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Can the initial singularity be detected by cosmological tests?
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In this paper, we raised the question of whether initial cosmological singularity can be proven by
cosmological tests. The classical general relativity theory predicts the existence of singularity in the past if
only some energy conditions are satisfied. On the other hand, the latest quantum gravity applications to
cosmology suggest the possibility of avoiding the singularity and replacing it with a bounce. Bounce is the
moment in the evolution of the Universe when the Universe’s size is minimum. Therefore the existence of
observationally detected bounce in the Universe’s past could indicate the validity of the loop quantum
gravity hypothesis and nonexistence of initial singularity which is present in the classical ACDM. We
investigated the bouncing model described by the generalized Friedmann-Robertson-Walker equation in
the context of the observations of the currently accelerating universe. The distant type Ia supernovae data
are used to constrain the bouncing evolutional scenario where the square of the Hubble function H? is
given by the formula H> = H3[Q,,o(1 + 2)" — Q,, (1 + 2)"], where Q,, o, Q,,¢ > 0 are density parame-
ters and n > m > 0. In this paper are shown that, on the basis of the SNIa data, standard bouncing models
can be ruled out at the 40 confidence level. After adding the cosmological constant to the standard
bouncing model (the extended bouncing model), we obtained as the best fit that the parameter (), is
equal to zero which means that the SNIa data do not support the bouncing term in the model. The
bouncing term is statistically insignificant on the present epoch. We also demonstrated that BBN offers the
possibility of obtaining stringent constraints of the extra term ), o. The other observational test methods
like CMB and the age of oldest objects in the Universe are also used. We use as well the Akaike
informative criterion to select a model which best fits data and we concluded that the bouncing term
should be ruled out by Occam’s razor, which makes the big-bang scenario more favorable than the

bouncing scenario.
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L. INTRODUCTION

We are living in an age of high precision cosmology
which offers the possibility of testing exotic physics, which
is obvious for the early Universe [1]. In this context the
most important are BBN constraints because the present
Universe opens only small windows on the exotic physics.
The main aim of this paper is to discuss whether the initial
singularity can be checked against the astronomical obser-
vations. The question of singularity cannot be answered
directly, therefore we use two prototype models based on
the classical and quantum gravity theory. The first is the
ACDM which is a concordance model describing the
evolution of the Universe from the initial singularity (the
big bang) driven by the cold dark matter and the cosmo-
logical constant (dark energy). The second is a bouncing
model which appears in the context of quantum cosmology
and characterized by the lack of initial singularity. During
its evolution, the expansion phase is proceeded by the
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contraction phase at the bounce where the scale factor
assumes the minimum nonzero value.

We use some tests to discriminate between these two
alternative models. One of the most important tests applies
the SNIa data to fit the cosmological models. Recent
measurements of type la supernovae observations suggest
that the universe is presently accelerating [2,3]. A dark
energy component has usually been proposed as a source
of acceleration mechanism [4]. Many theoretical proposi-
tions have been suggested about these components.
However, the different effects arising from quantum fluc-
tuation, spinning fluid, etc. can also mimic dynamically the
role the dark energy which drives acceleration through an
additional term in the Friedmann equation [5—14]. Some of
them give rise to the bounce. In many cases they prevailed
in the very early epoch but are very small in the present
epoch. Therefore it is very difficult to detect the existence
of this component in the present and those of the relatively
close past (after CMB) observations of SNla.

In the present work we investigate observational con-
straints on the evolutionary scenario of the standard bounc-
ing cosmological models defined as a class of models for
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which the Hubble function H and the scale factor a are
related by the formula

H? = H}(Q,,0x ™ — Q,0x7"), (1

where n>m >0 and x = aio, where the index zero de-

notes the quantities evaluated in the present epoch, the
parameter (), is called the bouncing term, and the density
parameters satisfy the constraint relation

Qm,() - Qn,O =1

While we focus mainly on the constraints coming from SN
Ia data and WMAP observations, the complementary con-
straints coming from BBN and the age [15] of the oldest
high-redshift objects are also considered. We use the maxi-
mum likelihood method to estimate the model parameters
m, n, and (), 5. Similarly we analyze the models with the
additional parameter—the cosmological constant. It is
called the generalized bouncing model.

The proposition of the bounce-type evolution of the
early universe seems to be very attractive not only from
the point of view of the quantum description of the early
Universe because the expansion of the universe is accel-
erated automatically due to the presence of the bouncing
term.

The standard bouncing scenario predicts the accelera-
tion around the bounce with a transition to the deceleration
epoch. The cosmological constant brings this deceleration
epoch to the end and a new acceleration epoch begins.

Therefore, these models can be proposed as the models
of our Universe, because they include the epoch of accel-
eration. However, we show that the influence of the bounc-
ing term is insignificant in the present epoch. Therefore,
the data from the present epoch, such as the SNIa data, do
not have power to consider the model with the bouncing
term statistically significant. So the ACDM model with the
big-bang scenario is strongly favored by data over the
model with the bounce.

By the application of standard Akaike criterion of the
model selection, we can choose the ACDM model over the
generalized bouncing model. We conclude that the data fail
to support the existence of the bouncing term. The bounc-
ing term in the present epoch is insignificant and it is not
possible to detect its influence by the use of the latest SNIa
data.

This fact justifies certain scepticism about the existence
of the SNIa window on exotic physics in the current epoch.
However, we cannot rule out other models by testing them
against the current data. It is also possible to investigate the
differences in the predictions of these models for some
earlier epoch.

For example, the BBN epoch is a well tested area of
cosmology. From this analysis we gather that the extra term
Q, 0x™" causing the bounce should be constrained to be
sufficiently small during nucleosynthesis.
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The organization of the text is the following. In Sec. II
the evolutionary scenario of bounce Friedmann-Robertson-
Walker (FRW) cosmologies is investigated by the use of
dynamic system methods. We show that they are structur-
ally unstable due to the presence of centers in the phase
portraits. In Sec. III we discuss the constraints from SNIa
data on the standard bouncing models. In Sec. IV we
extend the bouncing models by introducing the cosmologi-
cal constant and then we study how these models fit the
current supernovae and WMAP data. In Sec. V we for-
mulate conclusions.

