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Mesons and diquarks in the color neutral superconducting phase of dense cold quark matter
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The spectrum of meson and diquark excitations of dense color neutral cold quark matter is investigated
in the framework of a two-flavored Nambu–Jona-Lasinio–type model, including a quark �- and color
�8-chemical potential. It was found that, in the color superconducting (2SC) phase, i.e. at �>�c �
342 MeV, �8 acquires rather small values �10 MeV in order to ensure the color neutrality. In this phase
the � and � meson masses are evaluated around�330 MeV. The spectrum of scalar diquarks in the color
neutral 2SC phase consists of a heavy [SUc�2�-singlet] resonance with mass �1100 MeV, four light
diquarks with mass 3j�8j, and one Nambu-Goldstone boson, which is in accordance with the Goldstone
theorem. Moreover, in the 2SC phase there are five light stable particles as well as a heavy resonance in
the spectrum of pseudoscalar diquarks. In the color symmetric phase, i.e. for �<�c, a mass splitting of
scalar diquarks and antidiquarks is shown to arise if � � 0, contrary to the case of � � 0, where the
masses of scalar antidiquarks and diquarks are degenerate at the value �700 MeV. If the coupling
strength in the pseudoscalar diquark channel is the same as in the scalar diquark one (as for QCD-inspired
Nambu–Jona-Lasinio models), then in the color symmetric phase pseudoscalar diquarks are not allowed
to exist as stable particles.
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I. INTRODUCTION

Recent investigations, performed in the framework of
perturbative QCD, show that, at low temperatures and
asymptotically high values of the quark chemical potential
�, the dense baryonic matter is a color superconductor [1].
Evidently, at rather small values of �, a more adequate
description of this phenomenon can be done with the help
of different effective models, such as Nambu–Jona-Lasinio
(NJL)-type field theories with four-fermionic interaction
[2], etc. In such a way, on the basis of NJL-type models
with two quark flavors, it was shown that the color super-
conducting (2SC) phase might be yet present at rather
small values of �� 350 MeV, i.e. at baryon densities
only several times larger than the density of ordinary
nuclear matter (see reviews [3,4]). (For simplicity, through-
out the paper we will study quark matter, composed from
two quark flavors, i.e. up and down quarks, only.) This is
just the density of compact star cores. So color super-
conductivity, which is eventually existing inside compact
stars, might influence different observable astrophysical
processes and, thus, deserves to be studied in more detail.

In the early NJL approach to color superconductivity
[5,6], the density of the color charge Q8 was not a con-
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straint to zero in the 2SC ground state (the densities of
other color chargesQi, where i � 1; . . . ; 7, are zeros in this
phase [7]), leading to a nonvanishing difference between
the densities of red/green quarks and blue ones. In this
case, the mesonic and diquark excitations of dense quark
matter were considered in the framework of a simple two-
flavored NJL model with a single quark chemical potential
� [8,9]. In particular, it was shown that in the color
asymmetric 2SC phase of this model does arise an abnor-
mal number of three Nambu-Goldstone (NG) bosons in-
stead of the expected five,1 and � mesons are stable
excitations of its ground state with masses �300 MeV.
Besides, there are two light stable scalar diquark modes,
whose masses are proportional to hQ8i, as well as one
heavy scalar diquark resonance in the 2SC phase.

In reality, however, i.e. possibly in compact star cores or
in relativistic heavy-ion experiments, there are several
physical constraints on the quark matter. The most evident
one is its color neutrality, which means a vanishing of a
bulk Qi color charges (i � 1; . . . ; 8). Indeed, since the
lump of quark matter, which might be created after
heavy-ion collisions, originated from color neutral objects
Recall that, in the 2SC phase of the two-flavored NJL model,
the initial SUc�3� color symmetry is spontaneously broken down
to the SUc�2� one, so one might expect naively five massless
bosons. However, due to Lorentz noninvariance of the system,
there are indeed only three NG bosons.
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and is surrounded by a color neutral medium, it is expected
to be globally color neutral. To fulfill this requirement,
usually the local color neutrality constraint is imposed by
introducing several new chemical potentials, �3, �8, etc.,
into a NJL model [4,10,11]. Otherwise, there will be
produced a chromoelectric field resulting in the flow of
color charges, so a homogeneous and color conducting
quark medium with nonzero color charge densities is not
allowed to be a stable one [10]. (Recall that there is no need
to add new chemical potentials into QCD. The point is that
in the QCD 2SC ground state a nonzero value of the eighth
gluon field component might be generated. Effectively, it is
the �8-chemical potential, so color neutrality is fulfilled
automatically in the QCD approach [12].)

