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The F -statistic, derived by Jaranowski, Krolak and Schutz (1998), is the optimal (frequentist) statistic
for the detection of nearly periodic gravitational waves from known neutron stars, in the presence of
stationary, Gaussian detector noise. The F -statistic was originally derived for the case of a single detector,
whose noise spectral density was assumed constant in time, and for a single known neutron star. Here we
show how the F -statistic can be straightforwardly generalized to the cases of (1) a network of detectors
with time-varying noise curves, and (2) a collection of known sources (e.g., all known millisecond pulsars
within some fixed distance). Fortunately, all the important ingredients that go into our generalized
F -statistics are already calculated in the single-source/single-detector searches that are currently
implemented, e.g., in the Laser Interferometer Gravitational-Wave Observatory software library, so
implementation of optimal multidetector, multisource searches should require negligible additional cost
in computational power or software development. This paper also includes an analysis of the likely
efficacy of a collection-type search, and derives criteria for deciding which candidate sources should be
included in a collection, if one is trying to maximize the detectability of the whole. In particular we show
that for sources distributed uniformly in a thin disk, the strongest source in the collection should have
signal-to-noise-squared �5 times larger than weakest source, for an optimized collection. We show that
gravitational waves from collection of the few brightest (in gravitational waves) neutron stars could
perhaps be detected before the single brightest source, but that this is far from guaranteed. Once
gravitational waves from the few brightest neutron stars have been discovered, grouping more distant
(individually undetectable) pulsars into collections, and then searching for those collections, should be an
effective way of measuring the average gravitational-wave strengths of those more distant pulsars.
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I. INTRODUCTION

The F -statistic, as first derived by Jaranowski, Krolak
and Schutz [1] (hereinafter referred to as JKS), is the
optimal frequentist statistic for the detection of nearly
periodic gravitational waves (GWs) from a known neutron
star. In the original JKS version, the F -statistic was de-
rived only for the case of a single GW detector (which was
assumed to have stationary noise characteristics) and a
single known neutron star (assumed to be emitting GWs
at the neutron star’s rotation frequency and/or at twice its
rotation frequency). Here we show how the F -statistic can
be generalized in a straightforward manner to the cases of
(1) a network of detectors with time-varying noise curves,
and (2) an entire collection of known sources. Fortunately,
all the important ingredients that go into the generalized
F -statistic are already calculated in the single-detector/
single-source searches that are currently implemented,
e.g., in the Laser Interferometer Gravitational-Wave
Observatory (LIGO) software library [2], so implementa-
tion of optimal multidetector and/or multisource searches
should require negligible additional cost in software devel-
opment and computation.

We note that the problem of optimally combining data
from different detectors has already been solved for several
types of GW searches. For the case of inspiralling binaries,
we refer the reader to Bose, Pai and Dhurandhar [3] and to
Finn [4]; for the case of GW bursts, to Sylvestre [5]; and for
the case of Laser Interferometer Space Antenna (LISA)
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observations of galactic, stellar-mass binaries, to both
Krolak et al. [6] and Rogan and Bose [7]. (LISA can
effectively be treated as a network of three independent
GW detectors.) Our analysis in Sec. III is especially similar
to that of Krolak et al. [6] and Rogan and Bose [7], since
formally the sources considered there are equivalent to GW
pulsars. Like GW pulsars, the stellar-mass binaries visible
to LISA are effectively monochromatic sources that can be
characterized by four amplitude parameters, in addition to
the GW frequency and the two angles specifying the source
position on the sky.

The basic idea of somehow combining the signals from
many individually undetectable sources or events, in hopes
of finding a statistical excess, is also hardly a new one. In
GW astronomy, a good example is the suggestion of look-
ing for GW bursts associated with gamma-ray bursts by
cross correlating the outputs of LIGO’s L1 and H1 detec-
tors over short time windows coincident with hundreds of
observed gamma-ray bursts [8]. But our application of this
idea to the population of known millisecond pulsars ap-
pears to be new. We investigate when this strategy is likely
to be effective and derive useful criteria for deciding how
many and which sources should be included in the collec-
tion, in order to maximize the detectability of that group.

The plan of this paper is as follows. In Sec. II we briefly
establish notation; we generally try to align our notation
with that of JKS, to ease comparison with their work. In
Sec. III we derive the F -statistic for a network of N
-1 © 2005 The American Physical Society
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detectors and a single source. This multidetector
F -statistic follows a �2 distribution with 4 degrees of
freedom, exactly as with the single-detector version. We
consider the general case where the detectors have corre-
lated noises, but of course our expressions simplify in the
case where noises from different detectors are uncorre-
lated. As a bonus, our results immediately show how to
appropriately time-weight the data in the (realistic) case
that the detector noise spectra are slowly time-varying.
(The appropriate time-weighting for a single detector has
already been derived by Itoh et al. [9] and is implemented
in the LIGO software library. We give an independent
derivation, since here it follows trivially.)