II. THE BOUNCING MODELS: BASIC EQUATIONS

The idea of bounce in FRW cosmologies appeared in
Tolman’s monograph devoted to cosmology [16]. This idea
was strictly connected with oscillating models [17-19]. At
present, oscillating models play an important role in the
brane cosmology [20,21]. The FRW universe undergoing a
bounce instead of the big bang is also an appealing idea in
the context of quantum cosmology [22]. The attractiveness
of bouncing models comes from the fact that they have no
horizon problem and they explain the quantum origin of
structures in the Universe [23-25]. Molina-Paris and
Visser and later Tippett [26,27] characterized the bouncing
models by the minimal condition under which the present
universe arises from a bounce from the previous collapse
phase (the Tolman wormbhole is a different name for denot-
ing such a type of evolution). The violation of a strong
energy condition (SEC) is in general a necessary (but not
sufficient) condition for bounce to appear. For closed mod-
els it is a sufficient condition and none of the other energy
conditions need to be violated [like null energy condition
(NEC), p + p = 0; week energy condition (WEC), p = 0
and p + p = 0; dominant energy condition (DEC), p =0
and p £ p = 0 energy conditions can be satisfied].

We can find necessary and sufficient conditions for an
evolutional path with a bounce by analyzing dynamics on
the phase plane (a, @), where a is the scale factor and the
dot denotes differentiation with respect to cosmological
time. We understand the bounce as in [26,27], namely,
there must be some moment, say ¢ = fyounces 1N €volution
of the universe at which the size of the universe has a
minimum, dpounee = 0 and @ = 0. This weak inequality
d = 0 is enough for giving domains in the phase space
occupied by trajectories with the bounce. Let us consider
the dynamics of the FRW cosmological models filled by
perfect fluid with energy density p and pressure p parame-
trized by the equation of state in the general form

p = wlap. 2

The basic dynamical system constitutes two equations:

(p +3p), )

AN =
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p = —3H(p + p). 4)

Equation (3) is the Rauchadhuri equation while Eq. (4) is
the conservation condition. If the equation of state is
postulated in the form (2), then from (4) we obtain

p = pla) = ppa™3 exp<—3 fa wfla) da). 5

It is interesting that dynamics of the model under consid-
eration can be represented in the analogous form to the
Newtonian equation of motion
A%
da’

a= (6)
where V = — ’%2 plays the role of a potential function for
the FRW system. Therefore different cosmological models
are in a unique way characterized by the potential function
V = V(a) and we can write down the Hamiltonian for the
fictitious particle-universe moving in the one-dimensional
potential as

3—[=p—3+V(a) =g 7
2 4 pa a' ()

It is useful to represent Eq. (6) in the form of dynamical
system,

v
ax’

x=y, y= ®)
where we denote x = a, y = a, and system (8) has the first

integral in the form
2 k
Y 4V =—= 9
"V =5, ©

where k is the curvature index.

The critical points of the system (8) if they exist are y, =
0, (% x, — 0; i.e. they are always static critical points
located on the x-axis. The form of the first integral (9)
defines the algebraic curves in the phase plane (g, @) on
which lie solutions of the system. These solutions are in
two types: regular is represented by trajectories or singular
is represented by singular solutions for which the right-
hand side of (8) are null [or V(xy) = — % for nonflat mod-
els]. Note that the bouncing points are intersection points
of trajectories situated in the region of the configuration
space in which % =0, i.e. V(a) is a decreasing function of
a or has extrema. It is well known that the systems in the
form (8) have only critical points of two admissible types:
centers if [(d*V)/ (dxz)]xo >0 or saddles in the opposite
case if [(d*V)/(dx?)],, <O. Therefore all trajectories with
bounce intersect an x-axis and then they are situated on the
right side from the critical point at whicha@ = Oand d = 0.
The critical points are represented by points as well as by
separatrices of the saddle point. In others words, bouncing
trajectories are represented by such trajectories in the
phase plane which are passing through the x-axis in such
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a direction that they always belong to the accelerating
region (in the neighborhood of bounce). Of course it is
only possible if the SEC is violated.
Let us consider some prototype of bouncing models
given by the Friedmann first integral in the form
H? = i — E

’
a™ a"

(10)

where A, B are positive constants and n > m, H = (Ina) is
the Hubble function, and a dot denotes differentiation with
respect to cosmological time .

It is convenient to rewrite (10) to the new form

H2 = H%(Qm,oxf’” - Qn’oxf”), (11)

where ,, o, ), o are density parameters for noninteracting
fluids which give some contributions to the right-hand side
of Eq. (10). We define density parameters (), ,=
(3Aa=™)/(3H3), Q0 = (3Ba™")/(3H3), where an index
“0”” means that corresponding quantities are evaluated at
the present epoch, x = ;—0 is the scale factor expressed in

the units of its present value aj.

After differentiation of both sides of (11) with respect to
the reparametrized time variable 7 : t — 7, |Hyldt = dT,
we obtain

- - %(Qm,o(2 —mx "+ Q,o(n—2)x7").  (12)
X

If we consider the generalization of the bouncing models
with the cosmological constant, then in both equations (11)
and (12) the parameter (), o should be added to their right-
hand sides.

Note that the bouncing models can be treated as the
standard FRW models with two noninteracting fluids
with energy density and pressure in the form

P=PmT Pn= 3H(2)Qm,0x_m - 3H(2)Qn,0x_n

p:<_1+%>pm+<_l+%>pn pm>0’pn<0-

The curvature term as well as the cosmological constant
term can be obtained in an analogous way by putting m =
2 or m = 0, respectively.

