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We consider how well the dark energy equation of state w as a function of redshift z will be measured
using current and anticipated experiments. We use a procedure which takes fair account of the
uncertainties in the functional dependence of w on z, as well as the parameter degeneracies, and avoids
the use of strong prior constraints. We apply the procedure to current data from the Wilkinson Microwave
Anisotropy Probe, Sloan Digital Sky Survey, and the supernova searches, and obtain results that are
consistent with other analyses using different combinations of data sets. The effects of systematic
experimental errors and variations in the analysis technique are discussed. Next, we use the same
procedure to forecast the dark energy constraints achievable by the end of the decade, assuming 8 years
of Wilkinson Microwave Anisotropy Probe data and realistic projections for ground-based measurements
of supernovae and weak lensing. We find the 2� constraints on the current value of w to be �w0�2�� �
0:20, and on dw=dz (between z � 0 and z � 1) to be �w1�2�� � 0:37. Finally, we compare these limits
to other projections in the literature. Most show only a modest improvement; others show a more
substantial improvement, but there are serious concerns about systematics. The remaining uncertainty still
allows a significant span of competing dark energy models. Most likely, new kinds of measurements, or
experiments more sophisticated than those currently planned, are needed to reveal the true nature of dark
energy.
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I. INTRODUCTION

Several years ago, observations of supernovae of type Ia
(SNe Ia) demonstrated that the expansion of the Universe is
accelerating [1,2]. Associated with this acceleration is dark
energy, a component with negative pressure, that makes up
a significant fraction of the total energy density. Recent
years have seen the supernova evidence for dark energy
continue to mount [3–8]. Meanwhile, cosmic microwave
background (CMB) data from the Wilkinson Microwave
Anisotropy Probe (WMAP) project [9,10], in combination
with information about either the Hubble constant [11] or
the galaxy power spectrum [12,13], also requires the ex-
istence of dark energy. Cross-correlations between CMB
anisotropies and matter power spectrum inhomogeneities
provide evidence for a late-time integrated Sachs-Wolfe
(ISW) effect [14–19]. This ISW effect indicates a recent
change in the inhomogeneous gravitational potential, pro-
viding further evidence for dark energy.

One way to characterize the dark energy is to measure its
equation of state, the ratio w � P=� of its pressure P and
energy density �. The simplest model of the dark energy is
a cosmological constant �, which has a constant w � �1.
Quintessence models describe the dark energy as a dy-
namical scalar field with an equation of state w � �1, and,
in general, w will not be constant in time [20–23].
Furthermore, models of extended quintessence or ‘‘phan-
tom energy’’ even allow w<�1 [24].

Discovering whether or not the dark energy is a cosmo-
logical constant is the primary goal of the study of dark
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energy. If dark energy is shown not to be a cosmological
constant, then the next important issues are whether or not
w<�1, which can be theoretically problematic [25]
(however, see [26–30] for an alternative viewpoint), and
whether or not w is changing with time. While a quintes-
sence with constant w � �1 is very difficult to distinguish
quantitatively from a cosmological constant, the qualita-
tive difference for fundamental physics is enormous, so it
is critical that the maximum effort be made to reduce the
uncertainty in jw� 1j and its time derivative. Ultimately,
the precise quantitative values of w and its time derivative
are important for model building, but this is less crucial, at
present, than the qualitative issue of whether the dark
energy is dynamical or not. In order to address such ques-
tions about the nature of the dark energy, it is crucial that
the equation of state and its time variation be determined
observationally.

It has been known for some time that the cosmological
probes used for studying the dark energy are plagued by
numerous parameter degeneracies [31–37]. Because of
these degeneracies, a large uncertainty in a cosmological
parameter not directly related to the dark energy sector
(e.g., the matter density) can lead to a large uncertainty in
the dark energy equation of state. This sensitivity to other
parameters means that one must incorporate the uncertain-
ties in all parameters to obtain a realistic estimate of the
uncertainties in the dark energy equation of state. In par-
ticular, one should avoid the use of strong priors on the
form of w�z�, the values of other parameters, and indepen-
dent information coming from other experiments. These
-1 © 2005 The American Physical Society
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can lead to underestimates of the uncertainty inw by a very
large factor. We will also discuss how standard likelihood
marginalization can give a misleading impression of the
uncertainty in w.

The analysis presented here employs a �2 minimization
procedure in order to avoid possible problems with margin-
alization, and assumes only weak prior constraints. We
compare our �2 minimization with the standard approach,
the marginalization of a probability function computed
using Monte Carlo Markov Chains. It is argued that our
procedure gives a more conservative assessment of con-
straints in certain degenerate parameter spaces. In this
sense, our procedure and the Markov Chain are comple-
mentary, as we will discuss.

We apply this �2 minimization analysis to the currently
available data. The simultaneous determination of the dark
energy equation of state and its redshift derivative is diffi-
cult without the combination of data from several cosmo-
logical probes. Thus we analyze the latest data from
WMAP, SN Ia searches, and the Sloan Digital Sky
Survey. Strong priors are avoided to prevent the under-
estimation of dark energy constraints. Although the data
favor w�0�<�1 and w0�0�> 0, we are unable to rule out
the cosmological constant conclusively. Furthermore, we
find the constraints on w�z� to depend strongly on the
parametrization chosen for w�z�, as well as on the location
of the best-fit model in parameter space, despite the fact
that we have restricted our study to two-parameter equa-
tions of state. We also list possible biases in the cosmo-
logical probes, and discuss their effects on our results. Our
conclusion that the cosmological constant is consistent
with current data agrees with previous analyses, as we
discuss in Sec. IV. This establishes the validity of our
analytic methods, which we can then apply with confi-
dence to projections of future measurements.

Since the cosmological constant is consistent with cur-
rent data, it is useful to ask precisely how well dark energy
may be constrained in the future using known cosmologi-
cal probes. We address this question by applying our �2

minimization procedure to simulations of the data from
these probes. Besides the CMB and SNe Ia, we simulate
data from a probe of weak gravitational lensing (WL). In
the future, WL is expected to be useful for constraining
dark energy [38–51]. Most of these studies have demon-
strated that WL breaks parameter degeneracies in the CMB
analysis, and have shown the effectiveness of the combi-
nation of CMB and WL data in constraining dark energy.

Our study is the first to use a joint analysis of simulated
CMB, SN Ia, and WL data, rather than imposing prior
constraints as a ‘‘replacement’’ for one of these data sets.
This is especially important for parameters such as w�0�
and w0�0�, which have strong degeneracies with other
parameters. Since our goal is the study of w�z� constraints,
rather than general parameter constraints, we assume the
cosmological model outside of the dark energy sector to be
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as simple as possible. Within this model, we are careful to
avoid strong priors on the cosmological parameters. It is
well understood that each of these cosmological probes has
systematic uncertainties associated with it, and that signifi-
cant progress needs to be made in order for each one to
reach the level of precision necessary for constraining dark
energy. Therefore, we attempt at every opportunity to
strike a reasonable balance between optimism and realism.

The paper is organized as follows. Sec. II A discusses
several parametrizations of the dark energy equation of
state. Our choice of cosmological parameters, and the prior
constraints imposed on them, are listed in Sec. II B. �2

minimization is compared with marginalization in
Sec. II C. Section III A summarizes our analysis of current
data, and Secs. III B, III C, and III D describe the simula-
tion and analysis of future data. Finally, Sec. IV lists and
interprets our findings, for our analysis of current data as
well as our forecasts of future constraints, and Sec. V
discusses our conclusions.

II. ANALYSIS METHODS

A. Dark energy parametrization

We have assumed that the dark energy may be parame-
trized using an equation of state w�z� � P=�, where P and
� are the pressure and dark energy density, respectively,
and w�z� is an unknown function of redshift. We have also
assumed that the dark energy sound speed is c2

s � 1.
Without any theoretical guidance about the form of w�z�,
the space of all possibilities is equivalent to an uncountably
infinite set of cosmological parameters. The data depend
on w�z� only through a multiple integral relation [37], so
we lack the large number of measurements of w�z� that
would be necessary for nonparametric inference [52]. Thus
we must describe w�z� using a small number of parameters
in order to keep the analysis tractable. The danger is that
there is no ‘‘natural’’ way to parametrize w�z�, so the
choice of parametrizations is essentially arbitrary. Ideally,
one would like to verify that any constraints obtained on
w�z� are parametrization-independent. However, the space
of all possible parametrizations is infinite dimensional, so
we are back to square one. The only feasible option is to
test for parametrization independence by comparing con-
straints on a small number of ‘‘reasonable-looking’’
parametrizations.

To begin with, we assume that w�z� is an analytic
function, and that it can be approximated at z	 1 by the
first few terms in its Taylor series about z � 0. All known
probes are sensitive to an integral of some function ofw�z�,
rather than to w�z� itself, so any ‘‘bumps and wiggles’’ in
w�z� are effectively smoothed out. It is reasonable to
assume that this smoothed w�z� can be approximated by
a low-degree polynomial in z out to z & 1. From now on
we proceed based on this assumption, with the caveat that
the ‘‘true’’ equation of state can have added ‘‘bumps and
wiggles’’ that disappear when smoothed. (Note, however,
-2
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FIG. 1 (color online). Upper bounds on w�z� for the three
equations of state (1), (2), and (4). In all three cases, w0 has
been fixed at �1.
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that any large-scale kinks or sharp changes in the actual
equation of state can be missed by such simple parametri-
zations. For an alternative approach, see, e.g., [53].)

The simplest parametrizations useful for describing dy-
namical dark energy have at least two parameters, one
describing the equation of state w�0� at z � 0 and the other
parametrizing its redshift derivative w0�0� � dw

dz jz�0. A few
parametrizations in the literature are

w�z� � w0 � w0z �Simple parametrization�; (1)

w�z� � w0 � �1� a�z��wa � w0 �
waz

1� z

�Refs: 
54; 55��;
(2)

w�z� � w0 � �1� a�z��wa � �1� a�z��
2wb

� w0 �
waz
�1� z�

�
wbz2

�1� z�2

�Ref: 
56��:

(3)

[Note that wa in (3) differs by a factor of �1 from the
definition introduced in [54]. We chose (3) in order to
facilitate comparison with (2) and (4).] We are interested
in the simplest two-parameter equations of state, and as we
will see, (1) is of limited utility for studying high redshift
data. This leaves only Eq. (2) out of the three parametri-
zations above. Since we would like to compare two ‘‘rea-
sonable’’ two-parameter equations of state, we introduce a
fourth parametrization,

w�z� �
�
w0 � w1z if z < 1;
w0 � w1 if z � 1:

(4)

Dark energy constraints based on (2) and (4) may be
compared in order to estimate the parametrization depen-
dence of our results.