In Sec. IV we extend the F -statistic to the case of a
collection of known sources. If there are M known sources
(each emitting at a single, known frequency), then the
correct F -statistic for the entire collection follows a �2

distribution with 4M degrees of freedom. (This is true for
both the single-detector case and for an N-detector net-
work.) The most interesting target population is clearly
(some subset of) the known millisecond pulsars. We con-
sider two particularly interesting cases: (1) a collection of
the few very brightest GW pulsars, and (2) a larger collec-
tion of more distant GW pulsars. We investigate the ex-
pected gains from both these types of multisource searches,
under the reasonable assumption that there exists some
population of GW pulsars that is uniformly spread through-
out the Galactic disk. As a further illustration of multi-
source searches, we estimate the sensitivity of the LIGO
network to the collection consisting of the five ‘‘most
promising’’ millisecond pulsars, assuming they all have
the same ellipticity. Our conclusions are summarized in
Sec. V.
1JKS briefly consider this question and sketch a claimed
answer, in Sec. 4 of their paper [1], but their answer is quite
wrong. In particular, they claim that the appropriate F -statistic
for a network with N detectors follows a �2 distribution with 4N
degrees of freedom, but we shall see below that the right number
of degrees of freedom is just 4—the same as for the single-
detector case. This is because there are still just four unknowns
in the problem: the amplitude and phase of each of the two GW
polarizations.
II. NOTATION

Let us consider an N-detector network, with output
x��t�, � � 1; . . . ; N. (In cases where a single instrument
outputs k independent data streams—e.g., a spherical bar
detector that encodes for two GW polarizations in five data
streams—we regard these formally as the outputs of k
different detectors.) For simplicity, we begin by assuming
that the detector noise is both stationary and Gaussian. We
allow, however, for the possibility that the noises are
correlated. Then we have

h~n��f�~n��f0��i � 1
2��f� f

0�S��h �f�: (2.1)

Here tildes denote Fourier transforms, according to the
convention that

~x�f� �
Z 1
�1

e2�iftx�t�dt; (2.2)

and ‘‘h� � �i’’ denotes ‘‘expectation value.’’ We note that
S��h �f� is the single-sided noise spectral density, which is
also the convention followed in JKS. [If we were using the
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double-sided convention, the factor 1
2 on the right-hand side

in Eq. (2.1) would be replaced by 1.]
The Gaussian random process n�t� determines a natural

inner product �. . . j . . .� on the space of functions x�t� [10]:

�xjy� � 4<
Z 1

0
df~x��f��	S�1

h �f�
��~y��f�; (2.3)

where 	S�1
h �f�
��S

��
h �f� � ��� and where < means ‘‘the

real part of.’’ Here and below, to reduce index clutter, we
sometimes represent a signal vector, having one compo-
nent for each detector, by simply using boldface without an
index; e.g., x�t� instead of x��t�. The inner product
Eq. (2.3) is such that the probability distribution function
(pdf) for the noise n�t� takes the form

pdf 	n
 �N e��njn�=2; (2.4)

where N is a normalization constant. It follows that the
expectation value of the product �xjn��yjn�, over many
realizations of the noise, is simply given by

h�xjn��yjn�i � �xjy�: (2.5)
III. F -STATISTIC FOR A DETECTOR NETWORK

Given gravitational-wave data from a single detector, the
F -statistic developed by JKS is the optimal frequentist
statistic for the detection of GWs from a single known
neutron star (NS) in that single data stream. This section
answers the question: if we have data from a network of
detectors (possibly including bars as well as interferome-
ters) how does one combine the different data streams to
produce the optimal detection statistic for the entire
network?1

A. F -statistic for a single source and multiple detectors,
all with time-invariant noise curves

Consider the search for nearly periodic GWs from a
single source with known position and known (possibly
time-varying) frequency, e.g., pulsar (PSR) 1937� 21.
The GW signal is characterized by four unknowns: an
overall amplitude A0 (equivalent to the combination
h0 sin� sin2� in the notation of JKS), two angles 	 and  
that characterize the waves’ polarization (equivalent to
determining the direction of the NS’s spin axis), and an
overall phase �0. The GW signal h��t� depends nonli-
nearly on 	;  ;�0, but, crucially, one can make a simple
-2
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change of variables—to �
1; 
2; 
3; 
4�—such that depen-
dence of h��t� is linear in these new variables:

h��t� �
X4

a�1


ah�a �t� (3.1)

where the four basis waveforms h�a �t� are defined by

h�1 �t� � F���t� cos���t�; h�2 �t� � F���t� cos���t�;

h�3 �t� � F���t� sin���t�; h�4 �t� � F���t� sin���t�:

(3.2)

Here ��t� is the waveform phase at the detector:

��t� 
 2�
Z t

fgw�t0�dt0; (3.3)

where fgw�t0� is the measured GW frequency at the detec-
tor at time t0. The measured frequency includes the
Doppler effect from the detector’s motion relative to the
source, as well as Einstein and Shapiro delays associated
with the Earth’s orbit around the Sun. When the GW pulsar
is in a binary, then fgw�t0� also includes the Roemer,
Einstein, and Shapiro delays associated with that binary
orbit. We emphasize that the known-pulsar searches de-
scribed here do not require the GW pulsar be isolated, but
just that there exist an accurate timing model for the
emitted waves. The F���t� and F���t� terms in Eq. (3.2)
are the beam-pattern functions giving the response of the
�th detector to the� and� polarizations, respectively. We
note that the exact form of F���t� and F���t� depends on
one’s convention for decomposing the waveform into
‘‘plus’’ and ‘‘cross’’ polarizations; a one-parameter family
of choices is possible, corresponding to the freedom to
rotate the axes around the line of sight. JKS follow the
conventions of Bonazzola and Gourgoulhon [11].