If we postulate that the present universe is accelerating,
ie. >0 at x =1, then in the general case with the
cosmological constant we obtain the following condition:

Q02 —m)+ Q,0(n—2)+20,,>0. (13)

Because relation (13) is valid any time, the substitution
H = Hj and x = 1 to (13) gives the constraint

Qm,o - Qn,o + QA,O == 1 (14)

Let us now concentrate on the standard bouncing models
(SB) without the cosmological term. Then from (13) in-
cluding constraints (14) we obtain the sufficient condition
for acceleration at present:
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Qoln—m)>2—n, (15)

where for the case of n =2, k=1 Q,(,>0 is only
required for the present acceleration.

If only €, is larger than €, o, the bouncing universe is
presently accelerating for any parameters m, n. It is worth
mentioning that condition (15) is minimal qualitative in-
formation about acceleration and the rate of this accelera-
tion is required for explanation of SNIla data.

From the definition (11), one can obtain the domain
admissible for motion of the bouncing models:

1/(n—m)
D = {x: X = x, where x, = <g"’0> } (16)
m,0

From (11) the potential function V(x) in the particlelike
description can be determined:

2
PeftX 1
Vix) = — g;flg = =5 Qe (17)
where effective density parameter e = ), 0x " —
Q, 0x7". The acceleration region in the phase plane can
be determined in terms of potential function, namely, if
v (18)
da
then universe is accelerating.
From (17) we obtain the result that at the bounce mo-
ment

dv 1 QO Om/(m—n)
t= (o) ==0Q,0f="2 —~ 1
(), 2l e @

which indicates that bouncing models defined by Eq. (11)
at the bounce are in the accelerating phase for any ranges of
model parameter m, n, {},,0, (), . Because a, is larger
than aq : (4%),, = 0, the bouncing universe stays still in
the accelerating region.

From Eq. (19) we obtain that the universe starts to
accelerate at the point x = x, such that

(Qm,o(m - 2))1/("111)
Xo == ,

Q01 —2) (20)

where a positive value of (m — 2)(n — 2) is required. Note
that in any case

X0 <xb, (21)

i.e., the start of acceleration precedes the bounce. The
value of x; determines the location of the critical point of
the dynamical system x = y,y = — % on the x-axis. The
sign of the second derivative of potential function deter-
mines the type of critical points (center or saddle) because
the eigenvalues of the linearization matrix of the system
satisfy the characteristic equation,

R
A2+ <W>(xo) —0. 22)
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From (17) we obtain

2
(%)OCO) B _%Qn,ox&”[& —m)(1 — m)
—2-n(1—-n)] (23)

Therefore if (m, n) belong to the interval (3/2, o) then
we have centers, while if (m, n) belong to the interval
(—o00,3/2) we obtain saddles.

Let us concentrate, for example, on the case of m = 3
(dust matter). Then

IV 1
()0 =3 Quori™nn =3 @9

Hence, if n > 3 we obtain (‘(%{)(xo) positive which corre-
sponds to the centers in the phase plane. The presence of
centers on the phase portraits means that all bouncing
models are oscillating. Let us note, however, that the
corresponding systems are structurally unstable because
of the presence of nonhyperbolic critical points on the
phase portraits. Physically it means that the small pertur-
bation of right-hand sides of the system under considera-
tion disturbs a qualitative structure of the orbits (i.e. a
phase portrait). In Figs. 1 and 2 the phase portraits and
diagrams of the potential function are presented for the
standard and generalized bouncing models. Figure 1 de-
scribes all special cases listed in Table I. The classically
forbidden region for a < ay is shaded. The evolution of the
model is represented in the configuration space by a
Hamiltonian level,

1
}[ =F= EQk'O.

The trajectory of the flat model separates the regions
occupied by both closed and open models. The decreasing
of the potential function with respect to the scale factor
determines the domain of phase space occupied by accel-
erating trajectories. The bounce is the intersection point of
trajectory with the axis a. Note that around the bounce we
have acceleration. On the phase plane of Hamiltonian
dynamical systems, only centers and saddle points are
admissible. The centers are structurally unstable while
saddles are structurally stable. Because the center appears
in the phase portraits of standard and generalized bouncing
models, both models are structurally unstable. The critical
points represent the static universes. The generalized
bouncing model has two disjoint acceleration regions.
The first is due to the bouncing term while the second is
forced by the cosmological constant term.

Full knowledge of the dynamics required its analysis at
infinity, i.e. at the circle at infinity x*> + y*> = oo, The
standard procedure is to use projective maps on the plane
and then analyze the system in a standard way. One can
find the critical points at infinity as an intersection of
the trajectory of a flat model with the circle at infinity,
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FIG. 1 (color online). The phase portrait and the diagram of
the potential function for BM model (all cases from Table I). The
minimum of the potential function corresponds to a center on the
phase plane. The acceleration region is located on the right from
the a;,-

ie. {(xy):Qo=0} and {z=1/x,u=y/x, and
x=o00,v=1/y,w=x/y y= co}—the trajectory of the
flat model % = —V/(x) with a circle at infinity.

Some special cases of the bouncing systems are shown
in Table 1. Because we are dealing with autonomous dy-
namical systems, their phase portrait is always given mod-
ulo diffeomorphism or equivalent modulo any time
reparametrization follows the rule 7 — 7 : d7 = f(x)dn,
where f(x) is diffeomorphism, and x is the point which
belongs to phase plane.

