obtained in a large region of the
supersymmetric parameter space. The prospects for testing
this region of parameter space wherein we have early
decays is promising. These models will be tested by ob-
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servations made with NGST of the high redshift universe
(e.g., [12]), by future surveys of strong lens systems (e.g.,
[13]), weak lensing measurements (e.g., [14]), as well as
the more traditional CMB and large scale structure
observations.

The dark matter observed today could also be a mixture
of particles produced during the reheating phase and those
arising from the decays. For the gravitino example, the two
contributions are expected to be comparable for a reheating
temperature of 1010 GeV. This kind of mixed model would
ameliorate the rapid drop in power on small scales.

Dark matter from decays have a nonthermal momentum
distribution. Lin et al. [15], Hisano et al. [16], Kitano and
Low [17] studied different models of nonthermal WIMP
dark matter and their effect on the small scale structure.
The generic cosmological effects they found are similar to
what we discuss here because the effects stem from the
large velocity dispersion. Decays leading to a large veloc-
ity dispersion were also considered briefly by Hogan and
Dalcanton [18] in their work on the astrophysical conse-
quences of a small primordial phase-space density.

II. DARK MATTER FROM DECAYS

Consider the decay process, DDM! DM + L, where L
denotes ‘‘light’’ particles with mass m1, DM is the dark
matter today with mass m and DDM is the parent particle
with massM. When we derive the perturbations, we will be
enforce the limit m1 <<m as is appropriate for super-
symmetric models (e.g., [4]). We will also assume that
DDM and DM are neutral, for example, a sneutrino decay-
ing into a neutrino and a gravitino. All of the effects we
mention here are relevant also for charged particle decay.
In addition, the coupling of the charged parent particle to
the photon-baryon system results in the damping of per-
turbations that come into the horizon when the charged
parent particles dominate the nonrelativistic matter density
[9]. We will work out the physics and astrophysics of
charged particle decay in a future publication.

For a generic n-body decay, neglecting Pauli-blocking
factors and inverse decays, the change in the phase space
due to decays is given by

_f DDM�pDDM� � �
aM

EDDM�
fDDM�pDDM�; (1)

where E2
DDM � p2

DDM �M
2 and fDDM is the phase-space

distribution of the DDM particles. The over-dot denotes
derivative with respect to the conformal time, d� � dt=a
and a is the scale factor. Specializing to two-body decays,
one can show that the DM phase space is populated by the
DDM decays according to the equation [19,20]:

_f DM�pDM� �
aM2

2�EDMpDMpCM

Z E2

E1

dEfDDM�p�; (2)

where E2;1 � �0:5EDMm2
0 � pDMpCMM�=m2

DM. pCM is the
center-of-mass momentum and m2

0 � M2 �m2
DM �m

2
L.
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An analogous equation holds for the other daughter parti-
cle. Note that for a two-body decay we have lifetime � �
8�M2=pCMjMj

2 where jMj2 is the quantum mechanical
amplitude for the decay process. Also note that since the
decay happens when the DDM particle is cold, pCM is an
accurate measure of the momentum imparted to the daugh-
ter particles.

The equations for the change in the phase-space distri-
bution due to the decays, Eq. (1) and (2) can be integrated
to yield the following equations for the change in the
density of DM and DDM.

_� DDM � 3
_a
a
�DDM � �

a
�
�DDM; (3)

_� DM � 3
_a
a
��DM � PDM� �

am2
0

2�M2 �DDM; (4)

where PDM is the pressure of DM and it is comparable to
�DM at early times when the bulk of decay occurs. An
equation for ‘‘L’’ particles may be written down by inspec-
tion of the DM equation.

We will also need to calculate the phase-space distribu-
tion of DM particles. One can show that this is (in the limit
of completely nonrelativistic decay) given by

fDM�q; a� �
�2��2�M�crittq

mq3�
exp

�
�
tq
�

�
��apCM � q�;

(5)

where q is the comoving momentum of the DM particle
and tq � t�a � q=pCM�. We have assumed that the decays
are happening during radiation domination and hence tq /
q2 and fDM�q� / q�1 exp��q2=	2p2

CM� _a
�.

