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We study the large order behavior in perturbation theory of the Bjorken, Ellis-Jaffe and Gross-
Llewellyn-Smith sum rules. In particular, we consider their first infrared renormalons, for which we
obtain their analytic structure with logarithmic accuracy and also an approximate determination of their
normalization constant. Estimates of higher order terms of the perturbative series are given. The
renormalon subtracted scheme is worked out for these observables and compared with experimental
data. Overall, good agreement with experiment is found. This allows us to obtain â0 and some higher-twist
nonperturbative constants from experiment: â0 � 0:141� 0:089; f3;RS�1 GeV� � �0:124�0:137

�0:142 GeV2.
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I. INTRODUCTION

Deep inelastic scattering (DIS) is one of the few places
where one can test, on a very solid theoretical ground,
asymptotic freedom and the operator product expansion
against experiment. This is so because, for the moments of
the different structure functions, the transfer momentum
lies in the Euclidean region and far away of the physical
cuts (for Q2 large). Therefore, the theoretical predictions
do not rely on any kind of quark-hadron duality and may
provide with solid and very clean determinations of �s and
some nonperturbative matrix elements. Equally interesting
is the study of the interplay between the perturbative and
nonperturbative regime. This can only be done if a full
control on the perturbative series is achieved.

Within DIS, special consideration deserves the sum
rules for which the matrix elements are related to symme-
try generators (in this case they can be computed in abso-
lute value within perturbation theory), like the Gross-
Llewellyn-Smith (GLS) sum rule [1], or to some low
energy constants (which can be directly measured from
experiment), like the Bjorken sum rule [2]. In this paper,
we will concentrate on the Bjorken, Ellis-Jaffe [3] and GLS
sum rules. Their leading-twist term has been computed
with next-to-next-to-leading order (NNLO) accuracy and
they have been measured with increasingly good accuracy
over the years.

By the operator product expansion, the short- and long-
distance contributions are separated and a sum rule M can
be expressed in the following way:

M � ChJi � B
hRi

Q2 � . . . ; (1)

with short-distance Wilson coefficients C;B; . . . and long-
distance matrix elements hJi; hRi; . . . . The perturbative
series of C are expected to be asymptotic and, therefore,
to diverge for a high enough order in perturbation theory.
Moreover, in schemes without strict separation of large and
small momenta, such as MS, they are believed to be non-
05=72(5)=056008(13)$23.00 056008
Borel summable. This is because when calculating the
matching coefficients C; . . . , the integrals run over all
loop momenta, including small ones. Therefore, they also
contain, in addition to the main short-distance contribu-
tions, contributions from large distances, where perturba-
tion theory is ill-defined. These contributions produce
infrared renormalon singularities [4], factorially growing
contributions to coefficients of the perturbative series,
which lead to ambiguities ���QCD=Q�2n in the matching
coefficients C; . . . . Similarly, matrix elements of higher-
dimensional operators hRi; . . . also contain, in addition to
the main large-distance contributions, contributions from
short distances, which produce ultraviolet-renormalon sin-
gularities. They lead to ambiguities of the order �2n

QCD

times lower-dimensional matrix elements (e.g., hJi).
These two kinds of renormalon ambiguities should cancel
in physical observables [5–10], in this case M.

The intrinsic (minimal) error associated to the perturba-
tive series is of the order of the higher-twist correction.
Thus, one can not unambiguously determine the higher-
twist terms, unless a prescription to deal with the pertur-
bative series that has powerlike accuracy is given. In this
paper we will adapt to this case the prescription used for
heavy quark physics in Refs. [11–13]. The idea is that the
leading divergent behavior of the perturbative series is
related to the closest singularities in the Borel plane of
its Borel transform. In heavy quark physics, they lie on the
positive axis (infrared renormalons). In the case of the sum
rules considered in this paper, the closest singularities lie
on the positive and negative axis at equal distance to the
origin. We will assume that the one in the positive axis will
dominate the asymptotics of the perturbative series. Since
these singularities cancel against the ultraviolet renorma-
lons of the low energy dynamics of the twist-4 operators,
the proposal will be to shift the singularities from the
perturbative series to the twist-4 operators. We will refer
to this prescription as the renormalon subtracted (RS)
scheme and apply it to the Bjorken, Ellis-Jaffe and GLS
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sum rules. We will obtain the contribution of the leading
infrared renormalon, subtract it from the perturbative se-
ries, and add it to the low energy matrix elements, in our
case, to the twist-4 operators. In this way one enlarges the
range of convergence of the Borel transform of the pertur-
bative series, which can be defined with powerlike accu-
racy. This procedure has proven to be extremely successful
in heavy quark physics, where it has been shown that
perturbation theory works very well and good determina-
tions of nonperturbative subleading corrections have been
obtained using either lattice or experimental data. One
should be aware, however, that in heavy quark physics
one was in an optimal situation, since the singularity in
the Borel plane was quite close to the origin (u � 1=2). We
are now going to be in a less optimal situation, since the
closest singularities lie at u � �1. The physical situation
is also completely different since now we are talking of a
system made with light fermions. Therefore, it is interest-
ing to investigate if a similar improvement is obtained in
this case. We will do so in this paper.