For analysis of bouncing models in terms of dynamical
systems, it is useful to reparametrized the original time
variable in order to obtain nondegenerate critical points at

. . . 2 7
infinity. Then we obtain 47 and % = 5 (Q,,0x* " "# —

Q,,0x* "*P) is now representing the trajectory of the flat

al.g| bouncing point al g bouncing point
; S
g g
Qi o
=l =
8 open D |
! o
o models w=k
=1 =
= S closed
> > 1 1 1 1 |
% i % P\ 1 1 1 1 [ | Odels a
i ! | 1 )
.2! ! _2 | | | | T |
(75BN | (72N 1 1 |
VJ: 1 T 1 Q! | T | i | I
E; ! ! ! 2! I | | I I
(O ) \ ! ! [3) I 1 1 1 1 1 1
i ! ! ! ! I [ 1 1 | | |
1o ! ! ! ! I 1 1 1 1 1 1
i ! ! ! ! | C‘l 1 | 1 [ |q
T ! ! ! | \,Ql | | | | |,9
b | | | [ = | | | | =
: | | ! ! | | EI 1 1 1 1 |8
i ! ! ! ! ! (D Y =) 1 1 1 1 [P =)
il | 1 | | = O 1 | | | — O
i . Q,. Q.
1o 1 1 | 1 I 1o 1 1 | 1 I =,
1 | | | P, Q80 | | | , Q Bo
b 1 1 1 | [ I g| 8 1 1 1 1 I% 8
Cor | | | Vv o | | | | |
b1 [ 1 | 1 I | 1 1 [ 1 1
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. 1 1 | 1 il 1 1 1 | ! I
1o 1 | | 1 i | 1 1 1 1 1
! | 1 | 1 I | 1 | | | I
: 1 [ 1 | 1 I 1 1 1 1 1 1
Pl [ 1 | [ l [ 1 | [ 1 I
b | 1 | | 1 I I 1 1 1 | I
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| | ] 1 1
| | 1 |
1 1

FIG. 2 (color online). The phase portrait and the diagram of
the potential function for the ABCDM model. The minimum
(maximum) of the potential function corresponds to a center
(saddle) on the phase plane. The system is structurally unstable
because of the presence of a nonhyperbolic critical point (a
center).

model; 8 should be chosen in the suitable way to regularize
critical points. Let 8 = n — 2, then as x goes to infinity y
also goes to infinity. Only the sign of the parameter m (if
m < 0) decides whether the future of the system is the type
of a big-rip singularity. If m = 0, then the case of the
cosmological constant can be recovered.

It is convenient to regularize the system by multiplica-
tion of both sides of the system x* in the first case and x* in
the second one, respectively. It is equivalent to reparame-
trized time variable following the rule 7— 7 : % =dn,
where 8 = 3 and (5) for the system from Table I. For both
systems from the table, we have an additional term in the
generalized FRW equation. In the first case the effects of
global rotation produce a contribution corresponding to the
negative energy scaling like radiation. The same contribu-
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TABLE 1. Some special cases of bouncing models.
Model Dynamical equations (first integral)
FRW model dust filled i =yx
universe with global rotation [14] L V= 1(=Q,0x72 +2[Q,, olx )3
or brane models with dark radiation [28] T =200 = [Q,0lx7% + Qp)x®
FRW dust filled X =yx

universe with spinning fluid [29]
or a class of MAG models [30]

¥ =5 (=Qyx77 + 4 Q0lx7)x7
% _Qm‘ox_l - |Q_§.’0|X_4 + leo)xlo

Stephani models
filled by perfect fluid

p=vp [13]

r=y
)'} = %(_ 'y,O(l + 3')/))(_2_37 + 5Qk’0x5_1)
5= 5(Qy0x 7 + O 0x?)

tion appears in the brane models on the charged brane. It is
known as the dark radiation [10]. Please note that an
analogous term appeared if we include the Casimir effect
coming, for example, from quantum effects of massless
scalar fields [22,31,32]. In the second case (Table I), it is
the model with spinning dust fluid. It can also be recovered
as a class of MAG models [7,30].

In both cases, we can find the center at finite domain and
periodic orbits. At infinity we have unstable and stable
nodes at x = +oo,y = Foo. The trajectory of the flat
model separates the regions occupied by closed and open
models. All models have bounce but some of them are
oscillating models without the initial and final singular-
ities. For our future investigations of observational con-
straints on bouncing models, it is convenient to derive
crucial formulas for H(z) where z is redshift z: 1+ z =
x~!. We obtain from (10) that H> = H3[Q,,0(1 + 2)" —
Q,0(1 + z)"]. It is useful to represent it in the correspond-
ing bouncing parameters.

For this aim we find x;, corresponding to the bounce and
value of redshift which identify this moment during the

evolution: x, = (8—"*%)1/("*’"), 7 =—1+ (8’—”‘(‘:)1/(”*’”).
Finally, we obtain independent model parameters charac-
terizing its role in evolution (modulo present value of Hy),

namely,

(14 zy)m 4+ 1\n—m
H=Hy |1+ 2" |1 + :
N+ z,) " — {1+ <zh + 1)

(25)

If Q,, is fixed, for example, from independent galaxy
observations, then the evolutionary scenario is parame-
trized by single n parameter

H = HO 93’0(1 + Z)3/2\/1 + (1 - %)(1 + Z)n, (26)

3,0

where we put ), o = ()3, i.e. dust filled universe.

In the case of generalized bouncing models, the potential
function takes the following form:

1 _ 1 m
V(x) - zﬂn’oxz n— Eﬂm,oxz

1
- E Q A’Oxz.

It means that if only n, m > 0 then we obtain the de
Sitter solution as a global attractor in the future. In the
opposite case if m >0 the big-rip singularities are the
generic future of the model. Note that in the class of
generalized bouncing models only trajectories around
point (x,, 0) represent oscillating models without a singu-
larity and there is an admissibly large class of closed, open,
and flat models which evolve to infinity.

It is interesting that the characteristic bounce can be
defined in terms of geometry of potential function only.
By bouncing cosmology we can understand all cosmologi-
cal models for which the potential function has at some
point a minimum.

III. BOUNCING MODEL AND DISTANT
SUPERNOVAE OBSERVATIONS

In this section we confront the bouncing cosmological
models with observations of distant SNIa. These observa-
tions in the framework of the FRW model indicate that
present acceleration of our Universe is due to an unknown
form of matter with negative pressure called dark energy
[3]. Apart from the cosmological constant there are also
other candidates for dark energy which were tested from
SNIa observations [33—35]. We use the SNIla data to test
the acceleration in the bouncing models. Moreover, these
models are attractive because they have no horizon and
initial singularity, and they yield an explanation of struc-
tures which originated in the quantum epoch [22].