The high redshift limit of each parametrization becomes
important when considering data from the CMB. Rather
than providing information about w�z� directly, the CMB
data require only that the dark energy density be less than
�10% of the critical density at the redshift of photon
decoupling [55,56]. If w�z�> 0, the dark energy density
will increase faster with redshift than the matter density,
making the CMB constraint extremely difficult to satisfy.
For the four dark energy parametrizations discussed above,
the CMB effectively requires that w�z�  0 at redshifts
z� 1.

In each of the two- and three-parameter equations of
state (1)–(4), this high redshift constraint prevents w�z�
from changing too rapidly at low redshifts. For fixed w0,
we see that: w0  0 in (1); w1  �w0 in (4); and wa 
�w0 in (2). In particular, w1 and wa have the same upper
bound. Note that these bounds arise purely from the choice
of parametrizations for w�z�. There is no fundamental
physical reason for assuming that an equation of state
which becomes positive at redshift z � 1 will stay that
063501
way long enough to interfere with the physics at
decoupling.

Figure 1 shows the upper bounds on the function w�z�
for each of the three parametrizations (1), (2), and (4),
assuming w0 � �1 in each case. Parametrization (1) dis-
allows essentially all positive w0; we will not study it
further. Meanwhile, (2) allows w�z� to increase by �w0 �
w�1� � w�0� � 0:5 at low z, while (4) allows w�z� to
increase by �w0 � 1. Some parameter combinations such
as (w0 � �1, �w0 � 0:6) are acceptable in (4), but are
simply not allowed in (2). That is, the two parametrizations
cover different regions in the �w; z� plane. Of course, these
parametrization-dependent effects of the high redshift w�z�
constraint will be important only if the dark energy is
found to have w�z� � 0 at z� 1.

We choose to use parametrization (4) for most of the
subsequent work, since it allows the widest range of �w0

values over the redshift range 0  z  1, in which dw=dz
is best constrained by the data. Outside of this range dw=dz
is poorly constrained, so without loss of generality (4)
makes the simple assumption dw=dz � 0. Equation (2) is
also studied, and the results based on the two parametriza-
tions are compared in order to estimate the parameteriza-
tion dependence of our dark energy constraints. We
describe the dynamics of the dark energy in terms of the
ratio of the dark energy density to its value today, Q�z� �
�de�z�=�de�0�. For parametrization (4), the fluid continuity
equation can be used to show that

Q �z� �
�
�1� z�3�1�w0�w1�e3w1z if z < 1;
�1� z�3�1�w0�w1�e3w1�1�2 ln2� if z � 1:

(5)

[A corresponding expression for equation of state (2) can
be found in [57,58].] Given our assumption of a flat uni-
verse, the Hubble parameter H�z� � _a=a evolves with
redshift as follows:

H�z� � H0

�������������������������������������������������������������
�m�1� z�

3 � �1��m�Q�z�
q

: (6)
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TABLE I. Summary of the prior constraints assumed for the
�2 minimization analysis.

Parameter Lower bound Upper bound

h 0.4 1.1
!b 0.003 !m

!m !b 1
�m 0 1
�K 0 0
� 0 1
A 0.5 1.5
ns 0.5 1.5
zs 0 1.5
w0 � � � 0
w0 � w1 � � � 0
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These results will be used in our discussions of the cos-
mological probes.

B. Cosmological parameters, degeneracies, and priors

Cosmology may be described using a large number of
parameters corresponding to a wide range of possible
effects. The approach taken by, e.g., [13] is to test for as
many of these effects as possible; they describe cosmology
in terms of 13 parameters. On the other hand, our aim is
more specific. We wish to determine whether dynamical
dark energy will be distinguishable from a cosmological
constant by the end of the decade. If we can answer this
question in the negative after considering only a subset of
these 13 parameters, then the addition of more parameters
will not change our conclusions. We find that even with a
relatively limited set of parameters we will not be able to
rule out dynamical dark energy. Thus, in the interests of
simplicity and computational efficiency, we restrict our-
selves to nine parameters.

Outside of the dark energy sector, we choose the sim-
plest possible description of the Universe that is consistent
with observations. The Universe is assumed to be flat, and
we do not include tensor modes, massive neutrinos, or
primordial isocurvature perturbations. Besides the dark
energy parameters w0 and w1, our cosmological models
are parametrized using h � H0=�100 km sec�1 Mpc�1�,
where H0 is the Hubble constant; !m � �mh2 �
�mh2=�crit; !b � �bh2 � �bh2=�crit; �, the optical depth
to reionization; A, the normalization of the CMB power
spectrum; ns, the spectral index of the primordial power
spectrum; and zs, the characteristic weak lensing source
redshift. (The WL source redshift was shown to be impor-
tant in, e.g., [59–61].) Actually, [13] shows that ns is not
absolutely necessary, since the simple Harrison-Peebles-
Zeldovich spectrum (ns � 1) fits the data well. However,
ns is a well-motivated parameter whose degeneracies with
the dark energy parameters could be important. Borrowing
the terminology of [13], we call �h;!m;!b; �; ns; A� the
‘‘vanilla’’ parameters. Thus, our analysis adds to the sim-
ple vanilla model one parameter describing weak lensing
sources, and two parameters describing the dark energy.

Our constraints based on this limited set of parameters
will be optimistic, since including more parameters will
tend to increase the uncertainties in w0 and w1. This is
especially true when the parameters that we neglect are
highly correlated with some of the parameters that we do
consider. Reference [13] shows a strong degeneracy be-
tween the Hubble parameter h and the curvature �K that
could potentially affect our dark energy constraints. Also,
[39] points out that neutrinos become important when
using weak lensing in the nonlinear regime to study dark
energy.

Even in our relatively simple parameter space, there
exist several parameter degeneracies. A few examples are
the angular diameter distance degeneracy [32,34–36]
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among h, �m, �b, and w�z�; the large-scale CMB degen-
eracy [31] among !m, �, ns, and w�z�; the small-scale
CMB degeneracy [33] among �, A, and ns; and the super-
nova luminosity distance degeneracy [37] between �m and
w�z�. The presence of such parameter degeneracies means
that several probes must be combined in order to obtain
reliable constraints. Furthermore, combinations of known
probes contain residual degeneracies, which we must deal
with carefully in order to determine constraints on the dark
energy.

In order to make a fair assessment of parameter degen-
eracies, it is necessary to avoid strong prior constraints on
the cosmological parameters. Priors used here are listed in
Table I. The above priors on w0 and w0 � w1 are equiva-
lent to the requirement that w�z�  0 for all z.

The simulated data sets used here for constraint fore-
casts assumed a fiducial model fw0 � �1, w1 � 0, h �
0:7, !m � 0:15, !b � 0:023, � � 0:1, A � 0:8, ns � 1,
zs � 1g. This roughly corresponds to the ‘‘vanilla lite’’
�CDM model of [13], with lensing sources assumed to
be at characteristic redshift 1. Our chosen fiducial model
implies �m � 0:31, �b � 0:047, and �8 � 0:92.

C. �2 minimization

In order to provide an accurate picture of the dark energy
constraints in a degenerate parameter space, a �2 minimi-
zation procedure was used. Constraints on the dark energy
parameters were determined using the 1� and 2� contours
of the �2 function in the �w0; w1� plane. At any given point
�w0; w1�, �2�w0; w1� was computed by minimizing over all
other cosmological parameters.
�2 minimization handles certain types of degeneracies

more carefully than marginalization, the procedure most
commonly used to obtain cosmological constraints, mean-
ing that the two methods are complementary.
Marginalization favors models that fit well over ‘‘large’’
regions of parameter space. Given two cosmological mod-
els with the same low �2, marginalization will give extra
weight to the model that sits in a large region of low-�2
-4
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models. Meanwhile, �2 minimization will pick the best
model while completely ignoring its surroundings. These
differences are illustrated in Fig. 2, based on a sample �2

function of two arbitrary parameters x and y. The 1�
contour of �2�x; y� is shown in Fig. 2 (top). Note that the
contour has a small slope at low x, but is nearly parallel to
the y axis at high x.

If we are interested only in constraints on x, then we can
either minimize or marginalize over y. Figure 2 (middle)
sketches the probability functions obtained using the two
different methods. Consider the two models A and B, at xA
1    
contour
σ  χ2

x

y

Bounds on x:

marginalized:

minimized:

x

P(x)
minimized

marginalized

A

B

FIG. 2 (color online). Comparison of minimization and mar-
ginalization in a (hypothetical) degenerate parameter space. Two
models, A and B, are labeled. Top: Sample 1� contour of
�2�x; y� in a degenerate parameter space. Middle: Probability
functions based on minimization and marginalization. Bottom:
Constraints on x based on minimized and marginalized proba-
bility functions.
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and xB, respectively, whose y values are chosen to mini-
mize �2�x; y� at the corresponding x values. Minimization
takes the viewpoint that, since �2

A � �2
B, the x values xA

and xB are approximately equally probable. On the other
hand, marginalization assigns a much greater probability to
xB, since there are many more low-�2 models at xB than at
xA. Thus the �2-minimized probability distribution looks
like a broad plateau, while the marginalized probability
looks like a sharp peak with a ‘‘shoulder.’’ The bounds on x
obtained from these two methods, as shown in Fig. 2
(bottom), are quite different. Note that this discussion is
not just academic. The CMB 95% probability contour in
the �h;�tot� plane, shown in Fig. 7 of [13], is qualitatively
very similar to the contour shown here in Fig. 2 (top).

The parameter bounds derived from marginalization
have excluded models such as A, which are within the
1� �2 contour. A procedure that excludes such models
can be problematic for two reasons. First of all, it is not
clear that low-�2 models such as A really should be
ignored; it is prudent, at least, to know of the existence
of such a model. Ignoring such points can lead to an
underestimate of the size of a degenerate region, so they
should be considered in a proper treatment of parameter
degeneracies.

Second, the notion of size in parameter space depends
on the prior constraints chosen. For a parameter vector p of
N parameters, the a posteriori probability marginalized
over all but m of the parameters is given by

P �p0; . . . ; pm�1� �
Z
dpm . . . dpN�1L�p�P prior�p�: (7)

It is customary to reduce this dependence on priors by
choosing uniform priors, with P prior�p� constant on a sub-
set of parameter space and zero elsewhere. However, the
concept of uniform priors is itself parametrization depen-
dent. Choosing priors that are uniform in a different set of
parameters q is equivalent to letting P prior�p� equal the
Jacobian determinant of the transformation from p to q.