In the present paper, in contrast to our previous inves-
tigations [8,9], we study the mesonic and diquark excita-
tions of color neutral quark matter2 in the framework of a
simple two-flavor NJL model at zero temperature. We
consider both the case of rather small values of the quark
chemical potential � [the SUc�3� color symmetric (nor-
mal) phase] and the case of � values, corresponding to
the 2SC phase of the model. In addition, the properties
of pseudoscalar diquarks are also included into the
consideration.

The paper is organized as follows. In Sec. II, the ther-
modynamic potential as well as the effective action of the
NJL model, extended by an additional color �8-chemical
potential term, is obtained in the one-quark loop approxi-
mation. Further, in Sec. III, the gap equations and the phase
structure of the model are investigated under the color
neutrality constraint. Here the values of �8 are obtained
at which the 2SC phase is a color neutral one. Then, in
Secs. IV, V, and VI, the masses of the � and � mesons,
scalar diquarks, and pseudoscalar diquarks are considered,
respectively. Finally, in the appendix, the influence of the
mixing between � meson and scalar diquarks on the �
mass is discussed.
3Indeed, consider two-flavor QCD, symmetric under the color
group SUc�3�. By integrating in the generating functional of
QCD over gluons and further ‘‘approximating’’ the nonpertur-
bative gluon propagator by a 	 function, one arrives at an
effective local chiral four-quark interaction of the NJL type
II. THE MODEL AND ITS EFFECTIVE ACTION

In the original version of the NJL model [2], the four-
fermionic interaction of a proton p and neutron n doublet
was considered, and the principle of dynamical chiral
symmetry breaking was demonstrated. Later, the �p; n�
doublet was replaced by a doublet of colored up u and
down d quarks, in order to describe phenomenologically
the physics of light mesons [13–16], diquarks [17,18], as
well as meson-baryon interactions [19,20]. In this sense,
the NJL model may be thought of as an effective theory for
2Note that, in compact star cores, one should consider the
electrically neutral quark matter in beta equilibrium, whereas in
heavy-ion experiments the isospin and strangeness are conserved
quantities. For simplicity, these additional constraints on the
quark matter are ignored in the present consideration.
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low-energy QCD.3 (Of course, it is necessary to remember
that in the NJL model, in contrast with QCD, quarks are not
confined in the hadronic phase, which is a shortcoming of
the model.) At the present time, the phenomenon of dy-
namical (chiral) symmetry breaking is one of the corner-
stones of modern physics. So this effect was studied in the
framework of NJL-type models under the influence of
external magnetic fields [21], in curved space-times [22],
in spaces with nontrivial topology [23], etc. Formally, as
was mentioned above, quarks are presented in the mass
spectrum of the model. So it is very suitable for the
description of normal hot and/or dense quark matter
[15,24–26] in which, as is known, quarks are not confined.
NJL-type models still remain a simple but useful instru-
ment for studying color superconducting quark matter at
moderate densities [3–6], where analytical and lattice
computations in the framework of QCD are impossible.

We start from the following two-flavor NJL Lagrangian,
called for the description of interactions in the quark-
antiquark, scalar diquark, as well as pseudoscalar diquark
channels at low and moderate energies and baryon den-
sities (the consideration is performed in Minkovski space-
time notation):