III. PERTURBATIONS

We now write down the equations for the perturbations
in DDM, DM and L particles. The first result is that the
perturbation in density relative to the mean for the DDM
particles is unchanged. This is derived by using the fact
that the DDM particles are nonrelativistic. The physical
content of this statement is that since the DDM particles do
not have a large peculiar velocity during decay, the only
effect of the decay is to remove the same fraction of the
DDM particles from every region of space.

To calculate the perturbations explicitly, we write it as a
sum of two terms:

�fDM;‘�k; q; a� � �f�a�DM;‘�k; q; a� � �f
�b�
DM;‘�k; q; a�: (6)

The first term �f�a�DM;‘�k; q; a� is chosen to satisfy the colli-
sionless Boltzmann equation for a massive particle and
may be calculated in a manner analogous to the perturba-
tions in the massive neutrino phase space [21]. The second
term is harder to calculate numerically. One can make
approximations similar to the one made in the previous
section and obtain:
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�f�b�DM;‘�k; q; a� � fDM�q; a�h�k; aq�|�k!q�a; aq��; ‘ (7)

where aq � q=pCM, !q�x; y� �
R
x
y da�q=��q; a��= _a and

��q; a� �
����������������������
m2a2 � q2

p
is the comoving energy. Note that

!q�x; y� is the comoving distance traversed by a particle
with comoving momentum q between x and y. h�k; a� is
the perturbation to the trace of the the synchronous gauge
spatial metric in fourier space written as �ij��k�=3�

�ijh�k; a� � �k̂ik̂j � �ij=3���k; a� [21].
We have modified CMBfast [22] to incorporate the

above physics. The physics of how the decay affects the
dark matter perturbations is simple. The decay of DDM to
DM provides a large momentum to the DM particle. This
implies that the mean free path of DM is larger than in the
standard case. Perturbations on scales smaller than the
‘‘mean free path’’ of the DM particle cannot survive.

How is this manifested in the Boltzmann equation? The
solution of the linearized collisionless Boltzmann equation
(valid when the decay term can be neglected) can be
written as

���a0� � �2��
�2a�4

0

Z a0

0
da

Z 1
0
dq�q3 df0

dq

�

�
�
h0

3
j0�k!q�a; 0�� �

2

3
�0j2�k!q�a; 0��

�
;

(8)

where h0 and �0 denote derivatives with respect to scale
factor a. The free-streaming effect comes in through the
effect of the function !q. We note that the j0 and j2 terms
result from the plane wave expansion of exp�{k!q�a; 0��. In
the limit of m! 0, we have a plane wave (which is how
the photons free-stream after decoupling). In the other limit
ofm! 1, j0 ! 1 and j2 ! 0, and we obtain the evolution
of the CDM density perturbations. Similar expressions
were first derived by Bond and Efstathiou [23], and
Brandenberger, Kaiser and Turok [24]. On small scales,
one may make further approximations and write ���a0� �

�2���2a�4
0

Ra0
0 da�h

0 ��0�=3
R
dqq2�f0d ln�wq�=d ln�q��

cos�k!q�. Note that when k!q�a; q=pCM� gets large, we
get no contributions to the integral due to cancellations
from rapid oscillations. The power spectrum is thus
suppressed.

A point of interest in this discussion is that the quantity
that determines the damping of the power spectrum on
small scales is not the canonically defined mean free pathRteq
� dtv�t�=a�t�. Damping occurs when k!q�a; q=pCM�>

1; very roughly, this condition picks out scales smaller than
0:005�Q=	M�=pc3=� km s�1�3
��1=3 Mpc.

What are the natural variables to describe this class of
‘‘warm dark matter’’ models? We may take adec and
m=pCM to be the two variables. adec is the scale factor of
the universe when the age is equal to the lifetime �. The
063510
cosmological consequences depend only on these two
variables.