We consider the flat FRW model since there is very
strong evidence that the Universe is flat in the light of
recent WMAP data [36]. We confront the two “‘bouncing”
models (with and without extra A fluid) with SNIa data.
For this purpose we calculate the luminosity distance in a
standard way,
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2 dz

0 HE)'
To proceed with fitting models to SNIa data, we need the
magnitude-redshift relation

di(z) =(1+2) (27)

m(z, M, O, 0, Qp g, n,m) — M
= M + 5log oD (z, Q0. Qpp. m, 1), (28)

where M being the absolute magnitude of SNIa and

Dy (2, Q0. Qa0 m, n) = Hody (z, Hy, Q0. Qa0 m, 1)
(29)

is the luminosity distance with H, factored out, so that
marginalization over the parameter M

M = —510g10H0 + 25 (30)

reads actually marginalization over H,,.

The parameter M is actually determined from the low-
redshift part of the Hubble diagram which should be linear
in all realistic cosmologies. It leads to the value of Hj =
65 km/s Mpc [2,3,37], i.e., M = 15.955. In further analy-
sis we estimate the models with this value of M and
without any prior assumption on H,,.

Then we can obtain the best-fit model minimizing the
function y?,

theor obs)2

X2=Z(Ml%’ 31

i i

where the sum is over the SNIa sample and o; denote the
(full) statistical error of magnitude determination and u; =
m; — M,;.

Because the best-fit values alone are not sufficient, the
statistical analysis is supplemented with the confidence
levels for the parameters. We performed the estimation of
model parameters using the minimization procedure, based
on the maximum likelihood method. We assume that
supernovae measurements came with uncorrelated Gauss-
ian errors and the likelihood function L could be deter-
mined from the chi-square statistic £ « exp(— x?/2) [2].

The first published large samples of SNIa appeared at
the end of the 1990s [2,3]. Later other data sets have been
made either by correcting errors or by adding new super-
novae. The latest compilation of SNIa was prepared by
Riess et al. [37] and became de facto a standard data set. It
should be noted that this compilation encloses the largest
number of high-redshift z > 1.25 objects in comparison to
older compilations. From this compilation we take the
“Silver” sample which contains all 186 SNIa, and the
restricted ““Gold” sample of 157 SNIa (with higher quality
of the spectroscopic and photometric records).

In order to test a cosmological model, we calculate the
best fit with minimum y? as well as estimate the model
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TABLE II. Results of the statistical analysis of the bouncing
model without dust (BM) and bouncing cold dark matter model
(BCDM) obtained for SNIa data from the best fit with minimum
x? (denoted as BF) and from the likelihood method (denoted as
L). The case of a fixed value of the parameter M is denoted as F.
If in the BF method we obtain €}, o = 0 then n could be taken as
arbitrary (marked as A).

Model Qo m Qo n M x> Method
BM model 1.00 1.4 0.00 A 15975 181.6 BF
1.00 1.5 0.00 1.7 15975 --- L
1.54 1.4 0.54 1.5 F15.955 1823 BF
1.00 1.4 0.00 1.6 F15955 --- L
BCDM model 1.86 --- 0.86 3.7 16.085 2174 BF
(dust matter m = 3) 1.86 --- 0.86 3.7 16.095 --- L
1.86 --- 0.86 3.7 F15.955 273.7 BF
1.86 --- 0.86 3.7 F15955 --- L

parameters using the maximum likelihood method [2]. For
both statistical methods we take the parameters m and n
in the interval [0, 10], n > m. We test separately the
models with and without the cosmological constant term.
We also assume priors about (), , and we estimate it or
take ., o= 0.3 (baryonic plus dark matter in galactic
halos) [38].

The results of two fitting procedures performed on the
Gold sample for the cosmological bouncing models with
different prior assumptions are presented in Tables II and
I11. These tables refer both to the y? (best fit) and results
from marginalized probability of density functions.

At first we analyzed bouncing model without any priors
for the m parameter (BM). We obtain the value y*> = 181.6
which means that this model is acceptable on the 20 level
with a degree of freedom df = 153. However, the esti-
mated value of m = 1.4 in the model is unrealistic because
the dust matter is present in the universe (i = 3). With the
prior m = 3 we obtain y? = 217.4 with the value of the
parameter n = 3.7. For the more realistic model with m =
3 and n = 4 (because of the presence of radiation matter in

TABLE II. The results of statistical analysis of BCDM mod-
els (m = 3) obtained for SNIa data from the best fit with
minimum y? (denoted as BF) and from the likelihood method
(denoted as L). The case of a fixed value of M is denoted as F.

Model Qo Qo M X2 Method
BCDM model 1.50 0.50 16.105 226.6 BF
with n = 4 1.50 050 16.095 s L

1.50 050 F15955 2964 BF
1.50 0.50  F15.955 s L
BCDM model 1.03 0.03 16.175 291.2 BF
with n = 6 1.03 0.03 16.175 s L
1.03 0.03 F15955 4434 BF
1.03 0.03  F15.955 s L
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FIG. 3. Residuals (in mag) between the FEinstein-de Sitter
model and the Einstein-de Sitter itself (zero line), the ACDM
flat model (upper curve), the best-fited BM model (upper-
middle curve), and the best-fitted BCDM model with m = 3
(lower-middle curve) (with assumed M = 15.955).

the Universe) (Table IIT), we obtain x> = 226.6. While the
bouncing model with dust (BCDM) is better fitted than the
Einstein-de Sitter model it is rejected at least on the 40
level. With priors M =~ 15.955 the model is rejected on the
8o level.

In Fig. 3 we present residuals plots of the m-z relation
for considered models with respect to the Einstein-de Sitter
(CDM) model. Apart from the CDM model (the zero line),
the three models ACDM, BM, and BCDM are shown. The
diagrams for bouncing models intersect the ACDM dia-
gram in such a way that the supernovae on intermediate
distances are brighter than expected in the ACDM model,
while very high-redshift supernovae should be fainter than
they are expected in the ACDM model. Note that this
effects are more stronger for the BCDM model than for
the BM model.