A further word on our index notation: as above, we use
Greek indices from the beginning of the alphabet (�;�; �)
to indicate the various detectors in the network; we use
Latin letters from the beginning of the alphabet (a; b; c) to
indicate the four independent waveform components from
a single NS (emitting at a single frequency); and we use
Latin letters from the middle of the alphabet (i; j; k) to label
different NSs. As above, we sometimes remove the Greek
index and instead represent the vector in boldface: ha�t�
instead of h�a �t�. Finally, we use the capital Latin letter ‘‘J’’
to label different time intervals [always intervals over
which the noise spectral density S��h �f� can be safely
approximated as constant].

Next we define the 4� 4 matrix �ab by

�ab �
�
@h
@
a
j
@h
@
b

�
� �hajhb�: (3.4)

Because both the observation time and 1 day [the time
scale on which the F��;��t� vary] are vastly larger than the
period of the sought-for GWs (typically 10�2–10�3 s), we
can replace cos2��t�, sin2��t�, and cos��t� sin��t� by
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their time averages: cos2��t�; sin2��t� ! 1
2 , while

cos��t� sin��t� ! 0. Then we have

�11 

X
�;�

�S�1
h �fgw����

Z
F���t�F

�
��t�dt

�12 

X
�;�

�S�1
h �fgw����

Z
F���t�F

�
��t�dt

�22 

X
�;�

�S�1
h �fgw����

Z
F���t�F

�
��t�dt;

(3.5)

additionally, �33 
 �11, �34 
 �12, �44 
 �22, and �13 

�14 
 �23 
 �24 
 0.

The best-fit values of 
a satisfy

@
@
a

 
x�

X
b


bhbjx�
X
c


chc

!
� 0 (3.6)

implying


a �
X
b

���1�ab�xjhb�; (3.7)

and our optimal statistic 2F is then just twice the log of the
likelihood ratio:

2F � �xjx� �

 
x�

X
b


bhbjx�
X
c


chc

!

�
X
a;d

���1�ad�xjha��xjhd�: (3.8)

Therefore using 2F as one’s detection statistic satisfies the
Neyman-Pearson criterion for an optimum test: it mini-
mizes the false dismissal (FD) rate for any given false
alarm (FA) rate.

Writing x � n� h, and plugging into Eq. (3.8), we find

h2F i � 4� �hjh�; (3.9)

where we have used Eq. (2.5) and the fact that h�hjn�i � 0.
More generally, it is easy to show that y � 2F follows a �2

distribution with 4 degrees of freedom (d.o.f.) and non-
centrality parameter �2 � �hjh�:

P�y� � �2�yj4;�2�: (3.10)
B. F -statistic for a single source and multiple detectors
with time-varying noise curves

It is trivial to generalize the above results to a network of
detectors with time-varying noise curves. Divide the total
observation time into segments that are short enough that
all noise correlation functions S��h can be approximated as
constant during each segment. (We assume the segments
are still much longer than the GW period.) Let there be p
such segments in all. Let the beginning and end points of
these time intervals be �t0; t1; � � � ; tp�. (In this scheme, we
can formally represent gaps in the output of one or more
-3
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detectors by intervals where some of the components S��h
go to infinity.) While our signals come from N detectors
with time-varying noise curves, we can formally regard
them as coming from pN detectors, each with stationary
noise (but such that only N detectors are turned ‘‘on’’ at
any instant; whenN more turn on, the previousN turn off).
But we know how to construct the F -statistic for pN
detectors with stationary noise characteristics, from the
previous subsection. (Nothing in that subsection required
all the detectors to be on simultaneously.) The noise spec-
tral density coefficients S��h �f� are now labeled by time
interval J: S��h;J �f�. Then �11 becomes

�11 

XN

�;��1

Xp
J�1

�S�1
h;J�fgw����

Z tJ

tJ�1

F���t�F
�
��t�dt

!
XN

�;��1

Z tp

t0
�S�1
h �fgw; t����F

�
��t�F

�
��t�dt (3.11)

where we have made the notational shift S��h;J �fgw�t�� !
S��h �fgw�t�; t�; i.e., we have replaced the discrete label ‘‘J’’
by the continuous label ‘‘t.’’ (In practice, the noise spectral
density at any instant is estimated from the data itself, e.g.,
by use of a running mean.)

Similarly,

�12 

XN

�;��1

Z tp

t0
�S�1
h �fgw�t�; t����F

�
��t�F

�
��t�dt

�22 

XN

�;��1

Z tp

t0
�S�1
h �fgw�t�; t����F

�
��t�F

�
��t�dt;

(3.12)

and again �33 
 �11, �34 
 �12, �44 
 �22, while �13 

�14 
 �23 
 �24 
 0.

If we define

�xjha� �
X
�;�

Z tp

t0
�S�1
h �fgw�t�; t����x��t�h

�
a �t�dt; (3.13)

then Eq. (3.8) remains the correct expression for 2F , and
Eq. (3.10) remains its correct distribution function, with
y � 2F and �2 � �hjh�. That is, given our notation, the
expression for the multidetector F -statistic is the same as
for the single-detector case.