The paper is organized as follows. In the next section we
will introduce the relevant sum rules. In Sec. III the Borel
transform of the first infrared renormalon of the leading-
twist Wilson coefficient will be calculated with leading log
accuracy, as well as the normalization constant and esti-
mates of the higher order terms of the perturbative series.
The RS scheme will be worked out in Sec. IV. In Sec. V the
comparison with the experimental data will be done allow-
ing us the extraction of some nonperturbative matrix ele-
ments. Finally, the conclusions are presented in Sec. VI.
II. SUM RULES

The Bjorken and Ellis-Jaffe sum rules are related to
polarized deep inelastic electron-nucleon scattering, which
is described by the hadronic tensor

W�� �
1

4�

Z
d4zeiqzhp; sjJ��z�J��0�jp; si

�

�
�g�� �

q�q�
q2

�
F1�x;Q

2� �

�
p� �

p � q

q2 q�

�

	

�
p� �

p � q

q2 q�

�
1

p � q
F2�x;Q2�

� i�����q�

�
s�
p � q

g1�x;Q
2�

�
s�p � q� p�q � s

�p � q�2
g2�x;Q2�

�
: (2)

Here J� �
Pnf
i�1 ei i�� i is the electromagnetic quark

current where ei � 2=3;�1=3;�1=3; � � � is the electro-
magnetic charge of a quark with the corresponding flavour
u, d, s. x � Q2=�2p � q� is the Bjorken scaling variable and
Q2 � �q2 is the square of the transferred momentum.
jp; si is the nucleon state that is normalized as
hp; sjp0; s0i � 2p0�2��3	�3��p� p0�	ss0 . The polarization
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vector of the nucleon is expressed as s� �
U�p; s����5U�p; s� where U�p; s� is the nucleon spinor
U�p; s�U�p; s� � 2mN .

The Ellis-Jaffe sum rule then reads

Mp=n
1 �Q2� �

�
�

1

12
gA �

1

36
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�
; (3)

and the Bjorken sum rule is the difference between the
proton and neutron sum rule:

MB
1 
 Mp

1 �Q
2� �Mn

1 �Q
2�

�
gA
6
CB��s� �

4

27

1

Q2 f3�Q0�

�
�s�Q2

0�

�s�Q
2�

�
���0

NS�=2
0

	 �1�O��s�� �O

�
1

Q4

�
; (4)

where the definitions are the following:

�0
NS �

16

3
CF; �0

S � �0
NS �

4

3
nf; (5)

CX�Q� � 1�
X1
s�0

C�s�X �
s�1
s ���; (6)

and X � fB;EJ;GLSg, the latter to be defined below. For
the Bjorken sum rule, the �s correction [14], the �2

s
correction [15], and the �3

s correction [16] have been
calculated in the leading-twist approximation. Higher-
twist corrections have also been calculated [17]. The
Ellis-Jaffe sum rule for the proton and neutron was calcu-
lated to order�s [18], to order�2

s [19], and to order�3
s [20]

in the leading-twist approximation. Power corrections
were calculated in [21]. The LO renormalization group
running of the twist-4 operators have been computed in
Ref. [22]. The nonperturbative matrix elements are defined
in the following way:

jgAjs� � 2hp; sjJ5;3
� jp; si � ��u��d�s�;

a8s� � 2
���
3
p
hp; sjJ5;8

� jp; si � ��u� �d� 2�s�s�;

a0��
2�s� � hp; sjJ

5
�jp; si � ��u� �d��s�s�;

(7)

where J5;a
� �x� �  ���5ta �x� is the nonsinglet axial cur-

rent, where ta is a generator of the flavor group, and
J5
��x� �

Pnf
i�1  i ���5 i�x� is the singlet axial current.

jgAj is the absolute value of the constant of the neutron
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beta-decay, jgA=gVj � F�D � 1:2695� 0:0029 [23].
a8 � 3F�D � 0:572� 0:019 is the hyperon decay con-
stant.1 The matrix element of the singlet axial current
a0��2� will be redefined in a proper invariant way as a
constant â0:

â 0 � exp
�
�2

Z �s���
d�0s

�s��0s�

��0s�

�
a0���: (8)

We use the notation �q��2�s� � hp; sjq���5qjp; si, q �
u; d; s, for the polarized quark distributions. f0, f3, and f8

are the twist-4 counter parts of a0, a3, and a8. fi’s are scale
dependent and here they are defined at Q2

0, i.e. fi is the
reduced matrix element of Ri2�, renormalized at Q2

0, which
is defined for the general flavor indices, with ti being the
flavor matrices, as

Ri2� � g ~G����ti ;

hp; sjRi2�jp; si � fis� �i � 0; � � � ; 8�;
(9)

and ~G�� �
1
2 "���
G

�
 is the dual field strength.
In the left-hand side of Eqs. (3) and (4) target-mass

effects have been included using the Nachtmann variable
[25]. They read

MN
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�
; (10)

where � � 2x=�1�
��������������������������������
1� 4m2

Nx
2=Q2

q
� is the Nachtmann

scaling variable, mN is the nucleon mass. The quantity M1

is the first Nachtmann moment of g1 that absorbs all the
target-mass corrections, ��m2

N=Q
2�n, and

�N
4 � �

m2
N

9
�aN2 � 4dN2 �; (11)

where aN2 is the target-mass correction given by the
x2-weighted moment of the leading-twist g1 structure func-
tion, and dN2 is a twist-3 matrix element given by

dN2 �
Z 1

0
dxx2�2gN1 � 3gN2 �: (12)

We will consider the Ellis-Jaffe proton sum rule and the
Bjorken sum rule. For the former we will use the data
points given in Ref. [26], which are already given in terms
ofMp

1 , and for the latter we will use the data points given in
1We will obtain this number from hyperon decays, see [24].
F=D � 2=3 in the large Nc.

056008
Ref. [27], which used the values2:

dp�n2 � �0:0029; ap�n2 � 0:0279: (13)

If one also considers DIS of neutrinos with nucleons, the
GLS sum rule appears, for which the leading twist has been
computed with NNLO accuracy (see for instance [28]):

MGLS
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hPjOS
5�jPispin averaged 
 2P�hhO

S
5ii 
 2P�f

S
5 ; (16)

and

OS
5� � �u ~G���

��5u� �d ~G���
��5d: (17)

For this sum rule, we will use the data of the CCFR
Collaboration [29].