On the other hand, marginalization has several advan-
tages of its own. First of all, one can always come up with a
�2�x; y� function which is handled correctly by margin-
alization, but for which minimization implies artificially
tight constraints. Also, marginalization naturally defines a
probability in parameter space. An analysis based on mar-
ginalization is capable of providing probability contours,
which may be more useful than �2 contours. For a non-
Gaussian likelihood function, there is no simple way to
relate contours of �2�p� to a given probability contour
without marginalization. Meanwhile, it may be the case
that a natural set of parameters exists for describing a
theory, such as h, �m, and �b in general relativistic
cosmology. The existence of natural parameters makes it
easier to choose a reasonable prior probability distribution
P prior, since one no longer needs to worry about repara-
metrization changing the form of P prior. Constraints de-
-5
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rived from a marginalization over such parameters, assum-
ing weak and uniform priors, can be quite convincing.

We take the point of view that any final constraints onw0

and w1 should be independent of the analysis method used.
If a claim made using one of the two methods does not hold
up to scrutiny by the other method, then the issue is too
close to call. For example, we do not believe that model A
in Fig. 2 is ruled out, even though it is excluded by margin-
alization over y. In this sense, �2 minimization and mar-
ginalization are complementary analysis techniques that
are useful for handling different types of parameter degen-
eracies in a non-Gaussian likelihood function. We have
chosen to use �2 minimization, partly because we are
concerned about degenerate regions such as in Fig. 2
(top), and partly because it is not clear which parameters
should be used to describe dark energy, reionization (� or
zreion), and the power spectrum amplitude (A or �8).

For completeness, we discuss a few computational is-
sues here. Minimizations were performed using the
Amoeba routine of [62], although the Powell routine
from that reference was found to give very similar results.
The computation was sped up by generating CMB power
spectra for 100 different ns values at once, and interpolat-
ing to find �2 for intermediate ns values. This gave us
information about �2 over our entire range of ns values
with just one call to CMBFAST. (Interpolation-related errors
in �2 were found to be negligible.) Also, we minimized
separately over the three parameters A, ns, and zs, since a
variation in one of these parameters did not require the
recomputation of CMB power spectra. This minimization
over A, ns, and zs was nested within the minimization over
h, !m, !b, and �.

III. COSMOLOGICAL PROBES

A. Current data

Since our analyses of current data follow standard pro-
cedures, we will discuss them only briefly.
TABLE II. Numbers and redshift distribu

SN Ia data set Number of

Current (low z) [5,7] 83
Current (mid z) [5–7] 117
Current (high z) [8] 16
Carnegie (low z) [74] 94
Carnegie (high z) [74] 90
DE Camera [75] 570
ESSENCE [76–78] 150
PANS [79,80] 80
SDSS [81] 100
SNfactory [82] 225
Supernova Legacy Survey [83–86] 525

Total 2050
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Supernovae of type Ia.—SNe Ia are standardizable can-
dles [63–66], with magnitudem�z� � 5log10�DL�z�� �M
(see, e.g., [67]). The dimensionless luminosity distance
DL�z� � �1� z�H0

Rz
0 dz

0=H�z0� depends on �m and the
dark energy parameters through H�z�, given in (6). Our
analysis minimizes �2 with respect to the magnitude pa-
rameter M, which is dependent on H0 and the SN Ia
absolute magnitude.

Cosmic microwave background.—For the dynamical
models of dark energy considered here, power spectra
were computed with a modified version of CMBFAST 4.1

[68,69]. Our analysis of the data used our own implemen-
tation of the CMB �2 function described in [70]. Noise
parameters and constants describing the WMAP parame-
trization of the Fisher matrices were taken from [71,72].

Galaxy power spectrum.—Our analysis of Sloan Digital
Sky Survey (SDSS) data used the galaxy power spectrum
[12] and the likelihood code of [13], made publicly avail-
able at [73]. Given a cosmological model, the correspond-
ing matter power spectrum was computed using CMBFAST.
The normalization of the power spectrum was treated as a
nuisance parameter; �2 was minimized with respect to it.
An accurate formula for the matter power spectrum in the
nonlinear regime, for dynamical dark energy cosmologies,
is not currently available. Furthermore, galaxy biasing in
the nonlinear regime is even less well understood.
Therefore, the SDSS data analysis presented here only
used measurements for k  0:15h=Mpc [13].

B. SN Ia simulation

1. Supernova simulation strategies

Monte Carlo techniques were used to simulate the mag-
nitudes and redshifts of type Ia supernovae, from previous,
current, and future supernova surveys, that would be avail-
able for analysis by the end of the decade. Rather than
mixing real and simulated data, it was decided to simulate
all of the surveys from scratch, so that all data used would
be drawn from the same (known) fiducial model. In order
tions of simulated type Ia supernovae.

SNe Ia Redshift distribution

uniform, 0:01< z < 0:1
Gaussian, zmean � 0:55, �z � 0:25

Gaussian, zmean � 1:0, �z � 0:4
uniform, 0:01< z < 0:07

Gaussian, zmean � 0:4, �z � 0:2
Gaussian, zmean � 0:55, �z � 0:25

uniform, 0:15< z < 0:75
Gaussian, zmean � 1:0, �z � 0:4

uniform, 0:05< z < 0:15
uniform, 0:01< z < 0:1

Gaussian, zmean � 0:6, �z � 0:3
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to conduct a realistic simulation of future supernova sur-
veys, we studied the available literature, including analyses
of current data as well as plans for future surveys. For each
SN Ia survey we estimated the expected number of super-
novae to be observed and modeled a SN Ia redshift distri-
bution. The final simulated SN Ia data set included 2050
supernovae ranging in redshift from 0.01 to 2.0, as sum-
marized in Table II. Our simulation was based upon the
following assumptions, which we justified by reference to
data whenever possible.
(i) T
wenty-five percent of the SNe Ia found by each
survey were assumed to be unusable for cosmo-
logical analysis. This is based on the fact that 23%
of the SNe Ia in the Tonry/Barris data set [5,7] did
not survive their cuts on very low redshifts (z <
0:01) and galactic host extinctions.
(ii) T
wo-thirds of all low redshift SNe (of all types)
were assumed to be of type Ia, based on the super-
novae reported in [82].
(iii) R
edshift distributions were assumed to be uniform
for low redshifts. Since m�z� at low redshifts is
independent of cosmological parameters other
than M, the details of the redshift distribution for
z & 0:1 should be unimportant for parameter
constraints.
(iv) R
edshift distributions were assumed to be Gaussian
[P�z� / exp���z� zmean�

2=�2�2
z�� ] for higher red-

shift surveys, unless otherwise specified in the
literature.
(v) C
urrent data reported in [5–8] were simulated by
dividing them into three ‘‘surveys:’’
low z, Tonry/Barris SNe Ia with z < 0:1;
mid z, SNe Ia from [5–7] with z > 0:1;
high z, Hubble Space Telescope Great
Observatories Origins Deep Survey SNe Ia [8].
This was done because the current data come from
a collection of previous surveys over a wide range
of redshifts, and are poorly approximated by uni-
form or Gaussian distributions.
(vi) F
orty percent of the expected Dark Energy Camera
[75] data were assumed to be available, bringing
the total number of supernovae to just over 2000.
Even under optimistic assumptions about system-
atic uncertainties, we do not expect an increase in
the number of SNe beyond this point to improve
constraints on dark energy [87].
2. Magnitude uncertainties

A well-studied SN Ia sample, with accurate spectro-
scopic measurements of the supernova host galaxy red-
shifts, can have an intrinsic magnitude uncertainty for each
supernova as low as ��int�

m � 0:15 [75,83]. If less accurate
host redshift information is available, the magnitude un-
certainty suffers; [75] estimates an uncertainty of ��int�

m �
0:25 when only photometric redshift information is avail-
063501
able for the host galaxies. Meanwhile, the average magni-
tude uncertainty in the Tonry/Barris sample, for SNe Ia in
the redshift range 0:1< z < 0:8, is ��int�

m � 0:3. Since the
final data set will be a combination of many supernovae
with varying amounts of redshift information, the approach
adopted here is to assume a magnitude uncertainty of
��int�
m � 0:2 for supernovae in the intermediate redshift

range 0:1< z< 0:8.
Judging from the supernovae tabulated in [5,7], the low

redshift supernovae tend to have smaller magnitude un-
certainties than average. The mean magnitude uncertainty
is 0.18 for the z < 0:1 SNe Ia, compared to 0.25 for the full
Tonry/Barris sample. Thus, for the purposes of this simu-
lation, it is assumed that the magnitude uncertainty for
each low redshift (z < 0:1) supernova is the minimum
value, ��int�

m � 0:15.
Meanwhile, supernovae at redshifts greater than about

0.8–1.0 become increasingly difficult to observe from the
ground, and the spectroscopic analyses of such SNe Ia
become very time-consuming [83,88]. In the Tonry/
Barris sample, the magnitude uncertainty rises from a
mean of 0.3 in the redshift range 0:1< z< 0:8 to 0.35 in
the range z > 0:8. Based on this, it was decided to assume
an intrinsic magnitude uncertainty of ��int�

m � 0:25 for
supernovae with z > 0:8.

It is necessary to include an extra uncertainty to account
for the nonzero peculiar velocities of actual supernovae.
Following [5], it was assumed here that the peculiar ve-
locity uncertainty of each supernova was �v �
500 km= sec. The fractional uncertainty in the luminosity
distance due the peculiar velocity uncertainty was taken to
equal the fractional uncertainty ��v=c�=z in redshift. The
resulting contribution to the magnitude uncertainty is
��pec�
m � 5�v=�cz ln�10��, where c is the speed of light.
Finally, following [87], we assumed a systematic uncer-

tainty that prevents constraints on the apparent magnitude
m�z� from becoming arbitrarily tight. In the absence of
such a systematic effect, the magnitude uncertainty in a bin
containing Nbin supernovae will be �m=

��
�

p
Nbin�, which

approaches zero with increasingNbin. To this we add �m �
0:04 in quadrature, which imposes a floor �m on the
uncertainty in each bin. We choose the bin size �z �
0:1; this acts as a ‘‘correlation length’’ for the systematic.
For a single supernova in a bin containing Nbin supernovae,
this systematic implies an effective magnitude uncertainty

��eff�
m �

���������������������������������������������������������������
���int�

m �2 � ��
�pec�
m �2 � Nbin�m

2

q
; (8)

which increases with increasing Nbin.