C. F -statistic for a single source and N detectors with
uncorrelated noises

The expressions simplify somewhat in the (common)
case where the noises from different detectors are uncorre-
lated: S��h �f; t� � S�h �f; t��

��. Then the inner product
�xjy� is given by

�xjy� � 2
X
�

Z tp

t0

x��t�y��t�dt
S�h �fgw�t�; t�

: (3.14)
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We define A;B;C by

1
2A � �h1jh1�; 1

2B � �h2jh2�; 1
2C � �h1jh2�:

(3.15)

(Note that the A;B;C terms defined here are, in the single-
detector case, larger than the A;B;C terms in JKS by a
factor of T0=Sh�fgw�, where T0 is the observation time.)

Then �11 �
1
2A, �22 �

1
2B, and �12 �

1
2C: So ��1 takes

the form

��1 �
2

D

B �C 0 0
�C A 0 0

0 0 B �C
0 0 �C A

0
BBB@

1
CCCA: (3.16)

where D � AB� C2. Thus we arrive at

2F �
2

D
	Bf�xjh1��xjh1� � �xjh3��xjh3�g

� Af�xjh2��xjh2� � �xjh4��xjh4�g

� 2Cf�xjh1��xjh2� � �xjh3��xjh4�g
: (3.17)

As a check, consider the case of N identical, nearby
detectors (assumed to have uncorrelated noises). Then A, B
and C all scale like N, while D / N�2. In the absence of a
GW signal, the only terms in the (implied) double sum over
�;� in (3.17) that contribute, on average, are those with
� � �. Thus terms like �xjh1��xjh1� scale like N in the
absence of a true GW, and so h2F i remains invariant
(always equalling 4) under changes of N when there is
no true signal. However when there is a true signal, then
terms like �xjh1��xjh1� scale like N2, so the noncentrality
parameter �2 of the distribution scales like N—just as one
would expect.

Equation (3.17) can be rewritten more compactly if we
use complexified variables, as done in JKS. Defining

2Fa � �xjh1 � ih3�; 2Fb � �xjh2 � ih4�; (3.18)

Eq. (3.17) becomes

2F �
8

D
	BjFaj2 � AjFbj2 � 2C<�FaF�b�
: (3.19)
IV. F -STATISTIC FOR MULTIPLE SOURCES

In this section we consider a search for a collection ofM
nearly periodic GW sources, all with known positions and
frequencies. In this case, the signal h��t� depends linearly
on 4M unknown parameters. Assuming that the M differ-
ent GW frequencies fi (i � 1; � � � ;M) are all sufficiently
well separated that the detector noises are uncorrelated
[i.e.,h~n��fi�~n��fj��i � 0 for i � j], then a trivial repetition
of the arguments in Sec. III shows that the optimum
statistic (for either the single-detector or the multidetector
case) 2F is simply the sum of the optimal statistics for the
individual sources:
-4
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2F �
X
i

2F i: (4.1)

It also easy to show that y � 2F follows a �2 distribution
with 4M degrees of freedom:

P�y� � �2�yj4M;�2�; (4.2)

where the noncentrality parameter �2 �
P
i�

2
i .

There are currently �100 known millisecond (ms) pul-
sars2 (defined as pulsars with period P< 10 msec), of
which �60 are in binaries. We can of course consider
any subset of these as some collection, sum their individual
F -statistics (derived from existing GW data) as in
Eq. (4.1), and test whether or not the collection has been
detected. But when is such a strategy likely to be advanta-
geous, and for which subsets? It seems that there are at
least two interesting applications of this idea. First, one
might hope that the nearest �5–50 (say) ms pulsars,
searched for as a collection, might be more detectable
than any individual member. If this were the case, a multi-
source search might hasten the first discovery of GWs from
rotating neutron stars. We shall see below, however, that it
is highly unlikely that a collection of more than a few
(� 2–5) of the brightest (in GWs) ms pulsars is more
detectable than the very brightest source alone. While it
is reasonably likely that the brightest few sources, taken
together, are more detectable than the single brightest
one—and we give a realistic example of this in
Sec. IV D—this will certainly not be the case for the
brightest 20 or 50 sources. If there are too many sources,
the strongest ones are effectively diluted by mixing them
with the weaker ones, in the multisource F -statistic.

To understand the second interesting application of
multisource searches, imagine a day when GWs have al-
ready been detected from the few brightest, closest GW
pulsars (all at distances of �0:1–0:5 kpc, say), but when
the GW pulsars in the range d > 0:5 kpc are still too faint
to be detected. In that situation, it could make sense to take
as a collection all (or some promising-looking fraction of)
the ms pulsars in some annulus—say those in the range
0:5< d< 1:0 kpc. This might allow one to measure the
average GW strength of those more distant sources, even if
no single one of them could be positively detected in GWs,
and therefore to begin to make interesting statistical state-
ments based on this larger sample.

We investigate the likely advantages of multisource
searches in the next five subsections. First, in Sec. IVA,
we consider a collection of M sources, for large M, and
ask: when does adding one more source to the collection
increase that collection’s overall detectability? In Sec. IV B
we rederive the distribution function of signal-to-noise-
squared for any spatially uniform population of sources.
2However �60% of these are in globular clusters, at distances
of several kpc, and so are roughly an order of magnitude further
away than the closest known sources.
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These results from IVA and IV B are utilized in IV C,
where we show that for a uniform planar distribution of
GW pulsars (representing a somewhat idealized version of
the population in our neighborhood of the Galactic disk),
one might reasonably expect the few brightest sources,
taken together, to be more detectable than the very bright-
est one. However this is hardly guaranteed, and any ad-
vantages of a multisource search are likely to be small in
this case. This is illustrated in IV D, where we consider a
fairly realistic example based on the closest known ms
pulsars. In IV E we consider searching collectively for
more numerous, more distant GW pulsars, after the near-
est, brightest ones have been detected, and the advantages
of multisource searching are shown to be much greater in
that case.