TABLE IV. Results of the statistical analysis of the extended
bouncing models (m = 3), obtained for SNIa data from the best
fit with minimum )? (denoted as BF) and from the likelihood
method (denoted as L). The case of a fixed value of parameter
€, is denoted as F. If in BF method we obtain (), = 0 then n
could be taken as arbitrary (marked as A).

Model Qo Qo n Qpg M x* Method
ABCDM model 031 0.00 A 0.69 15955 1759 BF
0.34 0.00 3.0 0.67 15965 --- L
F0.30 0.00 A 0.70 15955 1759 BF
F0.30 0.00 3.0 0.70 15945 --- L
ABCDM model  0.31 0.00 A 0.69 1759 BF
with M = 15.955 0.31 0.00 3.0 0.68 --- s L
F0.30 0.00 A 0.70 1759 BF
F0.30 0.00 3.0 0.70 - -- s L
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TABLE V. Results of comparison of ACDM model with the
extended bouncing models (m = 3) with fixed values n = 4 and
n = 6. The result of statistical analysis for SNIa data from the
best fit with minimum y? (denoted as BF) and from the like-
lihood method (denoted as L). The case of a fixed value of (),
is denoted as F.

Model Qo Qo Qpo M x> Method
ACDM model 031 --- 069 15955 1759 BF
034 --- 067 15965 --- L
FO.30 --- 0.70 15955 1759 BF
F030 --- 070 15945 --- L
ABCDM model 031 0.00 0.69 15955 1759 BF
with n =4 037 000 065 15965 --- L
F0.30 0.00 0.70 15955 1759 BF
F0.30 0.00 0.70 15945 --- L
ABCDM model 0.31 0.00 0.69 15955 1759 BF
with n = 6 034 000 066 15965 --- L
F0.30 0.00 0.70 15955 1759 BF
F0.30 0.00 0.70 15945 --- L

Similarly, we analyze the bouncing models with the
additional parameter—the cosmological constant. We
fixed a value of m = 3 (dust matter) and it is called the
extended bouncing model (ABCDM). This model with
df = 153 is statistically admissible on the 20 level
(Table IV), but we obtain (), ; = 0 (no bounce term) as a
most probable value. This result is similar also for models
with fixed values n = 4 and n = 6 (Table V), as well as
independent from the assumption on € o. In this way
ABCDM reduces to the “classical”” ACDM model.

10.00 1 1 1 1 1 1 1 1 1

9.00 r

8.00 r

6.00+ r

5.004 L

4.0 r

FIG. 4. For the extended bouncing model with M = 15.955,
there are shown the confidence levels on the plane (Q, ¢, n)
minimized over parameter ), .
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FIG. 5. Extended bouncing model with M = 15.955. The
density distribution for €),,. Confidence level 68.3% and
95.4% are also marked on the figure.

The confidence levels in the (£, n) plane are pre-
sented in Fig. 4. In order to complete the picture, we
have also derived one-dimensional probability distribution
functions (PDF) for (), (Fig. 5) and n (Fig. 6) obtained
from the joint marginalization over remaining model pa-
rameters. The maximum value of such a PDF informs us
about the most probable value of ), ,, supported by super-
novae data within the extended bouncing dust model.

0.20

0.15

0.10

density distribution

0.05

TN T T ST N B A M

0.00""'\\\\\!\\\|||
3 5 7 9

FIG. 6. Extended bouncing model with M = 15.955. The
density distribution for n. Confidence level 68.3% and 95.4%
are also marked on the figure.
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TABLE VI. The Akaike information criterion (AIC) for mod-
els under consideration: Einstein-de Sitter model (CDM),
ACDM model (ACDM), bouncing model (BM), bouncing
model with dust m = 3 (BCDM), and extended bouncing model
with dust m = 3 (ABCDM).

Model Number of parameters AIC
CDM 1 3255
ACDM 2 179.9
BM 4 189.6
BCDM 3 2234
BCDM with n =4 2 230.6
BCDM with n =6 2 2952
ABCDM 4 183.9
ABCDM with n =4 3 181.9
ABCDM with n = 6 3 181.9

From the PDFs the most probable value of (), is also
equal to 0, however a nonzero value of (), , cannot be
excluded. In this way, it is crucial to determine which
combination of parameters gives the preferred fit to data.
This is the statistical problem of model selection [39]. The
problem is the elimination of parameters which play an
insufficient role in improving the fit to data. The Akaike
information criterion (AIC) plays an especially important
role in this area [40]. This criterion is defined as

AIC = —2InL + 2k, (32)

where L is the maximum likelihood and k is the number of
the parameter of the model. The best model is the model
which minimizes the AIC. The AIC for the models under
consideration is presented in Table VI. It is clear that model
which is minimizing AIC is ACDM. Therefore there is no
reason to introduce a model with bouncing terms and such
model should be ruled out by Occam’s razor. Because the
extended bouncing dust model is statistically admissible
from SNIla data, it can be reconsidered only if the firm
theoretical reason appears. Only this situation can justify
consideration of the model with a small, but nonzero,
bouncing term.

The existence of the oldest high-redshift extragalactic
(OHReG) objects could be used as a test of the cosmologi-
cal models (Table VII). The globular cluster analysis in-
dicated that the age of the Universe is 13.4 Gyr [41]. We

TABLE VII. The age of extragalactic objects.
Number Object Z Age in Gys
1 Globular cluster 0 13-15
2 3C65 quasar 1.175 4.0
3 LBDS 53W069 1.43 4.0
4 LBDS 53W091 1.55 3.5
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FIG. 7. The age of the Universe on particular z for three classes
of models: ACDM (middle curve), bouncing model BM (upper
curve), and bouncing model with dust matter BCDM (lower
curve). We marked the age of 4 extragalactic objects by stars
(Table VII).

demonstrate that the age of OHReG objects restricts the
model parameter. As a criterion we believe that the age of
the Universe in a given redshift should be bigger than, or at
least equal to, the age of its oldest objects. With the

assumption of H, = 65 km/s MPc, the age of the universe
|
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on particular z for three classes of models is calculated
(Fig. 7). This test admits the ACDM model with Q,, =
0.3. In this model, the age of the Universe is 14.496 Gyr.
The BM model seems to be allowed from this test, how-
ever, that model predicts a much longer age of the Universe
(more than 20 Gyr) than ACDM. In turn, the BCDM model
must be rejected because its age is 11.5 Gyr.