3. The complete SNe Monte-Carlo data set

Monte Carlo supernova ‘‘data’’ points were generated
using the redshift distributions and magnitude uncertain-
ties specified above. For each supernova from each simu-
-7
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lated experiment, the appropriate redshift distribution was
used for the random generation of a redshift z. Next, the
apparent magnitude m�fid��z� expected for a supernova at
redshift z was computed for the fiducial model used here:
�m � 0:31, w0 � �1, w1 � 0. The magnitude uncer-
tainty ��eff�

m �z� for that supernova was computed as de-
scribed in the previous subsection. Finally, the simulated
apparent magnitude m�MC� was computed by adding to
m�fid��z� a random number chosen from a Gaussian distri-
bution, with mean zero and standard deviation ��eff�

m . These
Monte-Carlo simulated magnitudesm�MC�, along with their
corresponding redshifts and magnitude uncertainties,
formed the simulated data set used here.

Table II lists the numbers and redshift distributions of
the supernovae simulated, and Fig. 3 plots the magnitude-
redshift relation of the simulated data. Note that, since the
major supernova surveys planned over the next several
years are ground based, the simulated data set contains
very few supernovae with redshift greater than about 1.2.

C. CMB simulation

1. CMB covariance matrix

In the following discussion, we use the convention of
[89] that Cl � l�l� 1�Cl=�2�� for any power spectrum Cl.
We computed variances in the Cls using the expressions
given in [70,72] for the diagonal components of the co-
variance matrices. The noise parameters N TT

l and N EE
l

were defined to be 1/8 of those used by WMAP, in order to
simulate the effects of using eight years of WMAP data.
WMAP noise parameters were taken from their data tables,
which were described in [71,72], and provided along with
the WMAP likelihood code described in [70]. The effective
noise parameter N TT;�eff�

l , as a fraction of the original
noise parameter N TT

l , and the effective sky fraction
f�eff�

sky �l� were defined as in [70]. The final expression for
063501
the uncertainties in the CTT
l s was therefore taken to be

������������������
Var�TT�

p
�

CTT;�theory�
l �N TT;�eff�

l�������������������������
�l� 1

2�f
�eff�2
sky

q : (9)

Note that (9) is a more conservative expression for the
variance than that given by [89], since there is an ‘‘extra’’
factor of fsky in the denominator of Var�TT�. The infor-
mation ‘‘lost’’ by dividing Var�TT� by fsky is actually
stored in the off-diagonal components of the covariance
matrix (which we ignored), because nearby Cls are anti-
correlated [70]. However, we found that this extra fsky had
only a negligible effect on our forecast constraints.

We used a similar form for the uncertainty in theE-mode
polarization power spectrum CEE

l . Since WMAP did not
include the CEE

l s in the likelihood analysis of their first-
year data, effective corrections to the noise and sky fraction
were not computed. We used fsky � 0:85 and N EE;�eff�

l �

N EE
l .

������������������
Var�EE�

p
�

CEE;�theory�
l �N EE

l����������������������
�l� 1

2�f
2
sky

q : (10)

Finally, uncertainties for the cross-power spectrum CTE
l

were taken from Eq. (10) in [72], using fsky � 0:85 and

fTE;eff
sky �

fsky

1:14 as described in that reference.

Var �TE� �
�CTT

l �N TT
l ��C

EE
l �N EE

l � � �C
TE
l �

2

�2l� 1�fskyf
TE;eff
sky

:

(11)

Even in the absence of a sky cut, correlations exist
among the three power spectra CTT

l , CTE
l , and CEE

l for
each l [33]. As above, we keep the extra factor of fsky in
the denominators of the expressions given in that reference.
For a given multipole l, the covariance matrix CXY , where
X; Y � TT, TE, or EE, is given by

C �l�
XX � Var�X�; (12)

C �l�
TT;TE �

�CTT
l �N TT

l �C
TE
l

�l� 1
2�f

2
sky

; (13)

C �l�
TT;EE �

�CTE
l �

2

�l� 1
2�f

2
sky

; (14)

C �l�
TE;EE �

�CEE
l �N EE

l �C
TE
l

�l� 1
2�f

2
sky

: (15)

Large-l correlations are also expected to exist between
the CMB power spectra and large-scale structure, due to
the Sunyaev-Zeldovich effect [90,91] and the gravitational
lensing of the CMB [92,93]. However, these effects are too
small to detect today [94–96]. The analysis presented here
-8
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neglected such correlations. In particular, we assumed the
CMB �2 function to be independent of the redshifts zs of
weak lensing sources.

2. Simulation

A set of simulated TT, TE, and EE CMB power spectra
was generated by means of a Monte-Carlo simulation. For
the purposes of this simulation, it was assumed that the
WMAP project [9] would be extended to eight years. Data
from the Planck mission, as described in [97,98], were not
simulated for this work; the analysis of Planck data will be
complicated by nonlinear effects such as the gravitational
lensing of the power spectra.

The WMAP-8 data set described here contained eight
years of simulated WMAP data. We simulated TT data up
to a maximum multipole of lTmax � 900, and TE and EE
data up to lEmax � 512, taking care to include the appropri-
ate correlations among the three power spectra at each l. As
detailed above, we divided by eight the tabulated WMAP
noise parameters from one year of data. Non-Gaussianities
in the distributions of observed Cl values about the under-
lying model have been ignored; see [89] for a discussion of
such effects. The simulated TT, TE, and EE power spectra
are shown in Fig. 4.

D. Weak lensing simulation

1. Convergence power spectrum

In the Limber approximation, the convergence power
spectrum is given by [99–101]
063501
P�l �
9

4
H4

0�2
m

Z �H

0

g2���

a2���
P3D

�
l

sinK���
; �
�
d�; (16)

where P3D is the 3D nonlinear power spectrum of the
matter density fluctuation, �; a��� is the scale factor; and
sinK� � K�1=2 sin�K1=2�� is the comoving angular diame-
ter distance to � (for the spatially flat universe used in this
analysis, this reduces to �). The weighting function g��� is
the source-averaged distance ratio given by g��� �R
�H
� d�0n��0�sinK��0 � ��=sinK��0�, where n���z�� is the

source redshift distribution normalized by
R
dzn�z� � 1.

We assume that all the sources are at a characteristic
redshift zs, so this reduces to g��� � sinK��s �
��=sinK��s�. For weak lensing calculations, we use the
standard BBKS transfer function [102], and the analytic
approximation of Ref. [103] for the growth factor. We use
the mapping procedure HALOFIT [104] to calculate the
nonlinear power spectrum.

2. The weak lensing �2 function

For the weak lensing spectrum, the uncertainty is given
by [99,101]

�P�l �

�������������������������
2

�2l� 1�fsky

s �
P�l �

h�2
inti

�n

�
; (17)

where fsky � �2�=129 600 is the fraction of the sky cov-
ered by a survey of dimension � in degrees, and h�2

inti
1=2 �

0:4 is the intrinsic ellipticity of galaxies. We consider a
reference survey with fsky � 0:7, in the same range as the
Pan-STARRS survey [105]. We used an average galaxy
number density of �n � 6:6� 108sr�1. �2 was computed
between multipoles lmin and lmax. For lmin, we took the

fundamental mode approximation: lmin � 360 deg=� ���������������
�=fsky

q
, i.e. we considered only lensing modes for which

at least one wavelength can fit inside the survey area. We
used lmax � 3000, since on smaller scales the nonlinear
approximation HALOFIT to the nonlinear power spectrum
may not be valid.

3. Simulation

The procedure described above was used to generate
fiducial convergence power spectra P�;�fid�l . We used the
cosmological parameter fiducial values of Sec. II A. We
then calculated the uncertainties on the convergence power
spectra using Eq. (17). The Monte-Carlo simulated con-
vergence power spectra are generated using P�;MC

l �

P�;�fid�l � r�P�l ; where r is randomly chosen from a
Gaussian distribution of standard deviation 1 [62]. The
simulated convergence power spectrum for the reference
survey and the fiducial model are shown in Fig. 5.
-9
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IV. RESULTS AND DISCUSSION

A. Goals

As we have said, the most important question in the
study of dark energy today is whether the dark energy is or
is not a cosmological constant. If dark energy is shown not
to be a cosmological constant, the next questions that arise
are again qualitative: Is the equation of state greater or less
than�1? Does it vary with time? The actual values ofw�0�
and w0�0� will become important only in the more distant
future, when theoretical models for the form of w�z� are
available. Thus, we emphasize that our goal is to answer
these qualitative questions in a careful, parametrization-
independent way, rather than to find specific values for
w�0� and w0�0� within a particular parametrization.

B. Analysis of current data

Keeping these goals in mind, we used �2 minimization
to analyze current data from the CMB power spectrum [9],
the SN Ia ‘‘gold set’’ [8], and the galaxy power spectrum
[12]. We began by using (4) to parametrize the dark energy
equation of state. The contours obtained are plotted in
Fig. 6, with grid spacings �w0

� 0:06 and �w1
� 0:15.

The resulting 1� and 2� constraints on the dark energy
parameters are w0 � �1:38�0:08�0:30

�0:20�0:55 and w1 �
1:2�0:40�0:64
�0:16�1:06, with a best-fit �2 value of 1611. Since 1�

contours are not useful for ruling out models, we selected
our grid spacings so as to obtain precise 2� constraints.
Thus, we consider our 2� contours to be more reliable than
our 1� contours, in Fig. 6 as well as in subsequent contour
plots.

�CDM models are not conclusively ruled out by our
results. Compared to the best-fit model in Fig. 6, the
�CDM model has a �2 value that is higher by 5.
However, the cosmological constant is a ‘‘simpler’’ model
of dark energy than the w�z� parametrizations considered
here, in the sense that the �CDM model has two fewer
variable parameters than (1), (2), and (4). Thus the �CDM
063501
model has �2=d:o:f: � 1616=1514 � 1:0676, while the
best-fit model from Fig. 6 has �2=d:o:f: � 1611=1512 �
1:0656. In the approximation that uncertainties in the data
points are Gaussian, these correspond to probabilities of
P�CDM � 0:0336 and Pbest-fit � 0:0378. For comparison, a
point on the edge of the 2� contour in Fig. 6 has
�2=d:o:f: � 1615=1512 � 1:0682 and probability 0.0324.
In this sense, the �CDM model is more probable than
some points within the 2� contour. Although the data favor
w0 <�1 and w1 > 0, the cosmological constant is not
decisively ruled out as a model of dark energy.

Moreover, we have not considered systematic uncertain-
ties in the supernova data, which can degrade constraints
on the equation of state. As an optimistic estimate of the
effects that such a systematic will have on dark energy
constraints, we assumed an uncorrelated systematic uncer-
tainty �m � 0:04, in redshift bins �z � 0:1, and reana-
lyzed the data. The added uncertainty caused the 2�
contour to broaden to include the cosmological constant,
while the best-fit model remained the same.