A. The large-M case

Here we compare the sensitivities of a single-source
search and a search for a collection with M members,
when M is much larger than 1. For the single-
source search, the threshold value of F that gives a 1%
FA rate is given by 2F th�� yth� � 13:277 [i.e.,R
1
13:277 �

2�yj4�dy � 0:01]. To be detectable with FD rate
� 50%, the signal strength must be at least �2 � 10:234
[i.e.,

R
1
13:277 �

2�yj4; 10:234�dy � 0:50].
By comparison, when M is large, the �2 distribution

with 4M d.o.f. is well approximated by a Gaussian. Let y �
2F , and let �2

tot �
PM
i�1 �

2
i . Then

P�y� � �2�yj4M;�2
tot� 
 �8�M�

�1=2e��y�hyi�
2=�8M� (4.3)

where hyi � 4M� �2
tot. The threshold value yth such thatR

1
yth
� 0:01 is then

yth 
 4M� 4:652
�����
M
p

�large M�: (4.4)

[Note that the approximate threshold value that one obtains
by inserting M � 1 into Eq. (4.4) is only 8.652, which is
considerably less than the actual threshold yth � 13:277
for the M � 1 case. Clearly, this is because the �2 distri-
bution with only 4 d.o.f. has a substantial tail—i.e., is more
skewed to the right than the higher-M distributions.]

When will a collection be more detectable than its single
brightest member? To answer this, let us order the pulsars
in the sample such that

�1 � �2 � � � � � �M: (4.5)

Let T1 be the integration time necessary to detect the
brightest source, and let Tcoll be the integration time re-
quired to detect theM-member collection. For largeM, the
ratio of these 2 times is

Tcoll=T1 � 0:455M1=2 �
2
1

�2
tot

� 0:455M�1=2 �2
1

�2
ave

; (4.6)

where �2
ave � �2

tot=M. As an extreme example, if M � 25
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and all members have the same strength (�1 � �2 �
� � � � �25�, then Tcoll=T1 � 1=11:0. (More realistic cases
will be considered in the next two subsections.) More
generally, we say that a collection is more detectable
than its brightest member if Tcoll=T1 < 1.

How many pulsars should one include in the sample,
assuming the goal is to hasten its detection? Imagine that
pulsars 1; 2; � � � ;M� 1 are included in the sample, and we
want to decide whether to include pulsar M. By Eq. (4.6),
the change �Tcoll in the time required to confidently detect
the collection is

�Tcoll

Tcoll
� M�1�0:5� �2

M=�
2
ave�: (4.7)

Thus it is advantageous to increase the sample size (be-
cause �Tcoll < 0) iff �2

M > 0:5�2
ave.

Of course, a priori both �2
M and �2

ave are unknown;
nevertheless one can use both some general statistical
arguments and the measured parameters of nearby milli-
second pulsars to make a reasonably informed choice. We
shall illustrate this in the next two subsections.

B. Distribution of �2 for Galactic GW pulsars

What is the distribution function of �2 for the GW
pulsars in the Galactic disk, within a few kpc of us? We
can get quite far in answering this question, based on quite
general considerations.

Let r represent a pulsar’s distance from the Earth. For
simplicity, we shall consider two different spatial distribu-
tions: a uniform (i.e., homogeneous and isotropic) three-
dimensional distribution and a uniform planar distribution.
(These roughly represent the pulsar distributions at dis-
tances r & 300 pc and 300 pc & r & 5 kpc, respectively.)
Let ��r; f; A; �i� represent the probability density of GW
pulsars in parameter space. Here f is again the NS’s
gravitational-wave frequency, A represents the signal’s

source’s intrinsic amplitude (proportional to
�����������������
_EGW=f2

q
,

where _EGW is the source’s GW luminosity), and the �i
are the relevant angles in the problem. For a 3D distribution
there are 4 such angles: two for the NS’s angular location
on the sky and two for the direction of its spin. For the
planar (2D) distribution there are only 3 relevant angles,
since one angle suffices for the sky location. For either
uniform distribution, the r dependence can clearly be
factored out:

��r; f; A; �i� � F�r��̂�f; A; �i�; (4.8)

where

F�r� �
�

4�r2 for 3D;
2�Hr for 2D:

(4.9)

Here H 
 600 pc is the thickness of the Galactic disk.
The source’s signal-to-noise-squared, �2, can clearly be

written in the following form:
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�2 � A2r�2
�f; �i�; (4.10)

where 
�f; �i� is some function of f and the source’s
angular parameters. For a single detector with time-
invariant noise characteristics, the f dependence can also
be factored out of 
�f; �i�:


�f; �i� � 
̂��i�=Sh�f�; (4.11)

however this factorization of the f dependence is not
necessary for our argument.