If we specialize to the case of decays in the radiation
dominated era, then we will find that there is just one
variable that adequately describes the cosmological ef-
fects. For those decays that release EM energy, decays
must occur in the radiation dominated era in order to not
distort the CMB black body spectrum beyond the 10�4

level.
A physically motivated variable is phase-space density

of DM particles in the early universe. We will adopt the
definition of Hogan and Dalcanton [18] who defined Q �
�=hv2i. For times much larger than the decay lifetime, we
have the exact relation

Q � 10�24

�
m

pCMadec

�
3 M�=pc3

�km s�1�3
: (9)

We will see that as a first approximation, the power spec-
trum only depends on Q. For reference, we note that in the
case of the slepton decaying to the gravitino, Q � 2:1�
10�3�2pCM=M�3�M=TeV�4:5M�=pc3=�km s�1�3.

The net result on the power spectrum can be written in a
manner analogous to the massive neutrino case. The
power-spectrum is suppressed on scales smaller than �c.
Here we provide a simple fitting formula that encapsulates
the basic features of the power spectrum at the 25% level
for lifetimes less than about a year and k < 25h=Mpc.

PDM�k� � PCDM

�
1

2
exp���k�c�2=2� �

1

2
	1� �k�c�3
�1

�
2
;

(10)

where �c � 0:0198=Q0:275 Mpc. At this level of accuracy,
we thus have a one parameter family of models.

The above power spectrum should be compared to
the power spectrum in Warm Dark Matter (WDM)
models. Bode, Ostriker and Turok [25] quote PWDM �

PCDM�1� ��k�2	��10=	 based their analytic work and the
exact results of Ma [26], where 	 � 1:2 and � �
0:048h�1 Mpc��WDMh

2=0:169�0:15�keV=m�1:15 for a fer-
mionic WDM with two internal degrees of freedom. Note
that the asymptotic power-law in the two models are differ-
ent; the decay model has comparatively more power due to
its nonthermal distribution. Looking at the variance 
�M�,
we find that the modified DM power spectrum with �c �
0:1 Mpc=h is a good fit to the variance function for a 1 keV
WDM model. Bode, Ostriker and Turok [25] find that the
large scale structure constraints are met by a WDM model
with 1 keV particle. Thus, �c & 0:1 Mpc=h will also re-
produce the large scale structure we observe. For reference
we observe that a keV WDM implies Q � 5�
10�4M�=pc3=�km s�1�3. From the approximate formula
following Eq. (10), we get a similar Q value for �c �
0:1 Mpc=h and h � 0:65.
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IV. PHASE-SPACE DENSITY CONSTRAINTS

In warm dark matter models like those due to massive
neutrinos, an important constraint for late time cosmology
results from the finite phase-space density [18,27]. For a
warm dark matter fermionic particle which decouples
when relativistic, the phase-space density frozen in is a
Fermi-Dirac distribution. The maximum allowed phase-
space density for a Fermi-Dirac distribution is given by
h�3=2. The resulting gravitational distortions of the phase-
space sheets can never exceed this phase-space limit for
collisionless particles. This is a direct consequence of
Louiville’s theorem as applied to collisionless systems
(also called the Vlasov equation).

For the decaying dark matter particle at hand, the maxi-
mum phase-space density, though finite, can be very large
because of the 1=q term. We note that q tends to a constant
when the parent particle is relativistic.

The maximum phase-space density argument is not the
strongest statement that can be made regarding the evolu-
tion of collisionless systems. Consider a phase-space dis-
tribution that is Fermi-Dirac plus a delta-function at some
small q value. The maximum phase-space density argu-
ment would have nothing to say in this case. However, if
the total number of particles within the delta-function spike
is small, then we do not expect them to affect the evolution
of the collisionless system.

Lynden-Bell [28] showed that collisionless systems have
an infinity of conserved quantities. He labeled these
M�>f�, the mass of particles (or phase-space cells) with
densities greater than a value f. There is however a prob-
lem in using M�>f� to make statements about the evolu-
tion of a collisionless system. Lets consider the case of a
uniform density of particles collapsing to form a galaxy.
The observational information we have about the galaxy is
never about the fine-grained distribution of the system. We
only measure averaged quantities—the coarse-grained
distribution. M�>f� is not conserved for coarse-grained
distributions; it could increase or decrease. Tremaine et al.
[29] proved a theorem using the Boltzmann H-functionals
that coarse-graining decreases these H-functionals (con-
cave functions of the distribution function, like the en-
tropy). What about comparing two coarse-grained
systems?