IV. CMB PEAKS IN THE EXTENDED BOUNCING
MODEL

Acoustic oscillations in the primeval plasma during the
last scattering give rise to the temperature map of cosmic
microwave background (CMB). Peaks in the power spec-
trum correspond to maximum density of the wave. In the
Legendre multipole space these peaks correspond to the
angle subtended by the sound horizon at the last scattering.
Further peaks answer to higher harmonics of the principal
oscillations.

The locations of these peaks depend on the variations in
the model parameters. Therefore, they can be used to
constrain the parameters of cosmological models.

The acoustic scale €, which puts the locations of the
peaks is defined as

Zdec dz’/
eA — oo0 H(Zdz)’ ) (33)

Zdec Cs H(Z/)

where

H(z) = Hop[ Qo1 + 27 + Qo1+ 2* = Q01 + 2" + Qg (34)

and c, is the speed of sound in the plasma given by

%Qy,o(l + Z) - ”T{&VLQ",()(I + Z)n_3
3Qb,0 + 407’0(1 + Z) - nQn,O(l + Z)n_?).
(35)

dper _

2=
dpest

The properties of the bouncing term (), ; are unknown.
In particular, we do not know whether it influences the
sound velocity. But we assume that sound can propagate in
it as well as in baryonic matter and photons. Let us note
that, with the lack of the bouncing term (i.e. (), o = 0) and/
or when sound does not propagate in the bouncing fluid, we
obtain the standard formula for ¢2 [28].

Knowing the acoustic scale we can determine the loca-
tion of the mth peak

em ~ €A(m - ¢m) (36)

where ¢, is the phase shift caused by the plasma driving
effect. Assuming that o = 0.3, on the surface of last
scattering z4 it is given by

[

r(zdec) :|0'l |: 1 pr(zdec) :|O'1
 ~ 0.267 = 0.267) —
¢ RE 03 pu(caee)

1 QrO(l + Zdec) 0.1
=0.2067 — ———| ,
[0.3 0.3 }

(37)

where Qb,th = 0.02, and r(zdec) = pr(zdec)/pm(zdec) =
Qo1 + zgee)/ Qo is the ratio of the radiation to matter
densities at the surface of the last scattering.

The locations of the first two peaks are taken from the
CMB temperature angular power spectrum [42,43], while
the location of the third peak is from the BOOMERANG
measurements [44]. The values with uncertainties on the
level 1o are the following:

€, =220.110%, €, = 546715, €y = 845712,
From the WMAP data, only the Hubble constant is Hy =
72 km/s MPc (or the parameter 4 = 0.72), the baryonic
matter density = 0.024272, and the matter density

Q0 = 0.14h72 [42] which give a good agreement with
the observation of the position of the first peak.
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TABLE VIIL
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Values of ), o and location of first three peaks.

Model

Hubble constant Q.0 £ 4, {3

Extended bouncing model n = 4

Extended bouncing model n = 6

H, = 65 km/s MPc
Hy = 72 km/s MPc
Hy = 65 km/s MPc
Hy = 72 km/s MPc

3.0X107% 217 517 816
286X 107% 222 526 829
1.4 X 10710 223 530 847
1.3X 10710 224 530 847

In the analysis of the constraints on the bouncing cos-
mological model parameters we fix the baryonic matter
density (), , = 0.05, the spectral index for initial density
perturbations n = 1, and the radiation density parameter
(28]

Qo =00+ Q,0=248"2X 1075 + 1.7h"2 X 1075
= 418072 X 1075, (38)

which is a sum of the photon (),, and neutrino €},
densities.

Assuming ), o = 0.3 and & = 0.72, we obtain for the
standard ACDM cosmological model the following posi-
tions of peaks:

€1 = 220, €2 = 521, €3 = 821

with the phase shift ¢,, given by (37).

From the SNIa data analysis, it was found that the
Hubble constant has a lower value. Assuming that Hy =
65 km/s MPc (or h = 0.65), we have ), o = 9.89 X 1073
from Eq. (38). For further calculations we take €., =
0.0001. If we consider the standard ACDM model, with
Qo = 0.3, Qo = 0.05, the spectral index for the initial
density perturbations n = 1, and & = 0.65, where sound
can propagate in baryonic matter and photons, we obtain
the following locations of first three peaks:

€, =225 €, =535 =847

We note the difference between the observational and
theoretical values in this case. We check whether the
presence of the bouncing term (), , moves the locations
of the peaks. We do not know whether it influences the
sound velocity, but we assume that sound can propagate in
it as well as in baryonic matter and photons.

To obtain the bounce, n > 4 is necessary because the
presence of the radiation term is required by the physics of
primordial plasma in the recombination epoch. From the
location of the first peak we obtain he limit for the
term. In the case n =35, with Hy, = 72 km/s MPc, we
obtain that Q, <2 X 10~'" while for n = 6 we have
that Q,,, <2 X 10717,

Please note that the special case n = 6 was analyzed for
both values Hy, = 65 km/sMPc and H, = 72 km/s MPc
and the agreement with the observation of the location of
the first peak was obtained, also for the nonzero values of
the parameter (), o [30]. It means that both values of H are

allowed from the CMB constraints for the case n = 6.
However, this value is of order 10710, The results of
calculations of the peak locations and the values of the
parameter (), are presented in Table VIIL In the special
case n = 4, the bounce term scales like radiation, the
existing of the bounce requires (1, o > (1, (. In this case,
we also obtain the agreement with the observation of the
location of the first peak for the nonzero values of the
parameter (), (on the order of 3 X 107%).