For notational convenience, we again define y � �2. We
now change variables: �r; f; A; �i� ! �y; f; A; �i�. The
density function � on the new variables is

��y; f; A; �i� � ��r; f; A; �i�
��������@�r; f; A; �i�@�y; f; A; �i�

��������; (4.12)

where the second term on the right-hand side of Eq. (4.12)
is the Jacobian of the transformation. It is easy to check
that this Jacobian factor is just��������@�r; f; A; �i�@�y; f; A; �i�

��������� 1

2
y�3=2A
1=2: (4.13)

Combining Eqs. (4.8), (4.9), (4.12), and (4.13), we there-
fore have

��y; f; A; �i� � �̂�f; A; �i� �
�
y�5=2 2�

A
1=2 ; �3D�

y�2�H; �2D�:

(4.14)

Integrating Eq. (4.14) over the variables �f; A; �i�, we
arrive at the density function for y alone:

��y� � n3y�5=2 �3D� (4.15)

��y� � n2y�2 �2D�; (4.16)

for some constants n3 and n2.
We emphasize that no assumption about the distribution

of GW pulsars in f and A went into this result. All that was
required was spatial uniformity—that the nearby pulsars
are drawn from the same distribution as the more distant
ones, and that the total number within some radius scales as
r to some power. Indeed, the same scaling applies to any
source-type having a spatially uniform distribution in
Euclidean space; e.g., to the extent that one can ignore
cosmological effects, the scaling in Eq. (4.15) also applies
to detections of binary inspirals. [To appreciate why this is
at least a bit remarkable, consider trying to estimate the
density function ��y� for all the pulsars in some globular
cluster (say, 47 Tuc). In this case, all the pulsars are
effectively at the same distance, but we would need to
somehow estimate the distribution of GW pulsars in f
and A, and then to fold in the detector’s noise curve, in
order to estimate ��y� for that cluster.] Of course, the
scaling law Eqs. (4.15) is well known in other areas of
astronomy, where it is the basis for the ubiquitous
logN- logS test of source strength distributions.
-6
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GENERALIZED F -STATISTIC: MULTIPLE . . . PHYSICAL REVIEW D 72, 063006 (2005)
C. Implications of ��y� for collection searches

We can now return to the question of when a large
sample of the brightest (in GWs) pulsars, taken together,
might be more detectable than the single brightest member.
From Eq. (4.6), the ‘‘figure of merit’’ that characterizes the
detectability of the collection is M�1=2 PM

i�1 y
i. In the next

two subsections we show how this quantity varies with
collection size for spherical and planar distributions,
respectively.

1. Uniform 3D pulsar distribution

The spherically symmetric case is the less interesting
one, from a practical standpoint, since there only a few
known ms pulsars with�300 pc of the Earth. Nevertheless
we begin with this case since it is somewhat simpler and
illustrates our general line of reasoning.

Imagine that we have included in our collection all the
brightest (in GWs) ms pulsars, down to some lower limit
yl. Then M 


R
1
yl
n3y

�5=2 and

XM
i�1

yi 

Z 1
yl

n3y�3=2dy; (4.17)

so

M�1=2
XM
i�1

yi 

��������
6n3

p
y1=4

l : (4.18)

This is a strictly increasing function of yl (albeit that it
increases rather slowly). But increasing yl means shrinking
the collection. Thus for a uniform 3D distribution, it would
be unlikely that a large collection of the brightest sources
would be detectable before the single brightest member
was detected.

2. Uniform 2D pulsar distribution

We turn now to the planar case. We begin by considering
the detectability of all GW pulsars with �2 in the interval
yl <�2 < yu, (so yl and yu are the lower and upper limits
of the interval, respectively). Again, assuming the number
of sources in the interval is large, the appropriate figure of
merit, characterizing the detectability of the whole collec-
tion, is M�1=2 PM

i�1 y
i. The continuous version of this is

clearly

M�1=2
XM
i�1

yi 


"Z yu

yl

n2y
�2dy

#
�1=2 Z yu

yl

n2y
�1dy

� n1=2
2 ln�yu=yl�	y�1

l � y
�1
u 

�1=2 (4.19)

� �n2yu�
1=2

�
� ln�x�

�x�1 � 1�1=2

�
(4.20)

where in the last line we introduced the dimensionless ratio
x � yl=yu < 1. We gain some insight into Eq. (4.20) if we
063006
reexpress n2 in terms of ymax, which we define to be the y
value of the strongest galactic source. Let ~ymax represent
the median value of ymax, for our distribution function
Eq. (4.16). Then ~ymax is given implicitly byZ 1

~ymax

n2y�2dy � 0:5; (4.21)

(since then there is a 50% chance of finding a stronger
source than ~ymax), so ~ymax � 2n2. The actual value of ymax

for our Galaxy is therefore ymax � 2�n2, where we expect
� is some number of order one. The right-hand side in
Eq. (4.20) can therefore be written as

�
ymaxyu

2�

�
1=2
�
� ln�x�

�x�1 � 1�1=2

�
: (4.22)

Next we consider the function f�x� � � lnx=�x�1 � 1�1=2,
which is displayed in Fig. 1.