Dehnen [30] (see also the early work by Mathur [31])
recently proved that there exists a function—the excess
mass function—that always decreases as a result of
coarse-graining. The more coarse-grained, the smaller
this excess mass function. The excess mass function is
very close in spirit to Lynden-Bell’s M�>f�. It is defined
as:

D�f� �
Z
d3xd3q�F�x;q� � f���F�x;q� � f� (11)

Let us look at the two important features of this function in
a little more detail. First, for collisionless systems D�f� is
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an invariant. In a collisionless system, the phase-space
density is conserved along a worldline (solution of the
equations of motion). Thus the total ‘‘mass’’ in elements
with F > f must be the same (even though the global
distribution of this mass could have changed). Second,
for collisionless systems, D�f� decreases as a result of
coarse-graining. In order to see why this is so, let us
coarse-grain by dividing up our phase space into ‘‘macro’’
phase-space cells [28]. Each macro-cell of phase space is
made up of many (at least more than one) micro-cells.
Suppose that the macro-cell created in this way has F > f.
Now those micro-cells in this coarse-graining that had
densities larger than f do not change D�f�. However, the
micro-cells with densities smaller than f that get included
in D�f� (post coarse-graining) do change D�f�. In fact, it
can only decrease D�f� because the F� f is negative for
them. We can similarly argue that a macro-cell created
with F < f also decreases D�f�. Thus coarse-graining can
only decrease D�f�.

This provides a natural way to constrain the inner cores
of dark matter halos.D�f� for the halo must be smaller than
theD�f� calculated for the primordial distribution function
for all values of f. We note that this constraint is stronger
than demanding that the entropy of the halo be larger
than the entropy of the collection of particles that make
up the galaxy halo in the early universe. This may be
ascertained once the change in entropy is written as
�k

R
1
0 df�D�f�=f [30] where �D�f� is the change in

the excess mass function.
V. DARK MATTER HALOS AND THEIR CORES

As an application of the above discussion consider a
halo of DDM particles that has a King profile. These
profiles have a core of almost constant density, a roughly
1=r2 density run and finally a sharp drop in density to zero.
The benefit of these profiles over the usual isothermal
profiles is that the King profiles have finite mass.

The small galaxies in the local group have large Q
values. From a compilation of Local group dSph galaxies
by Mateo [32], we infer that the largest value of Q is
observed in Sculptor with a core radius of 110 pc and 1-
D stellar velocity dispersion of 6.6 km/s. Dalcanton and
Hogan [33] show that one may assign a Q value of 2�
10�4M�=pc3=�km s�1�3 to this galaxy. They also assignQ
values to seven other local group galaxies with measured
stellar velocity dispersions between 6 and 11 km/s and
Mv >�14. The Q values range between 10�5 and
10�4M�=pc3=�km s�1�3.

We choose a King profile for the dark matter halo with a
concentration equal to 24 and central density set by the
observed stellar profile core and stellar velocity dispersion
[34]. The total mass of the halo thus chosen is 2� 107M�.
We plot the excess mass function, normalized to the total
mass, for this profile in Fig. 1. We also plot the primordial
-4
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FIG. 1. The solid curve shows the excess mass function for a
dark matter halo with a mass of 2� 107M� and a King profile.
The dashed curve shows the excess mass function for the
primordial phase-space distribution of dark matter from decays
with Q � 2� 10�5M�=pc3�km s�1��3.
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excess mass function that is greater than, but barely so,
than the halo excess mass function.

The King density profile drops to zero exponentially.
The drop is sharp enough that for some small value of f,
the King excess mass function will always be larger than
the primordial one. Therefore, in the above comparison we
only look at f values such that M�>f�< 0:99M�>0�. Any
realistic profile will have a more benign behavior at small
f; indeed, the excess mass function constraint will impose
such behavior.