It is troubling that the best-fit model in Fig. 6 is so close
to the boundaryw0 � w1 � 0 of the dark energy parameter
space. This is despite the fact that (4), out of the three 2-
parameter equations of state illustrated in Fig. 1, covers the
greatest range of parameters in the �z; w�z�� plane.
Parametrization (2), widely used in the literature, is more
restrictive than (4), and therefore should have more prob-
lems with this boundary. We repeated our analysis using
(2), obtaining the �2 contours shown in Fig. 7 with grid
spacings �w0

� 0:1 and �wa � 0:25. The resulting 2�
bounds are w0 � �1:3�0:39

�0:34 and wa � 1:25�0:40
�2:17, with a

best-fit �2 value of 1613. Thus we see that the allowed
region shifts significantly when we switch to parametriza-
tion (2), with w0�0�< 0 models falling within the 2�
contours. Also, the minimum �2 value goes up by 1.8.
-10
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These shifts are better understood when the �2 functions
corresponding to the two parametrizations are plotted to-
TABLE III. Dynamical dark energy constraints from current data
�h;!m;!b; �; A; ns�. The cosmological probes used are bias � SD
SDSS Lyman-
, P�k� � SDSS galaxy power spectrum, SNIa � SN

Reference Probes included Parameters varied

[8] SN Ia w0, w0, �m

[54] CMB, SN Ia, P�k�, bias, Ly-
 ‘‘vanilla,’’ w0, wa

[106] CMB, SN Ia, P�k� ‘‘vanilla,’’ 4 w�z� paramet

[107] SN Ia w0, w0, �m

[107] SN Ia w0, w0, �m

[108] SN Ia �m, 3 w�z� parameters

[109] SN Ia w0, wa

[109] SN Ia w0, wa

[109] SN Ia w0, wa

[110] CMB, SN Ia, X-ray ‘‘vanilla,’’ bias, w0, wa

[110] CMB, SN Ia, X-ray ‘‘vanilla,’’ bias, �K , w0,

[110] CMB, SN Ia, X-ray ‘‘vanilla,’’ bias, 3 w�z� param

This work CMB, SN Ia, P�k� ‘‘vanilla,’’ w0, w1

This work CMB, P�k�, SN Ia (syst. �m � 0:04) ‘‘vanilla,’’ w0, w1

This work CMB, SN Ia, P�k� ‘‘vanilla,’’ w0, wa

aBounds taken from plot of 68% probability contour.

063501
gether in the �w0; �w0� plane [with �w0 � w�1� � w�0�], as in
Fig. 8. Note that the two sets of �2 contours would be
nearly identical if the region of parameter space between
the dotted lines were removed. This region corresponds to
the slice of the �z; w�z�� plane between the dashed and solid
lines in Fig. 1, which is allowed by parametrization (4) but
not by (2). Thus, the difference between the constraints
found using (2) and (4) is directly related to the parame-
trization, and particularly, to the high redshift w�z� con-
straint discussed in Sec. II A. Evidently, switching
parametrizations from (4) to (2) moves the boundary
downwards, pushing the contours in the direction of de-
creasing �w0. Since the contours in Fig. 6 are still near the
boundary, a parametrization that allows larger values of �w0

may allow the contours to shift even more in that direction.
It is possible that such a parametrization would favor w0 <
�1 and �w0 > 0 to an even larger degree, leaving the
�CDM model less favored.

Comparison with the published literature shows that our
results are consistent with others obtained using various
combinations of cosmological probes. Table III lists sev-
. The vanilla parameter space is spanned by the six parameters
SS galaxy bias, CMB �WMAP CMB power spectra, Ly-
 �

Ia ‘‘gold set,’’ and X-ray � Chandra X-ray clusters.

Priors Dark energy constraints

�m � 0:27� 0:04 w0 � �1:31�0:22
�0:28, w0 � 1:48�0:81

�0:90

� < 0:3 w0 � �0:981�0:193�0:384�0:568
�0:193�0:373�0:521,

wa � �0:05�0:65�1:13�1:38
�0:83�1:92�2:88

ers h � 0:72� 0:08,
0<�m < 1, 0:014<!b < 0:04,

0< � < 1, 0:6< ns < 1:4

w0 � �1:43�0:16
�0:38,

dw
dz jz�0 � 1:0�1:0

�0:8

d�dec�
AC !1=2

m =c � 1:716� 0:062,
d lnD
d lna jz�0:15 � 0:51� 0:11

�1:05<w0 <�0:29,
�1:89<w0 < 0:05

a

�m � 0:27� 0:04 �1:39<w0 <�0:25,
�2:61<w0 < 1:49

a

d�dec�
AC !1=2

m =c � 1:710� 0:137,
!b � 0:024,

!m � 0:14� 0:02

�wj0<z<0:414 � �1:287�0:016
�0:056,

�wj0:414<z<1 � �0:229�0:070
�0:117,

�wj1<z<1:755 � 0:142�0:051
�0:033

�m � 0:27 w0 � �1:38� 0:21,
wa � 2:78� 1:32

�m � 0:31 w0 � �1:35� 0:24,
wa � 2:32� 1:56

�m � 0:35 w0 � �1:3� 0:29,
wa � 1:64� 1:95

bias � 0:824� 0:089 w0 � �1:16�0:22
�0:19,

w0 � wa � �0:05�0:09
�1:17

wa bias � 0:824� 0:089, � < 0:3 w0 � �1:14�0:31
�0:21,

w0 � wa � �0:09�0:12
�2:16

eters bias � 0:824� 0:089 w0 � �1:23�0:34
�0:46,

limz!1w�z� � �0:12�0:11
�0:76

for priors see Table I w0 � �1:38�0:30
�0:55,

w1 � 1:20�0:64
�1:06 (2� constraints)

for priors see Table I w0 � �1:36�0:52
�0:56,

w1 � 1:20�0:60
�1:88 (2� constraints)

for priors see Table I w0 � �1:3�0:39
�0:34,

wa � 1:25�0:40
�2:17 (2� constraints)
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TABLE IV. Constraints on w�z� at several redshifts.

z Reference Parametrization w�z� constraint

0.3 [54] (2) �1:011�0:176
�0:215 (95.5%)

[54] (3) �0:981�0:205
�0:249 (95.5%)

This work (4) �1:02�0:18
�0:33 (2�)

This work (2) �1:01�0:19
�0:29 (2�)

1 [54] (2) �1:00�0:27
�0:66 (95.5%)

[54] (3) �1:03�0:39
�0:58 (95.5%)

This work (4) �0:18�0:12
�0:80 (2�)

This work (2) �0:68�0:08
�0:74 (2�)

1 [110] (2) �0:05�0:09
�1:17

[110] 3 w�z� parameters �0:12�0:11
�0:76

This work (4) �0:18�0:12
�0:80 (2�)

This work (2) �0:05�0:05
�1:78 (2�)
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FIG. 8 (color online). Comparison of the two dark energy
parametrizations (2) and (4). Contours corresponding to (4) are
filled in with vertical stripes (�2 � 1615 contour) or upwards-
sloping stripes (�2 � 1620 contour), and the best-fit model is
marked by an ‘‘X.’’ Contours corresponding to (2) are filled in
with horizontal stripes (�2 � 1615 contour) or downwards-
sloping stripes (�2 � 1620 contour), and the best-fit model is
marked by an ‘‘O.’’ Note that the �2 � 1615 and �2 � 1620
contours are the 2� and 3� contours, respectively, of parame-
trization (4). The thick and thin dashed lines correspond to the
lines w0 � w1 � 0 and w0 � wa � 0, respectively.
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eral recent analyses, along with the parameters and w�z�
parametrizations used [parameters w0, wa, and w1 imply
parametrizations (1), (2), and (4), respectively], the priors,
and the resulting w�z� constraints. When w�z� constraints
using the same equation of state parametrizations are com-
pared, our results are consistent with those in Table III at
the 2� level. In addition, the results of [8,107], obtained
using parametrization (1) and SN Ia data, are consistent
with our constraints using either of the parametrizations (2)
and (4). It is reassuring that our �2 minimization proce-
dure, which handles parameter degeneracies differently
than marginalization, obtains consistent results.

Several papers list constraints on w�z� at specific values
of z, as shown in Table IV. It is evident from the table that
w�0:3� is well constrained and parametrization indepen-
dent. Our results forw�0:3� are in excellent agreement with
those of [54], even when their three-parameter equation of
state (3) is used. Meanwhile, the equation of state at z � 1
is less well constrained, though once again our results
agree with those of [54] at the 2� level. Parametrization
(4) evidently prefers higher values of w�1� than does (2).
One would expect the addition of the third parameter in (3)
to bridge the gap between constraints using (2) and (4).
However, not even (3) is able to reproduce the character-
istics w�0� � �1:4, w�0:3� � �1, and w�1� � �0:2 of the
best-fit models found using (4). Since our best w models
are qualitatively different from those allowed using the
parametrizations (2) and (3), there is still no discrepancy
between our results and those of [54] for w�1:0�. Finally,
recall that the two-parameter equations of state (1), (2), and
(4) relate w�z� and its derivative, at low redshifts, to the
063501
equation of state in the large redshift limit. Our constraints
on the large redshift value of the equation of state,
limz!1w�z�, agree closely with those of [110]. These
results appear to be independent of parametrization; analy-
ses with three different parametrizations agree that w�z� at
large redshifts is slightly less than zero.

Our uncertainties in the dark energy parameters are
mostly in agreement with similar analyses that include
CMB and SN Ia data. Our 2� uncertainties in w0 and w0 �
wa � limz!1w�z� are approximately twice as large as the
68.3% constraints of [110], just as expected. Also, our 2�
constraints on w0 are about twice as large as the 1�
uncertainties of [106]. Their looser bounds on w0�0� can
be attributed to the fact that they use a four-parameter
equation of state, and marginalize over parameters other
than those reported. Meanwhile, comparison of our results
with [54] provides an example of parametrization effects
on the dark energy constraints. Their 95.5% upper and
lower bounds on w0 are nearly the same as our 2� bounds,
and their 95.5% lower bound on wa is somewhat tighter
than ours. However, our upper bound on wa is smaller than
theirs by a factor of 3, due to the fact that our best-fit model
is much nearer to the boundary w0 � wa � 0 of parameter
space. Still, the boundary has some effect on their 95.5%
and 99.86% probability bounds on wa. Although their
68.32% upper and lower bounds are nearly the same, their
99.86% upper bound is smaller than the lower bound by a
factor of 2. Thus, it would be interesting to see their
analysis repeated with parametrizaton (4), which has a
less restrictive boundary.