Note that it has a maximum at x 
 0:203, where f�x� 

0:805. Thus an optimized source collection has a ratio of
weakest-to-brightest source (in terms of their signal-to-
noise-squared) of �1=5. However the maximum in f�x�
is rather broad; at a brightness ratio of 20 (x � 0:05), f�x�
has decreased only �15%, to 0:687. Assuming the collec-
tion includes all the brightest sources down to some limit-
ing brightest yl, the number of sources in the collection is

M 
 n2=yl � ~ymax=�2yl� (4.23)

� 2:5��1

�
ymax=yl

5

�
: (4.24)

Thus including all sources down to strength yl while also
optimizing yl=ymax leads to a rather small value of M,
which is then somewhat outside the range of validity of
-7
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the Gaussian approximation that led to our figure of merit
M�1=2 PM

i�1 y
i; nevertheless it is clear that the ‘‘most-

detectable’’ collection will have at most a few members.
To estimate Tcoll=T1 (the time to detect this collection

divided by the time to detect the single brightest source), it
would seem we need to evaluate the integral

R
1
yl
n2y�1 (i.e.,

the continuous version of
PM
i�1 y

i), which is logarithmi-
cally divergent. Physically, though, it seems sensible to
simply cut off the upper end of the integral at some ycut of
order ymax. I.e., we cut off the integral at the y value of the
brightest source.3

Thus, setting yu equal to ymax in Eq. (4.22) and plugging
the result into Eq. (4.6), we estimate

Tcoll

T1

 0:455�2��1=2=f�0:203� 
 0:80�1=2: (4.25)

Again, the use of Eq. (4.6) in deriving Eq. (4.25) is strictly
valid only for large M; nevertheless the basic moral is
clear: Tcoll=T1 is of order unity, and whether in actual
experience it is greater or less than one depends strongly
on �, i.e., on whether the strongest source is stronger or
weaker than one would expect, based on the source distri-
bution function.

D. Example: The best candidates among known
millisecond pulsars

We next consider a potentially realistic example: a col-
lection drawn from the population of known millisecond
pulsars. We attempt to construct the most-detectable col-
lection from these. Of course, we do not know their actual
GW strengths, so for this exercise we will estimate their
strengths by assuming that they all have the same non-
axisymmetry I
 � Ixx � Iyy (where the NS is assumed to
be spinning about its z axis). This nonaxisymmetry might
be generated, e.g., by lateral variations in the crustal com-
position or strong toroidal magnetic fields in the NS inte-
riors [12].

For each of the millisecond pulsars, we estimate �2 as
follows. First, we estimate h0 at the Earth from the pulsar’s
measured spin and the best available estimate of its dis-
tance r [13], using

h0 � 4�2�G=c4�I
f2r�1 (4.26)

where here we will assume the GW frequency f is exactly
twice the pulsar’s measured spin frequency, �. Then we
estimate �2 using
3Of course, our planar approximation breaks down at r <
H=2, and this ‘‘switchover’’ from an effective 2D to a 3D
distribution at short distances would obviate the need for an
artificial cutoff in a more realistic treatment of this problem.
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�2 � 2
�
h2

0T0

Sh�f�

�
K��i� (4.27)

where T0 is some fiducial observation time and K��i� is
factor that depends on the sky location and spin orientation
of the source. The spin orientations of the millisecond
sources are poorly constrained, so for simplicity, in our
estimates, we will simply replace K by its average value
(over all angles). For Sh�f�, we use the values for the
advanced LIGO noise curve, as generated by the BENCH

software package [14]. [Equation (4.27) is for a single
detector; if one optimally combined the outputs of
LIGO’s L1, H1 and H2 interferometers, then �2 should
be approximately 2:25 times greater than for either L1 or
H1 alone.]

Given the above inputs, we find that there are 5 ms
pulsars that stand out as the best candidates for detection
by the advanced LIGO interferometers. They are PSRs
J0437-4715, J0030� 0451, J2124-3358, J1744-1134, and
J1024-0719. These 5 are also the closest known ms pulsars.
And pulsar 1 (PSR J0437-4715), which at d � 0:14 kpc is
the closest of all the known ms pulsars, is estimated to be
the strongest GW source. Relative to pulsar 1, the GW
strengths of the other four sources are given by:
��2=�1�

2 � 0:38, ��3=�1�
2 � 0:32, ��4=�1�

2 � 0:17, and
��5=�1�

2 � 0:16.
Assuming the above estimates of �2 for the five best

candidates were correct, what would be Tcoll=T1 (the ratio
of the integration times necessary to detect the 5-member
collection and the brightest individual source)? For our 5-
member sample, the threshold value for detection with 1%
FA rate is yth � 37:57 [i.e.,

R
1
37:57 �

2�yj20�dy � 0:01]. To
be detectable with FD rate� 50%, the signal strength must
be at least �2

tot � 18:45 [i.e.,
R
1
37:57 �

2�yj4; 18:45�dy �
0:50]. Thus

Tcoll

T1
� ��2

1=�
2
tot�

�
18:45

10:23

�
� 0:87: (4.28)

E.g., if it took two years to confidently detect the strongest
source, the 3-member ensemble would be detectable in
about 21 months. [Note that in deriving Eq. (4.28) we
have used the actual �2 distribution with 20 d.o.f., not
the Gaussian approximation to it.]

Should we add a sixth pulsar to the sample? From the
analysis in the previous subsection, this would be advanta-
geous if �2

6=�
P5
i�1 �

2
i �> 0:10. But we estimate that the

sixth most-detectable pulsar is J1012� 5307, with
��6=�1�

2 � 0:07, so we restrict the sample to the most
promising five. [Indeed, if we had restricted the sample
to only the most promising 3 pulsars, we would coinciden-
tally have arrived at the same estimate for Tcoll=T1. For the
3-member case, ��2

tot=�
2
1� � 1:70, while the threshold for

detection with 1% FA rate is yth � 26:22, and the signal
strength must be �2

tot � 15:13 to be detectable with a FD
-8
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rate � 50%. Thus we would estimate Tcoll=T1 �
15:13=�2:03 � 10:23� � 0:87, the same as for the 5-
member collection. However we highlighted the 5-member
result since that one is clearly somewhat more robust
against deviations of the actual source strengths away
from our fiducial estimates.]