The above exercise indicates that the decay parameters
must be such that Qprim > 2� 10�5M�=pc3�km s�1��3.
We note that if the halo of Sculptor is less massive than
we have assumed, then Qprim will have to be larger. If the
halo is more massive, then Qprim can be lower. In scenarios
with a small scale cut-off in the power spectrum, the
second possibility is more likely because the cut-off leads
to a paucity of small mass halos [35].

We also note that requiring the excess mass function of
the galaxy to be smaller than the fine-grained excess mass
function in the early universe is a minimal constraint. The
final effect on the galaxy of a small primordial phase-space
density is likely more complicated because of halo
mergers.

An interesting exercise at this point is to compare the
constraint above to that obtained by demanding that
the entropy of the collection of particles that make up the
galaxy can only increase. We define entropy for N indis-
tinguishable particles as S � �kN

R
d3xd3pf�p;x��

	ln�f�p;x�h3� � 1
. For dark matter from decays, this
063510
works out to kN ln	2�e2��=2m4Q�1h�3
, which is very
close to the entropy for an ideal gas of particles with
the same Q. A comparison with the King profile entropy
for Sculptor galaxy yields the result that in order for
the entropy to not decrease we must have Qprim >
10�5M�=pc3=�km s�1�3, weaker than the constraint ob-
tained from the excess mass function analysis.

The study by Dalcanton and Hogan [33] found that the
lowest mass halo core densities could be interpreted as
resulting from a finite primordial phase-space density.
However, they found no compelling argument to attribute
to the core density vs velocity dispersion they found over a
wide dynamic range to the effect of a small primordial
phase-space density.

The effect of a finite Q goes beyond just smoothing the
inner cores of small galaxies. Larger galaxies are a result of
the merger of smaller galaxies and hence the cumulative
effects on the halo density of larger dark matter halos could
be substantial. Zentner and Bullock [36] used semianalytic
arguments and the merger tree formalism to show that a
small phase-space density can lead to a lowered concen-
tration for dark matter halos. For the fermionic warm dark
matter candidates, they calculate c�M� for a given virial
speed andQ. We find that c�M� / Q0:63 approximates their
results well for the range of Q values of interest. The exact
relationship between c�M� and Q is more complicated in
the present model as compared to the warm dark model
case. This is because the constraint on Q depends on the
final phase-space profile of the halo. A more detailed study
is required on this subject.

Why is this important? The concentration of �CDM
halos as obtained from fits to low surface brightness gal-
axies (LSBs) falls on the low side. This might be due to two
reasons. One, LSBs are extremely strongly biased to form-
ing in the lowest concentration halos. Two, CDM is not the
correct description of dark matter. As yet, we have no
compelling model advocating that the first reason is cor-
rect. Clearly, the model presented here has the right fea-
tures to help explain the observed low concentrations.

The small scale end of the CDM power spectrum has to
contend with another issue. CDM predicts a lot of subhalos
in the halos of the kind that would host the Milky Way.
However, we see almost a factor of 10 smaller number of
galaxies [37]. On the other hand CDM substructure seems
to be required to explain the strong lensing anomalies [38].
Plausible astrophysical solutions [39] to this problem cer-
tainly exist, as do more exotic ones. Kamionkowski and
Liddle [40] advocated reducing small scale power to ex-
plain the lack of small galaxies in the halo of the Milky
Way. Zentner and Bullock [36] looked at this issue in detail
and worked out the substructure fraction for linear power
spectra with a small scale cut-off. Their semianalytic re-
sults applied to our model of dark matter from early
decays, and the results of the WDM simulations by Colin
et al. [41], suggest that this kind of dark matter will help
alleviate the above mentioned discrepancy.
-5
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Another problem that has frequently been discussed is
the observational case against cuspy halos that CDM simu-
lations predict [42–45]. Low surface brightness and dwarf
galaxies seem to be better fit with a density profile that
flattens towards the center (e.g., [46–49]). Such evidence
for a core in higher mass galaxies is lacking. However, it is
also true that that the larger galaxies are dominated by
baryons in the centers making it harder to detect a core if it
were present. Dark matter from decay of WIMPs can
introduce a core in the smallest mass halos �107M� if
Qprim is small enough, Qprim � 10�4M�=pc3=�km s�1�3,
and reduce the concentration parameter of larger halos. A
model with such low Q values would produce a cut-off in
the power spectrum given by �c � 0:25Mpc. Is this con-
sistent with having the universe reionize fully at a redshift
of six? We explore this in the next section.
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FIG. 2. The curves show the collapsed fractions of halos with
virial temperatures larger than 104 K. Below this temperature,
the gas can only cool by molecular hydrogen. The solid curve
corresponds to a standard �CDM model with no tilt. The dashed
curve corresponds to the same model but with a linear power
spectrum modified according to Eq. (10) with �c � 0:1 Mpc=h.
The dotted curve has �c � 1 Mpc=h.
VI. REIONIZATION