Lq � �q���i@� �m0 ���0�q�Gf� �qq�2 � � �qi�5 ~�q�2g

�
X

A�2;5;7

fHs� �q
Ci�5�2�Aq�� �qi�

5�2�Aq
C�

�Hp� �qC�2�Aq�� �q�2�AqC�g; (1)

where �> 0 is the quark chemical potential, the quark
field q 	 qi� is a flavor doublet and color triplet as well as
a four-component Dirac spinor, where i � 1; 2 (or i �
u; d) and � � 1; 2; 3 (or � � r; g; b). qC � C �qt, �qC �
qtC are charge-conjugated spinors, and C � i�2�0 is the
charge conjugation matrix (t denotes the transposition
operation). It is supposed that up and down quarks have
equal current (bare) mass m0. Furthermore, we use the
notations �a for Pauli matrices and �A for antisymmetric
Gell-Mann matrices in flavor and color space, respectively.
Clearly, the Lagrangian Lq is invariant under transforma-
tions from the color SUc�3� as well as baryon UB�1�
groups. In addition, at m0 � 0 this Lagrangian is symmet-
ric under the chiral SU�2�L 
 SU�2�R group (chiral trans-
formations act on the flavor indices of quark fields only).
Moreover, since Q � I3 � B=2, where I3 � �3=2 is the
describing low-energy hadron physics. Moreover, by performing
a Fierz transformation of the interaction terms, it is possible to
obtain a NJL-type Lagrangian describing the interaction of
quarks in the scalar and pseudoscalar � �qq� as well as scalar
and pseudoscalar diquark �qq� channels [see, e.g., the
Lagrangian (1) below].
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generator of the third isospin component, Q is the genera-
tor of the electric charge, and B is the baryon charge
generator, our system is symmetric under the electromag-
netic group UQ�1� as well. If the Lagrangian (1) is obtained
from the QCD one-gluon exchange approximation, then
G:Hs:Hp � 4:3:3. However, in the present consideration,
we will not fix relations between coupling constants, so
they are treated as free parameters. It is necessary to note
also that at � � 0 the Lagrangian (1) is invariant under the
charge conjugation symmetry (q! qC 	 C �qt, �q! �qC 	
qtC) that is, however, spoiled by the chemical potential
term.

Furthermore, the temperature is chosen to be zero
throughout the paper. In this case, there is a critical value
~�c of the chemical potential, such that at �< ~�c the color
symmetric (normal) phase is realized in the system (evi-
dently, the ground state of this phase is a color singlet).
However, at �> ~�c one obtains a 2SC phase in which
SUc�3� is spontaneously broken down to SUc�2�. Only two
quark colors, say red and green, participate in the gap
formation in the 2SC phase; the blue quarks stay gapless.
So the densities of red/green quarks, nr;g, are equal in this
phase; however, the density nb of blue quarks is not equal
to nr;g; i.e. local color neutrality is broken.4 To restore local
color neutrality in the 2SC phase of the model (1), usually
an additional chemical potential term �8Q8 is introduced
into the considerations [4], whereQ8 � �q�0T8q, and T8 �

diag�1; 1;�2� �
���
3
p
�8 is the matrix in the color space.

Hence,

Lq ! L � Lq ��8Q8: (2)

If �8 is an independent model parameter, then Lagrangian
(2) is symmetric under the color SUc�2� 
 U�8

�1� group.
However, if local color neutrality is imposed, then the
chemical potential �8 is not an independent parameter.
Its value must be chosen in such a way that the ground
state expectation value hQ8i is identically equal to zero.
Hence, �8 depends on �, etc. For example, in the color
symmetric phase, i.e. at �<�c (it will be shown in
Sec. III that in the general case �c � ~�c), where hQ8i 	
0 even in the theory (1), we have to put �8 	 0. However,
�8 has a nontrivial � dependence at �>�c in order to
supply the zero value of hQ8i. As a consequence, we see
that the color symmetry group of the model (2) depends on
�: at �<�c it is SUc�3�, whereas at �>�c it is the
SUc�2� 
 U�8

�1� subgroup of SUc�3�, which is just the
color symmetry group of the term �8Q8.

In the present paper, we are going to study both the
ground state properties of the system with Lagrangian L
and its mass spectrum in the quark, meson, and diquark
4Thus, hQ8i � 0. However, the color charge Q3 � �q�0T3q,
where T3 � diag�1;�1; 0� is the matrix in the color space,
vanishes in the 2SC phase. Other color charges Qi �i � 8� are
also zeros in this phase [7].
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sectors. So we have to obtain the thermodynamic potential
� as well as the effective action of the model up to a
second order in the bosonic degrees of freedom. To begin
with, let us introduce the linearized version of Lagrangian
L that contains auxiliary bosonic fields:

~L � �q���i@� ���0 ��8T8 � ��m0 � i�5�a�a�q

�
1

4G
���� �a�a� �

1

4Hs
�s�
A �s

A �
1

4Hp
�p�
A0 �

p
A0

�
�s�
A

2
� �qCi�5�2�Aq� �

�s
A

2
� �qi�5�2�AqC�

�
�p�
A0

2
� �qC�2�A0q� �

�p
A0

2
� �q�2�A0q

C�; (3)

where, as well as in the following, the summation over
repeated indices a � 1; 2; 3 and A; A0 � 2; 5; 7 is implied.
Lagrangians L and ~L are equivalent on the equations of
motion for bosonic fields, from which it follows that

��x� � �2G� �qq�;

�s
A�x� � �2Hs� �qCi�5�2�Aq�;

�s�
A �x� � �2Hs� �qi�

5�2�Aq
C�;

�a�x� � �2G� �qi�5�aq�;

�p
A0 �x� � �2Hp� �q

C�2�A0q�;

�p�
A0 �x� � �2Hp� �q�2�A0q

C�:

(4)

One can easily see from (4) that mesonic fields �;�a are
real quantities, i.e. ���x��y � ��x�, ��a�x��y � �a�x� (the
superscript symbol y denotes the Hermitian conjugation),
but all diquark fields �s;p

A are complex ones, so

��s
A�x��

y � �s�
A �x�; ��p

A0 �x��
y � �p�

A0 �x�:

Moreover, �s
A and �p

A0 are scalars and pseudoscalars, cor-
respondingly. Clearly, the real � and �a fields are color
singlets; all scalar diquarks �s

A form a color antitriplet �3c of
the SUc�3� group. The same is true for pseudoscalar di-
quarks �p

A0 which are also the components of an
�3c-multiplet of the color group. Evidently, in the
SUc�3�-color symmetric phase (at �<�c) all diquark
fields must have zero ground state expectation values, i.e.
h�s

Ai � 0 and h�p
A0 i � 0. Otherwise, we have an indication

that the ground state of the system is no more an
SUc�3�-invariant one.

Lagrangian (3) provides us with a common footing for
obtaining both the thermodynamic potential and the mass
spectrum for bosonic excitations. Indeed, in the one-
fermion loop approximation, the effective action for the
boson fields is expressed through the path integral over
quark fields:
-3
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exp�iSeff��;�a;�
s;p
A ;�s;p�

A0 �� � N0
Z
�d �q��dq�


 exp

 
i
Z

~Ld4x

!
;

where

Seff��;�a;�
s;p
A ;�s;p�

A0 � � �
Z
d4x

�
�2 � �2

a

4G
�

�s
A�s�

A

4Hs

�
�p
A0�

p�
A0

4Hp

�
� ~Seff ; (5)

N0 is a normalization constant. The quark contribution term
~Seff is here given by:

exp�i~Seff� � N0
Z
�d �q��dq� exp

 
i
2

Z
� �qD�q� �qCD�qC

� �qKqC � �qCK�q�d4x

!
: (6)

In (6) we have used the following notations:

D� � i��@� �m0 � �̂�0 ��;

D� � i��@� �m0 � �̂�0 ��t;

� � �� i�5�a�a;

�t � �� i�5�a�
t
a;

K� � ��p�
A � i�

s�
A �

5��2�A;

K � ��p
A � i�

s
A�

5��2�A;

(7)

where D� are nontrivial operators in the coordinate,
spinor, color, and flavor spaces.5 In the framework of the
Nambu-Gorkov formalism, where quarks are composed
into a bispinor � � � qqC�, it is possible to integrate in (6)
over quark fields and obtain

~Seff��;�a;�
s;p
A ;�s;p�

A0 � �
1

2i
TrfNGsfcxg ln

D�; �K

�K�; D�

 !

	
1

2i
TrfNGsfcxg lnZ: (8)

Besides an evident trace in the two-dimensional Nambu-
Gorkov (NG) space, the Tr operation in (8) stands for
calculating the trace in spinor (s), flavor (f), color (c), as

D. EBERT, K. G. KLIMENKO, AND V. L. YUDICHEV
5In order to bring the quark sector of the Lagrangian (3) to the
expression, given in the square brackets of (6), we have also used
the following well-known relations: @t� � �@�, C��C�1 �
�����t, C�5C�1 � ��5�t � �5, �2 ~��2 � �� ~��t,

�2 �

�
0; �i
i; 0

�
:
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well as four-dimensional coordinate (x) spaces,
correspondingly.