The difference between CGLS andCB first starts at O��3
s �

and is proportional to the number of light fermions. This
new term is of a ‘‘light-by-light’’ nature and proportional to
a new Casimir. The anomalous dimension of the higher
twist is equal to the Bjorken case.

The difference between the three CX is the light flavor
dependence. In the limit nf ! 0 they are all equal.

We also consider the correction due to the charm quark
(with finite mass) to the perturbative series ofCB andCGLS.
They have been computed in Ref. [30]. The O��2

s � correc-
tion is equal for both of them and rather small (actually
negligible compared with other sources of errors). Note
however that the leading-order correction is different in
each case (zero for the Bjorken case). This correction
depends on the Cabibbo angle. We take the value sin �
0:224 [23]. According to Ref. [30], it is a good approxi-
mation to work with 3 light flavors plus one massive flavor
up to rather large energies. This is the situation we will
consider in this paper.
2To take them as constants is an approximation, nevertheless,
their effect on the fit is small in comparison with other source of
errors.
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III. RENORMALONS

The Wilson coefficients CX can be expressed in terms of
SX, their Borel transform, defined as

SX�u� �
X1
n�0

C�n�X
n!

�
4�

0

u
�
n
; (18)

in the following way:

CX�Q� � 1�
4�

0

Z 1
0
SX�u�e

��4��=�
0�s����udu: (19)

However, the perturbative expansions in �s of the Wilson
coefficients CX are expected to be asymptotic and non-
Borel sumable. In other words, we expect to have singu-
larities in the real axis of SX�u�. Those lying in the positive
axis are called infrared renormalons, and those lying on the
negative axis are called ultraviolet renormalons. The posi-
tion and strength of the singularities can be obtained by
using the renormalization group and consistency with the
operator product expansion. In particular, the infrared re-
normalons of the perturbative series are obtained by de-
manding their cancellation with the ultraviolet
renormalons of the higher-twist terms. Although the re-
normalon cancellation has only been explicitly shown in
some cases in the large-
0 limit, it is assumed to hold
beyond this approximation. Based on this assumption, one
may obtain additional information on the structure of the
infrared renormalon singularities of the matching coeffi-
cients, based on the knowledge of the ultraviolet renorma-
lons in higher-dimensional matrix elements, which are
controlled by the renormalization group [5]. This model-
independent approach has been applied in heavy quark
effective theory (HQET) in [10,31,11,32]. In our case,
the singularities closest to the origin are located in the
real axis at u � �1.

The ultraviolet-renormalon structure of the moments of
the DIS structure functions have been computed in
Ref. [33]. For those one gets the ultraviolet renormalon
for the sum rules we are discussing here, which is the same
in all cases up to a constant. For the case of the GLS or
Bjorken sum rule, the ultraviolet renormalon formally
dominates for nf > 2 for n! 1. For the Ellis-Jaffe sum
rule, since the infrared renormalon is weaker, the
ultraviolet-renormalon dominance appears for even a
smaller number of flavors. Nevertheless, at low orders in
perturbation theory the infrared renormalon appears to be
dominant. This can be seen from the fact that the sign of the
known terms of the perturbative series is equal whereas if
the ultraviolet renormalon were to be dominant we would
find a sign alternating series. Nevertheless, we will perform
a conformal mapping to avoid the ultraviolet renormalon.
The fact that we will obtain a similar number than without
conformal mapping will support the view that the normal-
ization constant of the ultraviolet renormalon is small in
comparison with the infrared one. Indeed, a similar con-
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clusion was obtained in Ref. [34] using Pade approximants.
Therefore, we will neglect ultraviolet-renormalon effects
in the leading-twist Wilson coefficients in what follows.

The Borel transform near the closest infrared renorma-
lon singularity has the following structure:

SX�u� �
�2

Q2 N
�IR�
X

1

�a� u�1�b�bX
�1� dX1 �a� u�

� dX2 �a� u�
2 � � � �� � Sreg�u�; (20)

where Sreg�u� is an analytic function at u � a and we
define b � 
1=
2

0. The procedure to fix the coefficients
of this expansion (except N�IR�X ) is by demanding consis-
tency with the operator product expansion. In other words,
we demand the ambiguity of the Borel transform to cancel
with the ambiguity of the ultraviolet renormalons of the
twist-4 matrix elements (see Eqs. (3), (4), and (14)).
Therefore,

Im
�Z 1

0
SX�u�e��4��=�
0�s����udu

�
/

�2
MS

Q2 �s�Q��bX

�
�2

Q2 e
��4��=�
0�s�����s���

�b�bX

�
1�


0

4�
�s���

	 ln
�
�2

Q2

��
bX
: (21)

This fixes a � 1 and bX [6]:

bGLS � bB � �
�0
NS

2
0
; bEJ � �

�0
S

2
0
: (22)

bX dictates the strength of the singularity. It is interesting to
study its dependence on nf. In the Bjorken and GLS sum
rules, for nf 2 �0; 6� ) 1� b� bX 2 �1; 2� so, formally,
one could just keep the first two terms of the series in
Eq. (20), since the next term would go to zero for u! 1.
This is also the case for Ellis-Jaffe if nf < 4, otherwise one
could even stick to the first term only.