Finally, we analyze the models in which we assume that
sound can propagate only in baryonic matter and photons.
With H, = 72 km/s MPc, in the case of n = 5, we obtain
that Q, (<22 X 10"® while for n =6 we have that
Q,0<5X 107!, For the special case n =4 we have
that Q, 0 =23 X 107

We have also calculated the age of the Universe in the
ABCDM model. We find that the difference in the age of
the Universe is smaller than 10 million years for all values
of (), admissible by the CMB peaks location. So this
model is admissible by the test of the age of the OHReG
objects.

V. CONSTRAINT FROM THE BBN

The observations of abundance of light elements are in
good agreement with the prediction of the standard big-
bang nucleosynthesis (BBN). It means that the BBN does
not allow for any significant divergence from the standard
expansion law, apart from the beginning of BBN to the
present epoch. Therefore, any nonstandard terms included
in the Friedmann equation should give only a negligible
small change during the BBN epoch to render the nucleo-
synthesis process unchanged.

It is crucial for the bouncing models to be consistent
with BBN. These models have the nonstandard term (),
which scales like a™" where n > 4. For example we ana-
lyze the cases n = 5 and n = 6. This additional term scales
like (1 + z)". It is clear that such a term gives rise to the
accelerated Universe expansion if (1, o > 0. Going back-
wards in time, this term would become dominant at some
redshift. If it happened before the BBN epoch then the
radiation domination would never occur and all BBN
predictions would be lost.

The domination of the bouncing term (), should end
before the BBN epoch starts, and we assume that the BBN
results are preserved in the bouncing models. In this way
we obtain another constraint on the value of ), o. Let the
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TABLE IX. The value of zj,,,.. for the models under consid-
eration: Einstein-de Sitter model (CDM), ACDM model
(ACDM), bouncing model (BM), bouncing model with dust
m = 3 (BCDM), and extended bouncing model with dust m =
3 (ABCDM).

Model Zbounce
CDM
ACDM s
BM 3.54 X 10*
BCDM 2.98
BCDM with n =4 3
BCDM with n =6 4.05 X 10*
ABCDM 00
ABCDM with n = 4 00
ABCDM withn =6 [

model modification be negligibly small during the BBN
epoch and the nucleosynthesis process be unchanged. It
means that the contribution of the bouncing term ),
cannot dominate over the radiation term ), = 10~ be-
fore the BBN (z =~ 108)

|Qn,0|(1 + Z)n < Qr,O(l + 2)4.

It means that |Q, 0| < 1072° for the case n = 6 while
|Q),,0] < 10712 for the case n = 5, respectively. Of course,
the case n = 4 is excluded because the existence of bounc-
ing requires in this case [, ol > Q,o, while BBN con-
straints require [, 0| < .. Let us note that inequality

Q - . . . .
X, = (lﬂ—”v‘?l)l/ (=4 constrains the minimal size of the uni-

verse. The general conclusion from BBN constraints is that
in the present epoch, the bouncing term, if it exists, is
insignificant in comparison to the matter term.

Table IX gives the value of zj,,,,c. calculated for the best-
fitted model parameters. Because the bounce should take
place before BBN epoch so zpgunee 1 greater than zggy =
108. Comparing with the Zpouee presented in Table IX, we
obtain that only two classes of models ACDM and
ABCDM are admissible.

VI. CONCLUSION

In this paper we confront the bouncing model with
astronomical observations. We use the constraints from
SNIa data, CMB analysis, and BBN and the age of the
oldest high-redshift objects.

The standard bouncing model is excluded statistically at
the 40 level. If we take the extended bouncing model (with
extra () A0 term) then we obtain, as the best fit, that the
parameter (), , is equal to zero which means that the SNIa
data do not support the existence of the bouncing term in
the model. We also demonstrate that BBN gives stringent
constraints on the extra term ),  and show that the bounce
term is insignificant in the present epoch.

PHYSICAL REVIEW D 72, 063504 (2005)

It is interesting that such bouncing models with extra
inflationary expansion are presently favored in the loop
quantum approach [45—48]. The theory of loop quantum
gravity predicts that there is no initial singularity because
of the quantum effects in the Planck scale. It is due to the
continuum break and granularity of spacetime. Therefore,
we consider the model where we assume a small positive
value of (), and estimate the rest of the parameters. This
model is statistically admissible. However, when we com-
pare this model with the standard ACDM model applying
the Akaike criterion, the latter is preferred.

If the energy density is so large then quantum gravity
corrections are important at both the big bang and big rip. It
is interesting that the classical theory reveals its own
boundaries (i.e. classical singularities). The account of
quantum effect avoids not only an initial singularity but
allows also to escape from a future singularity [49-51].

The avoidance of the initial singularity arises only on the
quantum ground because the classical theory of gravity
according to the Hawking-Penrose theorems states that
these singularities are essential if only some reasonable
conditions on the matter content are fulfilled.

If we assume the classical gravity is obvious during the
whole evolution of the Universe then there is no reason to
introduce the bouncing era. The ACDM model with the big
bang is a simpler model, while the bouncing model re-
quires the admittance of observationally unconfirmed as-
sumptions. In this way Occam’s razor methodology rules
out the generalized bouncing model. The general conclu-
sion is that the present astronomical data do not support the
bouncing cosmology.

We also adopt the methods of dynamic systems for
investigating dynamics in the phase space. The advantages
of these methods are that they offer the possibility of the
investigation of all evolutional paths for all initial condi-
tions. We show that the dynamics can be reduced to a two-
dimensional Hamiltonian system. We also show structural
instability of both the standard and generalized bouncing
models. Let us note that the concordance ACDM models
are structurally stable [52]. The structural stability is a
reasonable condition which should be satisfied by models
of real physical processes. From the dynamic investigation,
we obtain that all models with the bounce are rather fragile.
It means that any small perturbation of the right-hand sides
of the dynamic equations of the model changes the topo-
logical structure of the phase space. The bouncing models
in the space of all dynamic systems on the plane form
nondense (zero measure) subsets of this plane following
the Peixoto theorem. Therefore, the bouncing models are
untypical while ACDM models are generic from the point
of view of structural stability.
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