Starting from (5)–(8), it is possible to define the ther-
modynamic potential ���;�a;�

s;p
A ;�s;p�

A0 � of the model:

S eff j�;�a;�
s;p
A ;�s;p�

A0
�const � ����;�a;�

s;p
A ;�s;p�

A0 �
Z
d4x;

(9)

where, in the spirit of the mean-field approximation, all
boson fields are supposed to be x independent. It is well
known that ground state expectation values h��x�i 	 �o,
h�a�x�i 	 �oa, h�s;p

A �x�i 	 �s;po
A , h�s;p�

A0 �x�i 	 �s;p�o
A0 are

coordinates of the global minimum point of the thermody-
namic potential �; i.e. they form a solution of the gap
equations (evidently, in our approach all ground state
expectation values do not depend on coordinates x):

@�

@�a
� 0;

@�

@�
� 0;

@�

@�s;p
A

� 0;
@�

@�s;p�
A0
� 0:

(10)

Let us make the following shift of bosonic fields in Seff :
��x� ! ��x� � �o, �a�x� ! �a�x� � �oa, �s;p�

A �x� !
�s;p�
A �x� ��s;p�o

A , �s;p
A �x� ! �s;p

A �x� � �s;po
A , where �o,

�oa, �s;po
A , �s;p�o

A have no coordinate dependency. In this
case, the matrix Z from (8) is transformed in the following
way:

Z!
D�o ; �Ko
�K�o; D�o

� �
�

�; K
K�; �t

� �

	 S�1
0 �

�; K
K�; �t

� �
; (11)

where S0 is the quark propagator matrix in the Nambu-
Gorkov representation, and

�Ko;K
�
o; D

�
o ;�o;�

t
o� � �K;K

�; D�;�;�t�j���o;�a��oa;...:

Then, expanding the expression (5) up to a second order
over the meson and diquark fields, we have

Seff��;�a;�
s;p
A ;�s;p�

A0 � � S�0�eff � S�2�eff��;�a;�
s;p
A ;�s;p�

A0 �

�    ; (12)

where [due to the gap equations, the term linear over
meson and diquark fields is absent in (12)]
-4
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S �0�eff � �
Z
d4x

�
�o�o � �oa�

o
a

4G
�

�so
A �s�o

A

4Hs
�

�po
A0 �

p�o
A0

4Hp

�
�
i
2

TrfNGscfxg ln�S�1
0 � 	 ����o;�oa;�

s;po
A ;�s;p�o

A0 �
Z
d4x;

(13)

S �2�eff��;�a;�
s;p
A ;�s;p�

A0 � � �
Z
d4x

�
�2 � �2

a

4G
�

�s
A�s�

A

4Hs
�

�p
A0�

p�
A0

4Hp

�
�
i
4

TrfNGscfxg

�
S0

�; K
K�; �t

� �
S0

�; K
K�; �t

� ��
: (14)
In the following, on the basis of the effective action S�2�eff ,
we will study the spectrum of meson/diquark excitations in
the color superconducting phase of the NJL model under
consideration. So it is convenient to present the effective
action (14) in the following form:

S �2�eff � S�2�mesons � S�2�diquarks � S�2�mixed; (15)

where

S �2�mesons � �
Z
d4x

�2 � �2
a

4G
�
i
4

TrscfxfS11�S11�

� 2S12�tS21�� S22�tS22�tg; (16)

S �2�diquarks � �
Z
d4x

�
�s
A�s�

A

4Hs
�

�p
A0�

p�
A0

4Hp

�

�
i
4

TrscfxfS12K�S12K� � 2S11KS22K�

� S21KS21Kg; (17)

S �2�mixed �
i
2

TrscfxfS11�S12K
� � S21�S11K

� S12�tS22K� � S21KS22�tg; (18)

and Sij are the matrix elements of the quark propagator
matrix S0, given in (11).