If the Wilson coefficients multiplying the higher-twist
operators were known exactly, we could also fix the co-
efficients dXr . Unfortunately, we only know their leading
log running. Nevertheless, by performing the matching at a
generic scale �, we will be able to resum the terms of the
type �1� u�nlnn�Q2=�2� and obtain the logarithmically
dominant contribution to dXr � lnr�Q2=�2�. We obtain

SX�u��
�2

Q2N
�IR�
X

1

�1�u�1�b�bX 1F1��bX;�b�bX;�1�u�

	 ln�Q2=�2���Sreg�u�1�: (23)

The leading asymptotic behavior of the perturbative series
due to the first infrared renormalon reads
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TABLE I. Values of the infrared renormalon residue of the
Bjorken, Ellis-Jaffe and GLS leading-twist Wilson coefficient
CX after conformal mapping. ‘‘�’’ means that no stable result is
obtained.

nf NB NEJ NGLS

0 �0:523� 0:154 �0:523� 0:154 �0:523� 0:154
1 �0:487� 0:126 �0:423� 0:120 �0:479� 0:121
2 �0:451� 0:101 �0:291� 0:085 �0:436� 0:094
3 �0:414� 0:079 �0:103� 0:035 �0:393� 0:070
4 �0:378� 0:058 � �0:351� 0:059
5 �0:343� 0:102 � �0:311� 0:134
6 �0:311� 0:194 � �0:272� 0:232
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C�n�X �
n!1

NX
�2

Q2

�

0

4�

�
n ��n� 1� b� bX�

��1� b� bX�

	
X1
s�0

dXs
��1� b� bX�

��1� b� bX � s�

	
��1� b� bX � n� s�

��1� b� bX � n�
; (24)

where dX0 
 1. The logarithmically enhanced contribution
to dXs is known. By introducing it to Eq. (24), we obtain

C�n�X �
n!1

NX
�2

Q2

�

0

4�

�
n ��1� bX � b� n�

��1� b� bX�

	 1F1��bX;�b� bX � n; ln�Q
2=�2��: (25)

The above expression contains subleading terms in the 1=n
expansion. In the strict 1=n expansion, it simplifies to:

C�n�X �
n!1

NX
�2

Q2

�

0

4�

�
n n!nbX�b

��1� b� bX�

	

�
1�

1

n
ln�Q2=�2�

�
bX
: (26)

This result is numerically not very different from the
previous expression for large n. On the other hand, it will
give more stable results than Eq. (25) when working in the
RS scheme for small n.

With the above results we can identify the contribution
to CX that comes from the renormalon. It reads

	CX��� �
X1
n�n�

NX
�2

Q2

�

0

4�

�
n n!nbX�b

��1� b� bX�

	

�
1�

1

n
ln�Q2=�2�

�
bX
�n�1

s ���; (27)

where n� indicates the freedom to add and subtract finite-
order contributions in perturbation theory.

At this stage, it is interesting to notice that 	CX��� can
be written in the following form

	CX��� �
�
�s�Q�
�s���

�
�bX X1

n�n�
NX

�2

Q2

�

0

4�

�
n

	
n!nbX�b

��1� b� bX�
�n�1

s ���; (28)

up to subleading terms. This expression will be more
convenient for our purposes, since it has the same scale
dependence on Q as the higher-twist contribution.
Therefore, it can be moved from the leading to the sub-
leading twist term without jeopardizing the Q scale depen-
dence predicted by the factorization of scales.

A. Determination of the normalization constant

In this subsection we will obtain NX. Let us momentarily
neglect the ultraviolet renormalon. If this were the case, we
could concentrate on the singularity closest to the origin in
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the Borel plane located at u � 1. Then, we can proceed in
analogy with Refs. [11,13,35] and define the new function

DX�u� � �1� u�1�b�bXSX�u� �
X1
n�0

D�n�X u
n: (29)

One would then obtain NX from the following identity

DX�u � 1� �
X1
n�0

D�n�X � NX
�2

Q2 ; (30)

where the first three terms of the expansion are known.
Note that, formally, the expansion parameter is u � 1, but
one does not really know if there are small factors multi-
plying the powers of u. In practice, the series is quite
convergent, and stable numbers for NX can be obtained
from most of the sum rules and values of nf. Nevertheless,
we still have the problem of the ultraviolet renormalon
located at u � �1. Formally, this renormalon would make
the series in Eq. (30) nonconvergent. In order to avoid this
problem we will perform the conformal mapping [36],

w�u� �

������������
1� u
p

�
�����������������
1� u=2

p
������������
1� u
p

�
�����������������
1� u=2

p : (31)

This transformation maps the first infrared renormalon to
w � 1=3 and all other singularities to the unit circle jwj �
1. In the conformal mapping the expansion parameter is
w � 1=3. In practice the effect of doing the conformal
mapping is small, which points to the fact that the effect
of ultraviolet renormalons is small in comparison with the
effect of the infrared renormalon located at u � 1. We will
only give numbers for the conformal mapping case for
theoretical reasons. Nevertheless, as we have already men-
tioned, they will be quite similar to the computation with-
out conformal mapping. Our best values for NX can be
found in Table I. They have been computed with NNLO
accuracy, after conformal mapping, at the scale of minimal
sensitivity to the scale variation. The scale dependence of
the results as well as the convergence is shown in Fig. 1 for
some selected values of nf. We can see that in most cases
the scale dependence becomes smoother as we go to higher
orders. The convergence depends on the number of flavors.
-5
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FIG. 1 (color online). Scale dependence of NX with conformal mapping for nf � 0, 3, 6. The dashed line is the LO result, the dotted
line is the NLO result, and the continuous line the NNLO result. The band represents the error.

TABLE II. Renormalon-based estimates of the perturbative
coefficients C�s�B for � � Q and for different number of flavors.
We use the expression from Eq. (26) except for C�0�B for which we
use the expression from Eq. (25), otherwise the result is 0.

nf 0 1 2 3 4 5 6

�C�0�B �Q� 0.523 0.487 0.451 0.414 0.378 0.343 0.311

�C�1�B �Q� 0.516 0.452 0.391 0.334 0.280 0.228 0.175

�C�2�B �Q� 1.295 1.045 0.824 0.630 0.461 0.318 0.198

�C�3�B �Q� 4.199 3.149 2.285 1.588 1.042 0.630 0.334

�C�4�B �Q� 17.07 11.94 8.008 5.097 3.023 1.625 0.750

�C�5�B �Q� 83.91 54.77 34.08 19.93 10.75 5.175 2.100
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It is optimal for nf � 3, which actually happens to be the
most interesting case from the physical point of view and it
deteriorates for large nf. The error quoted in Table I, and
represented in Fig. 1 by the gray band, stands by the
maximum between the difference between the NNLO
and NLO evaluation at the scale of minimal sensitivity of
the NNLO evaluation and the difference between the
NNLO and NLO at the scale of minimal sensitivity for
each of them.