The effects of systematic uncertainties can be estimated
by comparing the analysis procedures used by the studies
listed in Table III, as well as the locations of the resulting
contours in parameter space. Reference [54] finds 68% and
95% contours centered near the �CDM model, while
[8,106,108–111] as well as our analysis find contours
that lie mostly in the w0 <�1, w0�0�> 0 region. Even
when the analysis of [54] is repeated without the Lyman-
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and galaxy bias data sets, their preferred models are still
close to the �CDM model [112]. Since both studies use the
standard SN Ia likelihood, the difference between their
result and ours must come from either their CMB like-
lihood function [113] or their galaxy power spectrum
analysis [54,114]. Reference [113] claims that the
WMAP likelihood approximation is inaccurate at low l,
and that the WMAP foreground removal procedure may
lead to a suppression of low-l power. Their likelihood
function is designed to correct these problems.
Meanwhile, their galaxy power spectrum analysis uses
SDSS measurements up to k � 0:2h=Mpc, a range which
extends into the nonlinear regime. The combined effect of
these two changes is to move the contours very close to the
�CDM model, which is disfavored by ��2 � 3 in our
analysis with the same w�z� parametrization. Thus, differ-
ences in the CMB and galaxy power spectrum likelihood
functions lead to a shift of over 1� in the �2 contours.

We attempted to reproduce this shift by using only the
multipoles l � 20 in our CMB analysis. If the low multi-
poles were responsible for the shift, then neglecting them
would enlarge the �2 contours and move them towards the
�CDM model. However, as shown in the third column of
Table V, the allowed region actually moves away from that
of [54], although it does broaden somewhat. Not only does
this test fail to explain the difference between the regions
of parameter space preferred by [54] and our results, it also
demonstrates that the CMB analysis is sensitive to the
low-l region of the power spectrum. Since there is an
ongoing debate about the proper handling of the low multi-
poles [113], this sensitivity to that region of the power
spectrum is worrisome.

Recall that switching dark energy parametrizations can
change the uncertainties in w�0� and w0�0�. In order to test
the effects of this parametrization dependence in combi-
nation with the low-l sensitivity, we imposed the prior
constraint w0 � 2w1 � w0 � 2 �w0 � 0 on the analysis
with CMB l � 20. This allowed us to estimate the con-
straint on wa that we would have obtained if we had
repeated the analysis with parametrization (2). The result-
ing 2� constraints, shown in the fourth row of Table V, are
very similar to those found by the standard analysis using
parametrization (2). They have not moved appreciably
towards the �CDM model, though the uncertainties have
grown. The slight shift away from �CDM seen without the
TABLE V. Consistency checks of our current w�z� constraints. Al
below use WMAP, SDSS, and SN Ia gold set data, with priors as sh

Analysis Parametrization

Standard (4)
Standard (2)
CMB l � 20 (4)
w0 � 2w1 � 0, CMB l � 20 (4)
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prior w0 � 2 �w0 � 0 has been hidden by the imposition of
that prior. This implies that the parametrization depen-
dence of the results conceals some of their sensitivity to
low-l CMB data. Once again, we are unable to reproduce
the shift in the location of the equation of state contours.
The explanation may have to do with the details of the
CMB likelihood function used by [54], or with their galaxy
power spectrum analysis. These differences between the
likelihood functions should be examined critically.

Similarly, the SN Ia likelihood function used by [107]
causes the dark energy constraints to shift relative to those
in [8], even when the same w�z� parametrizations and �m
priors are used. Reference [107] uses supernova flux aver-
aging [115] to handle systematic effects due to the weak
lensing of supernovae [116]. The flux averaging method
assumes that uncertainties in SN Ia fluxes, rather than in
magnitudes, are Gaussian. If uncertainties are actually
Gaussian in magnitude, this introduces a bias [115]; con-
versely, if uncertainties are Gaussian in flux, then the
standard SN Ia analysis is biased. The net effect of the
flux averaged likelihood function is to weaken constraints
on w0 and w0, and to shift them both by about 1� towards
the �CDM model.

Another SN Ia systematic effect, not included in any of
the analyses in Table III, is the dimming of supernovae by
astrophysical dust. Reference [117] considers several types
of intergalactic dust, and constrains supernova dust dim-
ming to be less than 0.2 magnitudes. The upper bound on
dust dimming is not much less than the mean SN Ia
magnitude uncertainty in the current data set, which sug-
gests that dust dimming can cause a significant bias in dark
energy constraints. Since the dimming of SNe Ia provides
evidence for accelerating cosmological expansion, addi-
tional dimming due to dust will appear to exaggerate this
acceleration, leading to an artificially low w.

To summarize, current data are not precise enough to
address whether or not the dark energy is a cosmological
constant. A careful study of the current data, and compari-
sons with other recent analyses, reveal several obstacles to
a satisfactory understanding of the dark energy. The de-
generacy between w0 and w1 remains unresolved, and the
allowed 2� ranges for w0 and w1 are at least �1:93<
w0 <�1:08 and 0:14<w1 < 1:84. Furthermore, this re-
sult is dependent on the parametrization chosen for the
dark energy equation of state. In particular, problems arise
l constraints shown are at the 2� level. The ‘‘standard’’ analyses
own in Table I.

w0 (to 2�) w1 or wa (to 2�)

�1:38�0:30
�0:55 w1 � 1:2�0:64

�1:06

�1:3�0:39
�0:34 wa � 1:25�0:40

�2:17

�1:63�0:43
�0:65 w1 � 1:5�0:45

�1:67

�1:25�0:40
�0:38 w1 � 0:6�0:23

�1:4 , wa � 2 �w0 � 1:2�0:46
�2:8
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when the 1� and 2� contours lie near a boundary of the
dark energy parameter space, as they do at present. More
generally, uncertainties in the equation of state parameters
depends on the location of the best-fit model in the pa-
rameter space. Aside from the parametrization-dependence
issues, analyses that use the same data, but different treat-
ments of the systematics, find best-fit models differing by
�1�. The combination of parametrization-dependence
and systematic effects is enough to shift the best-fit model
by more than 2�. Thus we cannot rule out the �CDM
model at present.

C. Forecasts using simulated data

Next we ask, when data from future probes are available,
how close can we come to achieving our goal of distin-
guishing between a cosmological constant and other forms
of dark energy. The dark energy parameter space is con-
tinuous, with nonconstant w�z� models arbitrarily close to
the �CDM model. Unless we are lucky and find a dark
energy significantly different from the cosmological con-
stant, the best we can do is to distinguish between models
separated by some minimum distance in parameter space.

Thus, we begin by identifying a set of reasonable mile-
stones against which progress in w�z� constraints may be
measured. Since we do not know ahead of time which best-
fit model will be found, we will say that an experiment can
distinguish between two points A and B in parameter space
if, regardless of the location of the best-fit model, the 2�
contour around that best-fit model excludes either A or B
(or both).

Our first milestone is to distinguish between a cosmo-
logical constant and a ‘‘dark energy’’ whose equation of
state at z � 1 is w�1� � 0. This goal is motivated by
current observations, rather than by theoretical consider-
ations; several of the analyses listed in Table III, including
our own, favor w � 0 at redshifts of order unity. We can
distinguish between these two types of dark energy by
ruling out either w�1� � �1 (�CDM model) or w�1� �
0. In the worst case, the best-fit equation of state will have
w�1� � �0:5, meaning that the 2� uncertainty in w�1�
must be brought below 0.5 in order to rule out one of the
two types of dark energy. Thus, the first milestone is to
decrease the uncertainty in w at z � 1 to less than 0.5.

As our second milestone, we would like to distinguish
between the �CDM model and tracker quintessence [118]
or tracker supergravity [119] models with w0 * �0:8,
w1 > 0. These are interesting, partly because they repre-
sent a large class of well-established, theoretically moti-
vated models, and also because they make definite
predictions that are clearly distinct from the �CDM model
in parameter space. It is not clear whether such models are
ruled out by current data; our analyses exclude them to
greater than 2�, but they are within the 95% probability
contour of [54]. In the future, we can compare an arbitrary
best-fit model to �CDM and tracker models by comparing
063501
their values of w�z��, where z� is the redshift at which the
uncertainty in w�z� is a minimum. The �CDM model
predicts w�z�� � �1, while trackers have w�z�� * �0:8.
In the worst case, the future best-fit model will have
w�z�� � �0:9. Therefore, in order to reach the second
milestone, we must reduce the 2� uncertainty in w�z�� to
about 0.1.

Finally, our third milestone is to distinguish between
�CDM and quintessence models that are near to it. We do
not have in mind any particular class of theoretical models,
so ‘‘near’’ is not well defined. As a reasonable third mile-
stone, we consider aiming to distinguish �CDM from
models with either jw0�1j* 0:05 and w1�0, or w0�
�1 and jw1j * 0:05. For this we will need both
�w0�2�� & 0:025 and �w1�2�� & 0:025, that is, �w0

�

�w1
� 0:01. If the �CDM model were to be the preferred

model even when the equation of state uncertainties were
reduced to this level, then it would probably be time to
abandon our hopes of usingw�z� to study the nature of dark
energy.

Now that Sec. IV B has pointed out several pitfalls in the
analyses of current data, we make the reasonably optimis-
tic assumption that the likelihood functions associated with
the CMB, SNe Ia, and cosmic shear will be well under-
stood by the end of the decade. We assume that these new,
accurate likelihood functions will give no less cosmologi-
cal information than the likelihood functions discussed in
Secs. III B, III C, and III D. This assumption is optimistic;
the conservative CMB foreground removal procedure of
[113], as well as the inclusion of SN Ia dust dimming
effects, should increase uncertainties in the dark energy
parameters. Moreover, for weak lensing, several system-
atic effects (e.g. intrinsic alignments of source galaxies,
selection biases, and residuals from the point spread func-
tion correction) need to be better understood and tightly
controlled in order for this probe to achieve its full poten-
tial [120].
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Also, our forecasts are based on a �CDM fiducial
model, since �w0 � �1; w0�0� � 0� is far from both the
parameter space boundaries w0 � w1 � 0 and w0 � wa �
0. From now on, we limit our study to the parametrization
(4) alone. Assuming that our �2 contours stay away from
the boundaries, we can compare constraints between pa-
rametrizations (2) and (4) using the ‘‘rule of thumb’’
�w1
� � �w0 � �wa=2, where the average low redshift de-

rivative �w0 � w�1� � w�0�. The factor of 1/2 means that,
even when parameter space boundaries are unimportant,
the uncertainty in the derivative w0�0� is parametrization
dependent.
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FIG. 11 (color online). SN Ia contours for the simulated data
set shown in Fig. 3, assuming the prior constraints �m � 0:31
(top), �m � 0:31� 0:05 (middle), and �m � 0:31� 0:10 (bot-
tom). The 1�, 2�, and 3� contours are shown. The location of
the fiducial model is marked by a ‘‘�’’ sign.
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Dark energy constraints provided by eight years of
simulated WMAP data alone are shown in Fig. 9, with
grid spacings �w0

� 0:3 and �w1
� 0:6. Models in the

upper right-hand section of Fig. 9 are ruled out by the prior
constraint w0 � w1  0. Meanwhile, the requirement that
h < 1:1 eliminates models in the lower left-hand corner of
the plot. Therefore, to 2�, virtually no constraints are
imposed on w0 and w1 within the ranges shown in Fig. 9.
Such weak CMB constraints on dynamical dark energy are
to be expected, due to the angular diameter distance
degeneracy.