III. GAP EQUATIONS AND COLOR NEUTRALITY
CONDITION

Let us for a moment assume that in (2) the chemical
potential �8 is an independent parameter ( � 0). Then
Lagrangian L is invariant under the color SUc�2� 

U�8
�1� symmetry group. Recall that the phase structure

of any theory is defined by a competition of its order
parameters. In our case, the order parameters (ground state
expectation values) h��x�i, h�a�x�i, h�s

A�x�i, h�
p
A0 �x�i, are

obtained from a solution of the gap equations (see the
previous section). Since the consideration of the model
(2) with a total set of order parameters is a very hard
task, we shall assume that parity is conserved, i.e.
056007
h�a�x�i � 0, h�p
A0 �x�i � 0 (in Sec. VI A some arguments

are presented, however, that at sufficiently high values of
pseudoscalar coupling Hp parity might be spontaneously
broken down), thus having to deal only with h��x�i and
h�s

A�x�i. In this case, three different phases might exist in
the model (2): (i) In the first one, the normal phase,
h�s

A�x�i � 0 for all A � 2; 5; 7. In this phase the initial
color symmetry remains intact. (ii) The second one is a
well-known 2SC phase with h�s

2�x�i � 0 and h�s
5;7�x�i �

0. The ground state of this phase is invariant under
SUc�2�-color symmetry. (iii) Finally, there might exist a
phase with h�s

2�x�i � 0, h�s
5�x�i � 0 and h�s

7�x�i � 0.
[Note, the two phases (ii) and (iii) are not unitarily equiva-
lent, since there are no color transformations from
SUc�2� 
 U�8

�1� that connect the corresponding ground
state expectation values.] However, since color neutrality
cannot be achieved in the ground state of the form (iii) (see
[7]), throughout of our paper only two order parameters,
h��x�i and h�s

2�x�i 	 �, will be taken into account,
whereas other ones will be supposed to have zero expec-
tation values, i.e. h�a�x�i � 0, h�p

A0 �x�i � 0, h�s
5;7�x�i � 0.

So, below, only the competition between the normal phase
(� � 0) and the 2SC one (� � 0) will be considered. As a
result, one may deal with a thermodynamic potential �,
which depends on two variables �; h�i or, equivalently,
�; m 	 m0 � h�i only. Then the expression for the ther-
modynamic potential � can be calculated with the help of
(13) (see also, e.g., [11]):
��m;�� �
�m�m0�

2

4G
�
j�j2

4Hs
� 4

X
�

Z d3q

�2��3
jE�� j

� 2
X
�

Z d3q

�2��3
j �E�j; (19)
where E�� �
����������������������������
�E��2 � j�j2

p
, E� � E� ��, �E� � E� ��,

�� � ���8, �� � �� 2�8, E �
������������������
~q2 �m2

p
. Since the

integrals in the right-hand side of (19) are ultraviolet
divergent, we regularize them and the other divergent
integrals below by implementing a three-dimensional cut-
off �. The resulting gap equations look like:
-5
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�

4Hs
� 4i�

Z d4q

�2��4

�
1

q2
0 � �E

�
� �

2 �
1

q2
0 � �E

�
� �

2

�

� 2�
Z d3q

�2��3

�
1

E��
�

1

E��

�
; (20)

m�m0

2G
� 4im

X
�

Z d4q

�2��4
1

E

� �E�

q2
0 � �

�E��2

�

� 8im
X
�

Z d4q

�2��4
1

E

�
E�

q2
0 � �E

�
� �

2

�
: (21)

In (20) and (21) as well as in other expressions containing
four-dimensional momentum integrals, q0 is shorthand for
q0 � i"  sgn�q0�, where "! 0�. This prescription cor-
rectly implements the roles of�,�8 as chemical potentials
and preserves the causality of the theory (see, e.g., [27]).