The values of NB and NGLS are consistent with each
other within errors. This is consistent with the interpreta-
tion that the light-by-light term does not contribute to the
renormalon as it was done in Ref. [36]. On the other hand
our value for NB appears to be smaller than the number
obtained in Ref. [34].

We are then able to give some estimates for the coef-
ficients of the perturbative series. We provide them in
Tables II, III, and IV. We should stress that our numbers
incorporate the right asymptotic behavior, which is not the
case for large-
0 estimates. For the Bjorken and GLS sum
rule have been calculated in [37]. The comparison with the
exact result works reasonably well for nf smaller than 6 for
056008
the Bjorken or GLS perturbative series. For large nf the
comparison with the exact result gets worse. Note that for
nf � 6, the normalization constant of the renormalon
could be almost compatible with zero if the errors are
included. This fits with the picture that the renormalon is
less important when the number of flavors grows and one
can reach to the point where the infrared renormalon dis-
appears. For the Ellis-Jaffe perturbative series the same
-6



TABLE IV. Renormalon-based estimates of the perturbative
coefficients C�s�GLS for � � Q and for different number of flavors.
We do not display the column with nf � 0 since the numbers are
equal to the Bjorken case. We use the expression from Eq. (26)

except for C�0�GLS for which we use the expression from Eq. (25),
otherwise the result is 0.

nf 1 2 3 4 5 6

�C�0�GLS�Q� 0.479 0.436 0.393 0.351 0.311 0.272

�C�1�GLS�Q� 0.449 0.379 0.317 0.260 0.206 0.154

�C�2�GLS�Q� 1.029 0.797 0.598 0.428 0.288 0.174

�C�3�GLS�Q� 3.100 2.211 1.507 0.967 0.569 0.293

�C�4�GLS�Q� 11.75 7.750 4.838 2.807 1.469 0.658

�C�5�GLS�Q� 53.92 32.97 18.92 9.980 4.680 1.841

TABLE III. Renormalon-based estimates of the perturbative
coefficients C�s�EJ for � � Q and for different number of flavors.
We do not display the column with nf � 0 since the numbers are
equal to the Bjorken case. We use the expression from Eq. (26)

except for C�0�EJ for which we use the expression from Eq. (25),
otherwise the result is 0.

nf 1 2 3

�C�0�EJ�Q� 0.423 0.291 0.103

�C�1�EJ�Q� 0.392 0.250 0.080

�C�2�EJ�Q� 0.868 0.478 0.129

�C�3�EJ�Q� 2.547 1.253 0.298

�C�4�EJ�Q� 9.476 4.222 0.896

�C�5�EJ�Q� 42.87 17.42 3.336

3Actually, this is so for the order in �s for which the difference
between the exact and the finite-order result is minimal. If one
goes to higher order in perturbation theory the series will
deteriorate and the error will increase.

4This is equivalent to what was called the RS’ scheme in
Ref. [11], whereas the case n� � 0 was named the RS scheme. In
our case here both schemes coincide, since the n � 0 contribu-
tion from Eq. (28) vanishes because we expand the �’s in 1=n.
Obviously, we could also set n� different from 1 (as far as it is
not too large). This would be equivalent to a change of scheme.
The values of the nonperturbative matrix elements would change
accordingly.
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discussion applies with nf smaller than 4 (for nf � 4 no
stable determination of the normalization constant can be
obtained). Again this fit with the picture that the infrared
renormalon becomes weaker when the number of active
flavors increases.

We can also compare with other estimates one may find
in the literature for the Bjorken (GLS) sum rules
[34,36,38,39]. We find that our predictions somewhat lie
on the upper limit of the range of values obtained in these
references for C�3�B=GLS.

As a final comment it should be mentioned that the
introduction of the leading logarithms in the renormalon,
which is novel, does not actually improve the agreement
with the running on � of the perturbative coefficients of the
perturbative series, when they are known. If this is an
artifact of the leading-order analysis and would be solved
at higher orders remains to be seen.

IV. RENORMALON SUBTRACTED SCHEME

In the previous section we have obtained the contribu-
tion to the perturbative series of the leading-twist Wilson
056008
coefficient that produces its leading asymptotic behavior.
This behavior limits the accuracy that can be obtained for
the observable from the perturbative series alone, which it
will always have an error of the order of the higher-twist
corrections.3 Therefore, one cannot obtain these higher-
twist corrections unless the perturbative series is defined
with powerlike accuracy. The specific value for the higher
twist will depend upon the specific prescription used. Here
we will adapt the procedure used in Refs. [11–13]. In those
references the nonanalytic behavior in the Borel plane that
produced the asymptotic behavior of the perturbative series
was subtracted from the perturbative series and added to
the subleading nonperturbative contributions. Actually the
definition of the nonanalytic piece is ambiguous and ana-
lytic terms can always be added. The specific quantity we
will substract to the perturbative series will be Eq. (28)
with n� � 1.4 This quantity fulfils the requirement that its
imaginary part cancels the imaginary part of the perturba-
tive series and that its dependence on Q complies with the
structure of the higher-twist contribution. For illustration,
the Bjorken sum rule would read

Mp
1 �Q

2� �Mn
1 �Q

2� �
gA
6
CB;RS�Q;�f� �

4

27

1

Q2 f3;RS��f�

	