Given the fairly weak priors used here, the supernovae
alone were also unable to provide interesting constraints on
dynamical dark energy. Analysis of the supernova data set
shown in Fig. 3 gave deceptively tight constraints on w1;
see Fig. 10, with grid spacings �w0

� 0:02 and �w1
� 0:1.

However, multiple Monte-Carlo simulations of SN Ia data
sets yielded 2� constraints that varied widely from simu-
lation to simulation. Three out of our five simulations had
2� contours extending into the w1 <�8 range.

The problem, as pointed out in [121], is that the dark
energy density �de�z� exhibits qualitatively very different
behaviors for w1 > 0 and w1 < 0. When w1 > 0, �de�z�
can remain a nontrivial fraction of the total energy density
of the Universe up to redshifts of order unity. When w1 <
0, �de�z� drops quickly with increasing redshift, so that the
dark energy is important only in the very recent past.
Distinguishing between different dark energy models is
difficult when ��z� is very small.

Adopting strong priors on �m significantly reduces
these non-Gaussianities, as shown in Fig. 11 (top). When
we fix �m � 0:31 and repeat the analysis of five simulated
data sets, we find mean 2� uncertainties on w0 and w1 of
�w0�2�� � 0:522 and �w1�2�� � 1:63. The standard de-
viations in �w0�2�� and �w1�2�� are 0.036 and 0.21,
respectively. Thus when �m is fixed, the uncertainties
vary by only a few percent from one simulation to another.
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FIG. 12 (color online). Forecast CMB and SN Ia constraints on
dark energy. The 1�, 2�, and 3� contours are shown. The
location of the fiducial model is marked by a ‘‘�’’ sign.
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TABLE VI. Forecast 1� constraints on the dark energy equation of state. [The vanilla parameter space is spanned by the six
parameters �h;!m;!b; �; A; ns�.]

Reference Surveys included Parameters varied; priors Forecast constraints

[38] Planck�WL (1000deg2) ‘‘vanilla,’’ w0, T=S; w0 � 0 �w0
� 0:15

[39] WL� COBE� photo z� Planck !m, !b, ns, m�, w0;
w0 � 0, �ln!m

� :064, �ln!b
� :035,

�n � :04, �m�
� :58

�w0
� 0:19

[40] SNAP SNe Ia [syst. �m � 0:0074�1� z�] w0, wa, �m; ��m
� 0:03, �K � 0 �w0

� 0:09, � �w0 � 0:31
[40] SNAP SNe Ia [syst. �m � 0:0074�1� z�] w0, wa, �m; Planck priors, �K � 0 �w0

� 0:09, � �w0 � 0:19
[40] SNAP SNe Ia [syst. �m � 0:0074�1� z�] �WL (fsky � 0:025) w0, wa, �m; �K � 0 �w0

� 0:05, � �w0 � 0:11
[41] Planck�WL (fsky � 1, tomography) ‘‘vanilla,’’ w0, wa, !�, 
s, yHe �w0

� 0:056, �wa � 0:087
[41] Planck�WL (fsky � 0:5, tomography) ‘‘vanilla,’’ w0, wa, !�, 
s, yHe �w0

� 0:076, �wa � 0:11
[41] 4 yr. WMAP�WL (fsky � 1, tomography) ‘‘vanilla,’’ w0, wa, !�, 
s, yHe �w0

� 0:064, �wa � 0:11
[42] Planck� SNAP SNe Ia�WL (fsky � 0:5, tomography) ‘‘vanilla,’’ w0, wa, !�, 
s, yHe �w0

� 0:05, �wa � 0:1
[43] Planck� LSST cluster counts and power spectrum (200 000 clusters) !b, !m, �de, �8, ns, w0, wa; linear biasing �w0

� 0:036, �wa � 0:093
[123] 1280 SNe a w0, wa, �m; Planck priors,

��m
� 0:03, �K � 0

�w0
� 0:27, � �w0 � 0:57

This work 8 yr. WMAP��2000 SNe (syst. �m � 0:04) ‘‘vanilla,’’ w0, w1; for priors see Table I �w0
� 0:26, �w1

� 0:82
This work 8 yr. WMAP��2000 SNe (syst. �m � 0:04) �WL ‘‘vanilla,’’ w0, w1; for priors see Table I �w0

� 0:10, �w1
� 0:18

aIrreducible magnitude systematic �mirr � 0:01� 0:06z for z < 0:9 or 0:1z for z > 0:9, extinction correction uncertainty �mext �
0:02, low-mid z magnitude offset uncertainty �ml�m;off � 0:02, mid-high z magnitude offset uncertainty �mm�h;off � 0:04.
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However, [122] points out the perils of assuming strong
priors in the SN Ia analysis. Figures 11 (middle and bot-
tom) show the effects of weakening the prior constraint on
�m to �m � 0:31� 0:05 and �m � 0:31� 0:10, respec-
tively. Even with the relatively strong priors used in Fig. 11
(middle), constraints on the dark energy parameters are
weakened, demonstrating the need to combine the super-
novae with another data set.

Combination of the WMAP-8 and SN Ia data sets im-
proved dark energy constraints considerably, as shown in
Fig. 12, with grid spacings �w0

� 0:08 and �w1
� 0:22.

As with the supernova analysis, five simulated data sets
were analyzed separately in order to determine the dark
energy constraints. We obtained the 2� constraints
�w0�2�� � 0:52 and �w1�2�� � 1:65. The standard de-
TABLE VII. Consistency checks of our dark energy constraints.
deviations in constraints from multiple Monte-Carlo simulations sho
Secs. III B, III C, and III D while the other analyses differ from the

Probes Analysis

SN Ia prior �m � 0:31
CMB� SN Ia standard

f2
sky ! fsky in (9)–(15)

CMB l  400
1 yr. WMAP

SN �m � 0:06
SN �m � 0:06z

SN �m � 0
CMB� SN Ia�WL standard

WL on linear scales only
CMB l  400
SN �m � 0:06

SN �m � 0
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viations in the 2� w0 and w1 uncertainties were 0.027 and
0.25, respectively. This implies that our forecast uncertain-
ties are each correct to about 10%. We checked these
constraints using a Fisher matrix calculation and found
the 2� constraints 0.44 and 1.46 inw0 andw1, respectively,
consistent with our minimization results.

Our forecast uncertainty, in each of the equation of state
parameters, is greater by a factor of 2–3 than that of [40]
with SNe Ia and a prior on �m, as shown in Table VI. Note
that our 1� uncertainties have been computed by dividing
our 2� uncertainties by two.

Next, the analysis was repeated with two different fidu-
cial models, chosen to lie approximately along the line of
degeneracy in the �w0; w1� plane. As shown in Fig. 13, the
model �w0 � �1:3; w1 � 0:5� had 2� uncertainties of 0.73
All constraints shown are at the 2� level, with the standard
wn when available. The standard analyses are those described in
standard ones as specified in the Analysis column.

�w0�2�� �w1�2��

0:52� 0:036 1:63� 0:21
0:52� 0:027 1:65� 0:25

0.52 1.31
0.50 1.42

0:47� 0:09 1:76� 0:42
0.65 1.75
0.31 0.997

0:19� 0:018 0:68� 0:071
0:20� 0:021 0:37� 0:034

0.39 0.96
0.23 0.47
0.24 0.48

0:12� 0:007 0:29� 0:03
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FIG. 13 (color online). �2 contours for CMB and SN Ia data
simulated using the fiducial models �w0 � �1:3; w1 � 0:5� (top)
and �w0 � �0:7; w1 � �0:3� (bottom). The 1�, 2�, and 3�
contours are shown. The location of the fiducial model is marked
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and 2.58 on w0 and w1, respectively, which are signifi-
cantly larger than those reported above. Meanwhile the
model �w0 � �0:7; w1 � �0:3� had uncertainties of 0.48
and 1.58. These are consistent with our constraints ob-
tained using the �CDM fiducial model.

Returning to our �CDM fiducial model, we repeated the
analysis with different assumptions about the data in order
to test the robustness of our forecast constraints. Table VII
lists the new constraints obtained. The standard deviations
in our original constraints are about 10%, so we did not
consider a modification to be significant unless it changed
constraints by at least 20%–30%. First we checked to what
extent a CMB simulation without the extra factor of fsky in
0

1

+

-1.4 -1.3 -1.2 -1.1 -1 -0.9 -0.8

w
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FIG. 14 (color online). Forecast CMB, SN Ia, and WL con-
straints on dark energy. The 1�, 2�, and 3� contours are shown.
The location of the fiducial model is marked by a ‘‘�’’ sign.
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the denominator of the covariance matrix (9)–(15) would
improve our constraints. The difference turns out to be
negligible. In fact, the final constraints are relatively inde-
pendent of the details of the CMB simulation and analysis.
Cutting off the CMB power spectrum at a maximum multi-
pole of 400, or replacing the WMAP 8 year data set with a
simulated 1 year data set, lead to insignificant changes in
the dark energy constraints. On the other hand, the con-
straints are very sensitive to changes in the quality of the
supernova data. Changing the SN Ia systematic uncer-
tainty, or its redshift dependence, leads to significant
changes in the dark energy constraints. Meanwhile, the
final 2� uncertainties provided by the combination of
CMB and SN Ia data are nearly identical to those found
by fixing �m in the SN analysis alone. Thus, in some sense,
adding the CMB data set is equivalent to fixing �m as a
function of w0 and w1 in the supernova analysis.