Reionization provides a stringent constraint on the small
scale power spectrum. The universe is reionized to a red-
shift of 6 and so there should at least be enough small
scale power to do that. The recent WMAP results hint [10]
that the optical depth to Thomson scattering might be large
(� 0:1) indicating early reionzation. If true, this would
have dramatic implications for the parameter space of dark
matter from decays.

Barkana, Haiman and Ostriker [50] considered the con-
straints on warm dark matter candidate from cosmological
reionization. Their detailed considerations led to the con-
clusion that WDM with masses larger than about a keV
could reionize the universe at redshift six.

Here we perform a simple analysis to understand the
effect of the decay on reionization using the semianalytic
models of Haiman and Holder [51]. The ionized fraction is
written as

FHII�z� � �b�z�
Z z

1
dz0�

�
dFcoll;Ib

dz
�z0�

� �1� FHII�z0��
dFcoll;Ib

dz
�z0�

�
~VHII�z0; z�; (12)

where �b is the average baryon density and ~VHII�z
0; z��M is

the volume of region ionized at redshift z0 in a halo of mass
M. The subscripts Ia and Ib [51] refer to different virial
temperature ranges. Type Ia halos have temperatures be-
tween 104 K and 2� 105 K, while Ib halos have tempera-
tures higher than 2� 105 K. In principle there is also a
contribution from halos with virial temperatures smaller
than 104 K. This aspect has gotten a lot of attention
recently because it could be very important for an early
reionization epoch. We are neglecting this contribution
here to make a better comparison between CDM and DM
from decays. In models with suppressed small scale power,
this contribution is small.
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The reionization model as written above has two free
parameters: CHII, �.CHII is the clumping factor for the IGM
predicted by CDM simulations to be of order 10 at high
redshifts. In the decaying DM scenario, the clumping
factor may be smaller, thus impeding recombinations.
For our simple analysis, we will take CHII � 15 for CDM
and CHII � 10 for the DM from decays. A robust calcu-
lation will require input from n-body simulations.

The efficiency parameter is the product of the average
(over IMF) number of ionizing photons over the lifetime of
the source, the escape fraction of ionizing photons and the
fraction of baryons converted to sources (stars). We take
the efficiency to be 100. Given standard IMFs for metal-
rich stars, we expect 4000 ionizing photons per baryon.
Thus an efficiency of 100 implies escape fraction times
fraction of baryons in stars of 2:5% in keeping with what is
observed in the local universe.

With the above inputs, the �CDM model gives a optical
depth of 0.091. For �c � 0:1 Mpc=h, we get an optical
depth of 0.061, while for �c � 0:3Mpc=h we get 0.035.
However, for �c � 1 Mpc=h we get an optical depth of
0.017, inconsistent with an ionized z < 6 universe.

The calculations of this section show that in order
to be able to reionize the universe by redshift six, we
expect that �c & 0:3Mpc=h, which implies Qprim *

10�5M�=pc3=�km s�1�3. The constraint is similar to the
one we found in the last section by considering the phase-
space constraint from local group galaxies. If the universe
-6
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is reionized at higher redshifts than six, this constraint will
tighten considerably.

How reliable are the above calculations? Along with the
simplistic modeling of the reionization process, one of the
weak points of the above calculation is the calculation of
the collapsed fraction. We calculate 
2�M� using the modi-
fied linear power spectrum and use the extended Press-
Schechter [52] scheme of Sheth and Tormen [53] to cal-
culate the mass function of dark matter halos. The results
of this calculation for the collapsed fraction of halos with
T > 104 K are shown in Fig. 2. It is unclear that such a
calculation will yield accurate results on small scales
where the suppression in power becomes important and
where structure formation is not fully hierarchical.