��s��
2
f�

�s�Q
2�

�
���0

NS�=2
0

�1�O��s��

�O

�
1

Q4

�
; (32)

where

CB;RS�Q;�f� � CB�Q� � 	CB;RS��f�

� 1�
X1
s�0

C�s�B;RS�Q=�;�f=���
s�1
s ���; (33)

and

f3;RS��f� � f3��f�

�
9

8
Q2gA

�
�s�Q�
�s��f�

�
���0

NS�=2
0

	CB;RS�Q;�f�:

(34)

Similar changes would apply to the Ellis-Jaffe and GLS
sum rules. In Eq. (33) and Eq. (34), we have subtracted and
-7



FRANCISCO CAMPANARIO AND ANTONIO PINEDA PHYSICAL REVIEW D 72, 056008 (2005)
added the contributions coming from the first infrared
renormalon at the scale �f, respectively. Thus, in this
scheme, the Wilson coefficient CB;RS�Q;�f� is free of the
first infrared renormalon and the associated n! behavior.
Therefore, the series is expected to converge better. On the
other hand, the higher twist, f3;RS��f�, is free of the first
ultraviolet renormalon.

In principle, the above series could be improved by
incorporating the running in �f to any order in �s, which
is renormalon free and therefore it could be obtained with
good accuracy. In this situation it is legitimate to use the
principal value (PV) prescription (or any other), since the
renormalon ambiguity will cancel in the ratio. In this
situation 	CX;RS reads

	C�PV�X;RS�Q;�f� �
�
�s�Q�
�s��f�

�
�bX �2

f

Q2 NX�s��f�

	

�
Db�bX

�
�

4�

0�s��f�

�
� 1

�
; (35)

where

Db��x� � �xe
�xfxb cos��b����b� � ��x�b����b�

� ���b;�x�g; (36)

and

��b; x� �
Z 1
x
dt tb�1e�t; (37)

denotes the incomplete � function. One would then work
with the following quantity

CB;RS�Q;�f� � CB;RS�Q;�� � �	C�PV�X;RS�Q;��

� 	C�PV�X;RS�Q;�f�; (38)

where one would set ��Q and work order by order
in perturbation theory in the first term in the right-hand
side (where there are no large logs), whereas for the other
terms the PV prescription is used. This allows to partially
resum the dependence on �f. Let us also note that the
first term in Eq. (36) corresponds to �MS (up to the
anomalous dimension). Therefore it cancels in the differ-
ence, 	C�PV�X;RS�Q;�� � 	C�PV�X;RS�Q;�f�, and can be ne-
glected. Working with the principal value prescription
has produced very good results in heavy quark physics,
where it was possible to check the running of �f with
‘‘experiment’’ (lattice), see [13]. However, in that situ-
ation, the running in �f was known with a very high
accuracy, since there was no anomalous dimension and
the running on �f could be deduced simply from the
running of �s. In our case we only know the leading order
and we expect a less accurate result.

Finally, we would like to mention that our knowledge of
the running in � of the higher-twist terms is much more
limited than in heavy quark physics. Here, we only know
056008
the leading log (LL) running. This has consequences in
Eq. (33) since, once we expand in �s���, there are some
subleading logs which are unknown.
V. COMPARISON WITH EXPERIMENT

In this section we will compare our theoretical predic-
tions with the experimental data. Our aim is to perform a
combined global fit for the three sum rules. We will use the
experimental data for the Bjorken sum rule from [27,40–
43] analyzed according to Ref. [27]. Note that the elastic
contribution has to be included in the experimental num-
bers in order for the sum rule to be fully inclusive, i.e.

��Q2� �
1

2
F1�Q2��F1�Q2� � F2�Q2�� � �inel:�Q2�: (39)

The empirical parametrization of the elastic form factors
was taken from [44]. For large momentum this contribution
is completely negligible.

We take the experimental data points for Mp
1 �Q

2� from
Ref. [26], which have used the experimental results for the
structure functions from [45–52].

For the GLS sum rule we will use the experimental data
from the CCFR Collaboration [29].

We first illustrate the problem of convergence of the
perturbative series by drawing the perturbative series in
the MS scheme at different orders in �s in Fig. 2. The
perturbative series has a relative good convergence.
However, this convergence deteriorates when we approach
to low energies. We also see how the perturbative theoreti-
cal result diverges from the experimental numbers at low
energies. As we have already stated, the solution to this
problem comes from using the RS scheme. We plot again
the perturbative series in the RS scheme in Fig. 3 for two
values of �f: �f � 0:8 and 1 GeV. We can see that in both
cases the convergence of the perturbative series improves.
This is especially so around the 1 GeV region. For �f �
1 GeV we can also see a qualitative change in the figure
with a much better agreement with experiment around the
1 GeV region. This alone does not mean much, since it
only reflects the �f scale dependence of the pure perturba-
tive piece. Nevertheless, this scale dependence is known
and can be predicted by perturbation theory. This scale
dependence cancels with the scale dependence of the
higher-twist terms. Therefore, the complete result, includ-
ing the higher-twist terms, should be independent of �f.
Thus, consistency demands that if we perform the fit to
experiment including the higher twist fi��f� for different
values of �f, in particular, for 0.8 and 1 GeV, the results
obtained for the fi��f� should be consistent with the result
obtained by performing the perturbative running in �f with
respect to these two values. We have checked that this is so
within the errors of our evaluation. This reassures the
reliability of our fit. This also tells us that it is reasonable
to use the operator product expansion formulas forQ larger
-8
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FIG. 2 (color online). Leading-twist contribution to the sum rules at different orders in perturbation theory in the MS scheme with
� � Q compared with the experimental data. The long-dashed line is the LO result. The dashed line is the NLO result. The dot-dashed
line is the NNLO result. The dotted line is the NNNLO result and the continuous black line is the (estimate) N4LO�. At this order we
have used a renormalon-based estimate for C�3�X �Q� from Tables II, III, and IV. â0 � 0:141.