We began Sec. IV C by identifying three milestones for
comparing constraints on w0 and w1. Recall that the first
milestone is to distinguish between a cosmological con-
stant and a dark energy with w�1� � 0. From our forecasts
we find �w�1��2�� � 1:11, which is more than twice as
high as the uncertainty of 0.5 needed to distinguish be-
tween the two dark energy models. The second milestone,
to distinguish between �CDM and tracker models of dark
energy, is also not yet reached by the combination of CMB
and SN Ia data sets. We find �w�z���2�� � 0:19 at z� �
0:27, twice the uncertainty of 0.1 needed to reach this
milestone. We can see from Fig. 12 that, if we shifted the
contours to be centered on �w0 � �0:9; w1 � 0�, then the
cosmological constant model as well as some of the tracker
models (w0 � �0:8, w1 > 0) would be within the 2�
1
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FIG. 15 (color online). �2 contours for CMB, SN Ia, and WL
data simulated using the fiducial models �w0 � �1:3; w1 � 0:5�
(top) and �w0 � �0:7; w1 � �0:3� (bottom). The 1�, 2�, and
3� contours are shown. The location of the fiducial model is
marked by a ‘‘�’’ sign.
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contours. Thus we cannot confidently claim that the com-
bination of CMB and SN Ia data can rule out either the
�CDM model or the trackers. Finally, this combination is
far from reaching the third milestone, which would require
that the uncertainties in w0 and w1 be reduced by over an
order of magnitude.

The addition of weak lensing to the analysis resulted in
the contours shown in Fig. 14, with grid spacings �w0

�

0:06 and �w1
� 0:12. Weak lensing tightened the 2� con-

straints to �w0�2�� � 0:20 and �w1�2�� � 0:37. The
standard deviations in the 2� uncertainties, found from
five separate simulations, were 0.021 and 0.034 in
�w0�2�� and �w1�2��, respectively. As above, the stan-
dard deviations in each of thew0 andw1 uncertainties were
about 10%. We checked our results using a Fisher matrix
calculation and found the 2� constraints 0.16 and 0.38 in
w0 and w1, respectively, consistent with our minimization
results. Our constraints are about the same as those forecast
for Supernova/Acceleration Probe (SNAP) SNe Ia with
Planck priors, but worse by a factor of 2 than SNAP SNe
Ia with weak lensing, as listed in Table VI. Galaxy cluster
measurements based on the more ambitious Large
Synoptic Survey Telescope (LSST) survey claim an im-
provement by a factor of 3 over our forecast w0 constraints
[43].

The analysis was repeated with two different fiducial
models in order to assess the dependence of dark energy
constraints on the fiducial model, as shown in Fig. 15.
Moving from the �CDM fiducial to the fiducial model
�w0 � �1:3; w1 � 0:5� increases uncertainties in w0 and
w1 by about 70% each, to 0.34 and 0.63, respectively.
Moving in the other direction along the degeneracy curve,
to the fiducial model �w0 � �0:7; w1 � �0:3�, leads to a
modest decrease in w0 and w1 uncertainties to 0.15 and
063501
0.28, respectively. Qualitatively, this is the same behavior
as was seen with the CMB and SN Ia data combination.

Further tests of the robustness of our constraints revealed
that, once again, CMB data at l > 400 do not contribute
much to the dark energy constraints (see Table VII).
Meanwhile, if the weak lensing analysis is restricted to
linear scales, then constraints on w0 and w1 weaken con-
siderably, as shown in Table VII. This is consistent with the
findings of [39].

Comparing 2� constraints with and without weak lens-
ing (including nonlinear scales), we see that the uncertain-
ties in w0 shrink by a factor of 2.5, and the uncertainties on
w1 shrink by a factor of 4.5. In order to understand the
contribution of weak lensing to the overall analysis, we
compared w�z� uncertainties as functions of redshift for the
combinations CMB� SN Ia and CMB� SN Ia�WL, as
shown in Fig. 16. Without weak lensing, w�z� is well con-
strained only around z � 0:3. Evidently, weak lensing adds
information on w at some higher redshift, complementing
the constraints from CMB and SN Ia. The result is a w�z�
uncertainty that is not only lower, but much more uniform
across the redshift range.

This improvement allows the combination of CMB, SN
Ia, and WL data to reach two of the three milestones
identified at the beginning of this section. At z � 1 we
find �w�1��2�� � 0:22, which will easily allow us to
distinguish between a cosmological constant and dark
energy models with w�1� � 0. Thus, weak lensing will
either confirm or conclusively rule out the dark energies
with w0 � w1 & 0 favored by our analysis of current data.
Second, the constraint �w�z���2�� � 0:097 at z� � 0:52 is
tight enough that this combination of data can distinguish
between the cosmological constant and tracker models of
dark energy. Thus, weak lensing will allow us to rule out a
portion of the most interesting region of parameter space.
On the other hand, our forecast dark energy constraints do
not reach the third milestone, which calls for these 2�
uncertainties to be reduced to �0:025. In particular, the
uncertainty in w1 is higher than this by over an order of
magnitude.

We have not included in our analysis either weak lensing
tomography or galaxy cluster measurements, which may
lower statistical uncertainties even further [43,124]. These
have been analyzed by others and look promising. They
suggest that we can approach the third milestone, but there
is no method suggested so far for pushing substantially
beyond their forecast constraints.

Moreover, we remind the reader that the constraints
discussed above, as well as the improvement due to weak
lensing, are based on several optimistic assumptions listed
at the beginning of Sec. IV C. Systematic effects can
increase uncertainties in w0 and w1. Also, if the best-fit
dark energy model is near the boundary of the �w0; w1�
parameter space, then w�z� parametrization dependence
will further weaken our constraints on the dark energy
-18
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parameters. In the worst-case scenario w0 � w1 � 0, the
best-fit model will be near the boundary of parameter
space; parametrization-related uncertainties in w0 and
w0�0� could completely swamp any improvements.

V. CONCLUSIONS

The purpose of this investigation has been to determine
how well w�z� can be resolved using currently planned
astronomical observations. The well-known challenge is
that individual measurements do not constrain w�z�
directly, but rather some functional that depends on
w�z�, integrals of w�z�, and a large set of additional
parameters.

We have shown that the uncertainties in measuring w
and dw=dz at z � 0 can be reduced dramatically by the
beginning of the next decade, using a combination of the
highest-quality CMB, SN, and WL data. However, the
remaining uncertainties, �w0�2�� � 0:20 and �w1�2�� �
0:37, will not be enough to determine definitively whether
dark energy is inert (a cosmological constant) or dynamical
(quintessence), unless the true value of w differs from �1
by significantly more than 0.1. Unfortunately, many quin-
tessence models have jw0 � 1j< 0:1 and jw1j< 0:1.

Our numerical studies illustrate how the measurements
combine to produce this constraint. Even the best super-
nova measurements are degenerate under certain combina-
tions of variations in w�0�, w0�0�, and �m [37]. CMB
constraints are degenerate along a surface in the space
spanned by w�0�, w0�0�, h, and �m. However, we have
found (Fig. 12) that combining CMB and SN measure-
ments effectively collapses the degeneracy in the �m
direction, leaving only the degeneracy in the w�0�, w0�0�
plane. We have shown that the CMB contribution to this
degeneracy breaking comes entirely from the l  400
region of the power spectrum. Since even the first year of
WMAP data has reduced uncertainties in this range to near
the cosmic variance level, we do not expect a significant
improvement in dark energy constraints from further
WMAP or Planck CMB data. Of course, this relies on
our choice and number of cosmological parameters, and,
in particular, our assumption that �K � 0. If curvature
were considered, the angular diameter distance degeneracy
would degrade the information on �m provided by the first
CMB acoustic peak, and better information on subsequent
peaks could prove valuable. Also, we have not considered
nonlinear effects such as the gravitational lensing of the
CMB power spectra [125], which could provide valuable
information on structure formation.

Meanwhile, the final constraints are sensitive to the
supernova systematic uncertainties. A 50% increase in
�m, from 0.04 to 0.06, changes the 2� constraints on
w�0� by about 25%. After the CMB and SN data sets are
combined, the remaining degeneracy runs along curves of
w�z� which intersect one another near z � 0:3. The uncer-
063501
tainty inw�0:3� is roughly 0.2 at the 2� level, depending on
what functional forms for w�z� are considered.

To break the degeneracy between w�0� and w0�0�, more
data must be co-added that can constrain w�z� at a greater
redshift. We have studied the weak lensing power spectrum
as a means of breaking the w�0�-w0�0� degeneracy. Our
previous conclusion about the highest CMB multipoles
remains valid; CMB data at l > 400 do not contribute to
dark energy constraints even when weak lensing is consid-
ered. Furthermore, any improvements due to weak lensing
depend crucially on our ability to use shear measurements
on nonlinear scales. This will require a better understand-
ing of systematics, such as intrinsic alignments of galaxies,
as well as more accurate computations of the matter power
spectrum on nonlinear scales in dynamical dark energy
cosmologies. When CMB, SN, and WL are combined,
the supernovae constrain w�z� at low redshifts z � 0:3,
while weak lensing constrains w�z� at higher redshifts
(see Fig. 16), leading to improvements of a factor of 2.5
in w0 and a factor of 4.5 in w1.

Section IV C began by identifying three milestones by
which progress in dark energy constraints could be mea-
sured.
(i) D
-19
istinguish between w�1� � �1 and w�1� � 0.
CMB and SN alone are unable to reach this mile-
stone, while the combination of CMB, SN, and WL
data can distinguish between these equations of
state at the 4:5� level.
(ii) D
istinguish between w � �1 and tracker models
with w0 � �0:8, dw=dz > 0. Once again, CMB
and SN alone are unable to reach this milestone.
With WL added, � and trackers can be distin-
guished at the 2� level.
(iii) R
educe 2� uncertainties in w and dw=dz to
� 0:025. Even with CMB, SN, and WL data, this
milestone remains unreached.
Thus the combination of CMB, SN Ia, and weak lensing is
a promising tool for improving dark energy constraints.
However, in the worst-case scenario that experiments find
w � �1, these three probes cannot decisively rule out
quintessence models in which w differs from �1 by a
few percent.

Other works have considered highly ambitious surveys
of the cluster abundance evolution [43], assuming large
numbers of observed clusters, or of weak lensing tomog-
raphy [124], based on multiple redshift bins and observa-
tions of large fractions of the sky. Both probes measure the
structure growth rate as a function of redshift. These have
the potential to improve statistical uncertainties signifi-
cantly, by factors of 3–5 compared with our results, but
concerns remain about systematic uncertainties [43,124].
Even taking the current estimated errors, uncertainties in
w0 and w1 are several percent, which still allows a range of
plausible quintessence models. Thus, unless we are lucky
enough to find a dark energy that is very different from the
cosmological constant, new kinds of measurements or an
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experiment more sophisticated than those yet conceived
will be needed in order to settle the dark energy issue.
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