VII. MIXED MODELS

In scenarios of the kind we have discussed above, we
may expect some of the DM to be produced during reheat-
ing after inflation. Let us take the case of the gravitino DM.
If the reheating temperature is around 1010 GeV then we
expect comparable contribution to the total number density
of gravitinos today from the decay and the reheating phase
(see Roszkowski and Austri [6] for recent work on early
universe constraints on these models). The gravitinos from
the reheating phase would behave as Cold Dark Matter
particles.
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FIG. 3. The curves show the power spectrum for different
values of f, the fraction of dark matter today that came from
decays. The solid curve shows the f � 0 case (CDM). The
dashed curve shows the f � 0:5 case while the dotted curve
shows the f � 1 case. It is clear that the suppression on small
scales is much reduced for the f � 0:5 case. For comparison, we
also plot (see thin solid curve) the transfer function for a 1 keV
Warm Dark Matter model.
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The main impact of these ‘‘mixed models’’ is to soften
the small scale effects. This was considered in detail by
Profumo et al. [8] for the charged particle decay scenario.
We write the dark matter density today as �DM � f�DEC �
�1� f��CDM where f is the fraction of the dark matter that
results from the decay. The z � 0 transfer function for the
total dark matter is shown in Fig. 3. Note that the suppres-
sion on small scales is reduced as expected. The form of the
transfer function cannot be trivially obtained from the
transfer function for the f � 0 and f � 1 cases.
VIII. DISCUSSION

The phenomenology of DDM models is rich and much
work remains to be done. To make robust contact with data
on small scales we need large scale structure simulations
and semianalytic models. A few detailed simulations in
this regard have been run for models with keV WDM
particle [25,41], with linear power spectrum cut-off on
small scales [54], and to understand the dependence of
the power spectrum on substructure [55].

We looked at some beneficial features of these models in
the previous sections and also the constraints on them.
What are the other constraints? Narayanan et al. [56]
show that in the WDM scenario, masses smaller than
750 eV are disfavored by the Ly-� data. Recent work by
Viel et al. [57] peg the lower limit on the WDM mass at
550 eV at 2
. If we naively compare the variance 
�M� in
the WDM and the present model, then this may be turned
into a constraint on the phase-space density parameter (see
Eq. (9)), Q> 10�4M�=pc3=�km s�1�3 corresponding to
WDM masses larger than 750 eV, and Q> 5�
10�5M�=pc3=�km s�1�3 corresponding to WDM masses
larger than 550 eV.

Thus, we may summarize the present constraints on
models where the bulk of dark matter today results from
decays with a lifetime of about a year or smaller as Q *

10�4M�=pc3=�km s�1�3. Future comparisons with data
will require large simulations to understand structure for-
mation in these models; it does not proceed in a bottom-up
hierarchical manner [25,41,54].

Can we push down to 100 kpc or even 10 kpc cut-off
scales? Strong lensing flux anomaly technique is a sensi-
tive probe of the amount of substructure [13]. Robust limits
from this technique will require detailed theoretical under-
standing of issues such as the anisotropic distribution of
substructure in dark matter halos [58]. Weak lensing con-
straints from future surveys is another promising avenue to
learn more about dark matter on these small scales [14].
IX. CONCLUSIONS

In this paper, we have explored the important cosmo-
logical consequences of dark matter from early decays—
the cut-off in the power spectrum on small scales, and the
limit on the phase-space density of dark matter in halos.
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The phenomenology is rich and there are multiple ways to
search for the effect of such dark matter on structure
formation. We pointed out that these models can suppress
small scale substructure, create constant density cores in
small mass halos due to the phase-space constraint and
reduce the concentration of larger mass halos. The models
that give rise to these early decays in supersymmetric
theories are natural and they inherit the correct cosmologi-
cal abundance from the WIMPs that decay into them.
Future observations of structure on small scales may be
able to distinguish between cold dark matter and the dark
matter from early decays.
063510
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