5We have also performed the analysis using the four-loop
running �s at any order. The final results are very similar. The
use of the four-loop running �s somewhat accelerates/improves
the convergence of the series. Nevertheless, we prefer to keep
ourselves consistent and only resum the logs associated to each
order in perturbation theory. The fit using the principal value
prescription is consistent with the finite-order computation.
Nevertheless, it is less precise because of the reasons mentioned
in Sec. IV. Therefore, we will not consider it further in this
analysis.
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than 0.8 GeV. This is the attitude we will take in this paper
where we will include (unless otherwise indicated) the
experimental points for Q> 0:8 GeV. Therefore, the per-
turbative plots in Fig. 3 with �f � 1 GeV can be reinter-
preted as that a piece of the higher-twist correction has
been included in the pure perturbative term. This piece
corresponds to the running of �f from 0.8 to 1 GeV of the
higher-twist term and can be obtained from the renormal-
ization group. Therefore, in this sense, the change of slope
observed in Fig. 3 can be interpreted as having its origin in
perturbation theory. Note that the change of slope, from the
experimental point of view, comes from the elastic term.

In Fig. 3 higher-twist effects have not been included.
Our next aim is to perform a fit of â0 and the subleading
twist matrix elements from the available experimental data.
We refrain from trying to fit �s, since the experimental
errors appear to be too large. Actually, they will be one of
the major sources of uncertainty of our analysis. We per-
form a global fit of all the available data from the different
sum rules at the same time. The size of the experimental
errors is the largest for the GLS sum rule, whereas the most
accurate data come from the Mp

1 �Q
2� experimental points.

In any case, fS5 will be obtained from the GLS sum rule
alone, since this fit is independent of the other two sum
rules. We perform the global fit to different orders in the
expansion in �s of the leading-twist perturbative Wilson
056008
coefficient. We work with the running �s consistent with
the accuracy one is working at each order.5 We show the
results of the fit at different orders in perturbation theory in
Table V. We can see how the series shows convergence. We
can then obtain relatively good estimates for â0 and f3, for
the other nonperturbative parameters the situation is less
conclusive. The values have been obtained with �f �
1 GeV.

In order to estimate the errors, we allow for a variation of
�s�Mz� � 0:118� 0:003, of NX (according to the error
given in Table I), of the allowed set of experimental points
(we consider two situations: a) all the data points for q >
0:8 GeV and b) all the data points for q > 1 GeV; our
central values will be the ones obtained with option a),
and also consider the experimental errors. We also consider
the difference between the N3LO� and NNLO result as an
-9
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FIG. 3 (color online). Leading-twist contribution to the sum rules at different orders in perturbation theory in the RS scheme with
� � Q for two different values of the subtraction point �f compared with the experimental data. The long-dashed line is the LO result.
The dashed line is the NLO result. The dot-dashed line is the NNLO result. The dotted line is the NNNLO result and the continuous
black line is the (estimate) N4LO�. At this order we have used a renormalon-based estimate for C�3�X �Q� from Tables II, III, and IV.
â0 � 0:141.
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estimate of the error due to the convergence of the series.
This error happens to be very small in comparison with the
other source of errors. Summarizing, we obtain (with the fi
in units of GeV2)

â 0 � 0:141�0:006
�0:004�	�s�

�0:002
�0:002�	NX�

�0:088
�0:088�exp��0:001

�0:001

	�pert��0:010
�0:010�q > 1�; (40)

f0;RS�1 GeV� � 0:790�0:241
�0:399�	�s�

�0:489
�0:489�	NX�

�0:159
�0:159

	�exp��0:238
�0:238�pert��1:060

�1:060�q > 1�; (41)

f3;RS�1 GeV� � �0:124�0:050
�0:032�	�s�

�0:049
�0:049�	NX�

�0:121
�0:121

	 �exp��0:007
�0:007�pert��0:026

�0:026�q > 1�; (42)
056008
fS5;RS�1 GeV� � �0:029�0:162
�0:124�	�s�

�0:065
�0:065�	NX�

�0:344
�0:344

	 �exp��0:042
�0:042�pert� � 0�q > 1�; (43)

f8;RS�1 GeV� � �3:30�0:98
�1:61�	�s�

�1:95
�1:95�	NX�

�0:27
�0:27

	�exp��0:96
�0:96�pert��4:27

�4:27�q > 1�: (44)

If we combine all the errors in quadrature we obtain

â 0 � 0:141� 0:089; (45)

f0;RS�1 GeV� � 0:790�1:225
�1:266 GeV2; (46)

f3;RS�1 GeV� � �0:124�0:137
�0:142 GeV2; (47)
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TABLE V. Determination of â0 and the higher-twist nonperturbative parameters from the
global fit to the sum rules at different orders in perturbation theory.

â0 f0;RS (1 GeV) f3;RS (1 GeV) fS5;RS (1 GeV) f8;RS (1 GeV)

LO 0.043 �1:571 0.119 1.030 5.90
NLO 0.120 �0:817 �0:075 0.304 3.11
NNLO 0.136 0.014 �0:106 0.097 �0:18
NNNLO 0.139 0.552 �0:117 0.014 �2:34
N4LO� 0.141 0.790 �0:124 �0:029 �3:30
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FIG. 4 (color online). Global fit to the Sum Rules in the RS
scheme with � � Q at different orders in perturbation theory
including the leading and next-to-leading twist term. The long-
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fS5;RS�1 GeV� � �0:029�0:374
�0:388 GeV2; (48)

f8;RS�1 GeV� � �3:30�5:06
�4:90 GeV2: (49)