Clearly, since the actual orientations of the ms pulsars
are unknown and the distances are known only to within a
factor �2, the above estimate merely gives a rough indi-
cation of the time savings that a multisource search might
reasonably lead to.

We also note that if we were to estimate source
strengths by assuming that all ms pulsars are spinning
down primarily due to GW emission, thus using h0 �

�5GI _�=2c3��1=2r�1 instead of Eq. (4.26), and then repeat
the above analysis from that starting point, we would find
that no subset of the known ms pulsars is more detectable
than the single brightest source, PSR J0437-4715. This just
highlights the fact that the ratio Tcoll=T1 —and especially
whether that ratio is greater or less than one—depends
rather sensitively on the relative strengths of the few
brightest sources, which of course we will not know in
advance.

E. Search for a collection of weaker GW pulsars

The last two subsections showed that a search for a
collection of the very brightest GW pulsars may offer
some advantages, compared to a search for the very bright-
est one, but any such advantages are likely to be quite
modest. We now turn to a case where the advantages of a
whole-collection search are much more impressive.

Consider some time in the future, when the few brightest
GW pulsars are presumed to have already been detected.
These are presumably among the closest GW pulsars,
while the GWs from their more distant cousins are still
too weak (at the Earth) to be detected. Now once again
consider collecting together all known ms pulsars in the
range yl < y< yu. (Of course, again, one does not know
precisely which these are, but whatever lessons are learned
from the brightest GW pulsars, combined with the known
distances and spin rates of the remaining millisecond pul-
sars, will probably allow one to make fairly educated
guesses.) If all ms pulsars had the same intrinsic GW
strength, the same frequency, and the same angular factor
K��i� [from Eq. (4.27)], then clearly these pulsars would
occupy a circular annulus in the disk. In fact, of course,
these GW pulsars will not have the same intrinsic ampli-
tude, frequency, or angular factor, but we still find it help-
ful, conceptually, to imagine the GW pulsars with
yl < y< yu as filling a roughly annular region.

For an optimally chosen annular region (one that mini-
mizes the integration time required for positive detection),
what is the optimal value of x � yl=yu. We worked this out
in Sec. IV C 2; the optimum selection has x� 1=5. How
many sources are in this range? For a planar distribution,
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the answer is clearly

M 

Z yu=5

yu

n2y�2dy � 2
�

~ymax

yu

�
; (4.29)

where we have used n2 � ~ymax=2. Similarly the ratio
Tcoll=Tu (where Tu is the integration time required to detect
a GW pulsar whose �2 equals yu) is given by

Tcoll=Tu 
 0:455yu=	�n2yu�
1=2f�x 
 0:203�
 (4.30)


 0:8
�
yu

~ymax

�
1=2
: (4.31)

For example, if yu=~ymax � 1=10, then the optimal num-
ber of sources for the ‘‘annulus’’ is M 
 20, and the
integration time required to detect that whole collection
of 20 GW pulsars is only 0:8=

������
10
p


 0:25 as long as the
time required to detect the brightest single member in that
group. Again, such a detection would provide an estimate
of the average �2 for ms pulsars in that collection, even
though none could be detected individually in GWs.
V. CONCLUSIONS

The most sensitive GW detectors (currently the LIGO
L1, H1, and H2 interferometers) have very similar sensi-
tivities, and this is likely to remain the case for some years.
In such a case, one can significantly increase the effective
signal-to-noise of any source by optimally combining the
data streams. Here we have derived the appropriate for-
mulas for doing so, for GW pulsar searches. For N GW
detectors with the same sensitivity, the observation time
Tdet required to detect any particular GW pulsar scales like
N�1, and so combining the data streams this way is clearly
a useful strategy.

However we remind the reader that our analysis of the
multidetector statistics has assumed the noise is Gaussian.
In the more realistic case, one would one want to veto
candidate detections that had a large F -statistic but that
did not sufficiently resemble actual GW pulsar signals,
e.g., because the relative sizes of the signal in the various
detectors did not conform with expectations for any choice
of parameters �
1; 
2; 
3; 
4�. In particular, we imagine
that a realistic implementation would incorporate some
multidetector version of the chi-square veto developed in
Itoh et al. [15]; however we have not considered this in any
detail.

We have also pointed out that one can search for collec-
tions of pulsars, and that the optimal frequentist search for
such collections simply adds up the F -statistics of the
individual members. We considered two cases in detail.
We first asked whether the few brightest GW pulsars might
be discovered, collectively, before the very brightest one.
The answer turns out to depend rather sensitively on the
relative strengths of the few brightest sources, and so we
-9
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can only equivocate: maybe yes, maybe no. But even if
some collection turns out to be more detectable than the
single brightest source, it is unlikely to ‘‘win’’ by much.
However, after the few brightest GW pulsars have been
discovered, searching for more distant pulsars by summing
their F -statistics should prove to be an effective strategy,
allowing one to measure the average strength of many
sources that are not individually detectable.
063006
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