We have also performed the fit with �f � 0:8. We obtain
in this case

â 0 � 0:143; (50)

f0;RS�0:8 GeV� � 0:365; (51)

f3;RS�0:8 GeV� � �0:210; (52)

fS5;RS�0:8 GeV� � �0:167; (53)

f8;RS�0:8 GeV� � �1:58; (54)

whereas the magnitude of the errors is similar to the fit with
�f � 1 GeV. As expected, the value of â0 almost remains
independent of �f. The higher-twist parameters do depend
on �f in a way predicted by the renormalization group. For
instance, for f3 we would have the following expression6

f3;RS��f� � f3;RS��0f�
��s��

0
f�

�s��f�

�
���0

NS�=2
0

�
9

8
�2
fgA�	CB;RS�Q � �f;�0f�

� 	CB;RS�Q � �f;�f� (55)

and analogously for the other higher-twist terms.
Therefore, we should recover the values in Eqs. (45)–
(49) after performing the renormalization group running
of Eqs. (51)–(54). If we perform such running we obtain

f0;RS�1 GeV� � 0:335 GeV2; (56)

f3;RS�1 GeV� � �0:130 GeV2; (57)

fS5;RS�1 GeV� � �0:004 GeV2; (58)
dashed line is the LO result. The dashed line is the NLO result.
The dot-dashed line is the NNLO result. The dotted line is the
NNNLO result and the continuous black line is the (estimate)
N4LO�. At this order we have used a renormalon-based estimate
for C�3�X �Q� from Tables II, III, and IV. The values of â0, fi, and
fS5 are taken from Eqs. (45)–(49).

6	CB;RS has a renormalon ambiguity, which cancels in the
difference we find in the second term in the right-hand side of the
equation. We would like to remind the reader that in order to
enforce this renormalon cancellation order by order in �s both
terms have to be expanded with �s taken at the very same scale.
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f8;RS�1 GeV� � �1:46 GeV2: (59)

We see that the running goes in the right direction for f3

and fS5 , whereas for f0 and f8 the values remain constant.
Either way, the numbers agree with those obtained in
Eqs. (46)–(49) within errors.

Finally, we have also considered the inclusion of 1=Q4

corrections. The values of f0 and f8 are not stable under the
inclusion of these effects, although there is a correlation on
the values of f0 and f8: a large positive value of f0 is only
possible if we also have a large negative value of f8. The
point is that, even if formally it should be possible to
distinguish f0 and f8 due to the different anomalous di-
mension, in practice we do not have enough accuracy.
Therefore, the values obtained above for f0 and f8 (and
its errors) should be taken with caution. This warning also
applies to the determination of fS5 , for which the inclusion
of 1=Q4 corrections significantly changes its value. For the
other coefficients, â0 and f3 the variations are smaller than
the errors of our fit.

The error appears to be dominated by the experimental
one in â0 and f3, the objects we can compute with better
accuracy.

We would also like to note that, in some cases, the values
of the higher-twist nonperturbative parameters are compat-
ible with zero within errors.

To illustrate the quality of the fit we plot our final results,
the sum rules including the leading and subleading twist, at
different orders in perturbation theory with our best fit,
Eqs. (45)–(49), compared with the experimental data in
Fig. 4.

The analysis of the GLS sum rule taking into account
renormalon effects has been considered in Ref. [36]. In this
reference only two data points were used and a principal
valuelike Borel resummation prescription was used. The
authors also included some pure nonperturbative effects
arguing that they could be inherited from the renormalon
computation. This is still an open question and, actually, it
has been criticized by one of the authors in Ref. [53].

FRANCISCO CAMPANARIO AND ANTONIO PINEDA
VI. CONCLUSIONS

We have studied the large order behavior in perturbation
theory of the Bjorken, Ellis-Jaffe and GLS sum rules. In
particular, we have considered their first infrared renorma-
lons, for which we have obtained their analytic structure
with logarithmic accuracy and also an approximate deter-
mination of their normalization constant. Estimates of
higher order terms of the perturbative series are given.
The RS scheme has been worked out for these observables
and compared with experimental data. The convergence of
the perturbative series greatly improves in this scheme,
especially around the 1 GeV region. In particular, for �f �
1 GeV, the agreement between the pure perturbative con-
tribution and experiment is quite good. The fact that we
056008
have a convergent series in perturbation theory allows to
give meaningful values for the higher-twist condensates
with well-defined errors. We have performed a detailed
analysis, being able to give predictions for â0 and some
higher-twist condensates, including error bars. Our best fits
for the sum rules can be found in Fig. 4. The values for the
nonperturbative matrix elements read

â 0 � 0:141� 0:089; (60)

f3;RS�1 GeV� � �0:124�0:137
�0:142 GeV2: (61)

The experimental situation is not very good for the GLS
sum rule, for which we cannot give a precise number for
the higher twist. The experimental precision is not good
enough to check the assumption of [54] that f3 and fS5 are
equal. We also do not display here the values of f0 and f8,
since they have large errors and their values in the fit are
somewhat correlated. A large value of one of them could be
obtained in the fit to the price of having the other being
large with opposite sign.

One of the most important sources of error of the present
analysis is the experimental one. Any improvement in this
respect will immediately lead to a reduction of the errors of
the numbers obtained in this paper.

The quality of the analysis is worse than the one ob-
tained for heavy quark physics analysis. The sensitivity to
the renormalon is smaller and the determination of the
normalization constant is less accurate than in that case.
This was to be expected since the singularities in the Borel
plane are more far away here than in heavy quark physics.
In any case, the inclusion of the renormalon cancellation
introduces a qualitative change on the perturbative behav-
ior around the 1 GeV region making it much closer to the
experimental figures.

Another issue we would like to mention is that the
resummation of renormalon-related logarithms does not
appear to improve the convergence of the series. On the
other hand, we have only performed the leading log re-
summation in this paper. It would be interesting to see what
happens at higher orders.

Finally, the possibility to merge with the chiral limit
seems closer now but the gap still exists. In particular one
should find a systematic way to incorporate higher-twist
effects.
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