Now let us impose the local color neutrality requirement
on the ground state of the model. It means that the quantity
�8 takes such values that the density of the 8-color charge
hQ8i 	 �@�=@�8 equals zero for arbitrary fixed values of
other model parameters. So we have the following local
color neutrality constraint:

hQ8i ��
@�

@�8
	 4

Z d3q

�2��3

�
E�

E��
�
E�

E��
�

�E�

j �E�j
�

�E�

j �E�j

�
� 0:

(22)

The system of Eqs. (20)–(22) has two different solutions.
As we have already discussed after (2), the first one (with
� � 0, �8 � 0) corresponds to the SU�3�c-symmetric
phase of the model (normal phase), the second one (with
� � 0 and �8 � 0) to the 2SC phase. As usual, solutions
of these equations give local extrema of the thermody-
namic potential ��m;�� (19), so one should also check
which of them corresponds to the absolute minimum of �.
Having found the solution corresponding to the stable state
of quark matter (the absolute minimum of �), we obtained
the behavior of the gapsm, � as well as the�8 vs the quark
chemical potential � (see Figs. 1 and 2). [Note that, in all
numerical calculations of the paper, we use the parameter
set

G � 5:86 GeV�2; � � 618 MeV;

m0 � 5:67 MeV; Hs � 3G=4
(23)

that leads in the framework of the NJL model to the
well-known vacuum phenomenological values of the pion
weak-decay constant F� � 92:4 MeV, pion mass M� �
140 MeV, and chiral quark condensate h �qqi �
��245 MeV�3. The relation between Hs and G in (23) is
induced, e.g., by the structure of QCD four-quark vertices
in the one-gluon exchange approximation.] The region
�<�c � 342 MeV is the domain of SUc�3�-color sym-
metric quark matter because � in this case is minimized by
056007
m � 0 and � � 0, �8 � 0. For �>�c, the solution with
m � 0, � � 0, and �8 � 0, corresponding to the 2SC
phase, gives the global minimum of �, and thereby the
color superconducting phase is favored. The transition
between these two phases is of the first order, which is
characterized by a discontinuity in the behavior ofm and �
vs � (see Fig. 1). Finally, remark that the critical value ~�c
of the quark chemical potential was calculated in the
framework of the model (1) as well. In terms of the
parameter set (23), we have ~�c � 350 MeV [8,9]; i.e. in
the color neutral quark matter the transition to the 2SC
phase occurred at slightly lower values of the quark chemi-
cal potentials.

Similarly to Ref. [28], it is possible to find the following
expressions for the matrix elements Sij of the quark propa-
gator matrix S0:
-6
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S11 �
Z d4q

�2��4
e�iq�x�y�

�
q0 � E�

q2
0 � �E

�
� �

2 �
0 ���

�
q0 � E�

q2
0 � �E

�
� �

2 �
0 ���

�
P�c�12

�
Z d4q

�2��4
e�iq�x�y�

�
�0 ���
q0 � �E�

�
�0 ���
q0 � �E�

�
P�c�3 ;

(24)

S22 �
Z d4q

�2��4
e�iq�x�y�

�
q0 � E

�

q2
0 � �E

�
� �

2 �
0 ���

�
q0 � E�

q2
0 � �E

�
� �

2 �
0 ���

�
P�c�12

�
Z d4q

�2��4
e�iq�x�y�

�
�0 ���
q0 � �E�

�
�0 ���
q0 � �E�

�
P�c�3 ;

(25)

S21 � �i�
��2�2

Z d4q

�2��4
e�iq�x�y�

�
�5 ���

q2
0 � �E

�
� �

2

�
�5 ���

q2
0 � �E

�
� �

2

�
; (26)

S12 � �i��2�2

Z d4q

�2��4
e�iq�x�y�

�
�5 ���

q2
0 � �E

�
� �

2

�
�5 ���

q2
0 � �E

�
� �

2

�
; (27)

where ��� �
1
2 f1� ��

0� ~� ~q�m�=E�g, and P�c�12 �

diag�1; 1; 0�, P�c�3 � diag�0; 0; 1� are the projectors on the
red/green and blue directions in the color space,
correspondingly.

The poles of the matrix elements (24)–(27) of the quark
propagator give the dispersion laws, i.e. the momentum
dependence of energy, for quarks in a medium. Thus, we
have E�� for the energy of red/green quarks and E�� for the
energy of red/green antiquarks. Moreover, the energy of
blue quarks (antiquarks) is equal to �E� ( �E�). It is clear
from Figs. 1 and 2 that in the 2SC phase, i.e. at�>�c, we
have ����8�>m, ��� 2�8�>m. Then in this phase
the quantity E can reach both the value ����8� (the
Fermi energy for red/green quarks) and the value ���
2�8� (the Fermi energy for blue quarks). In this case, in
order to create a red/green quark in the 2SC phase, a
minimal amount of energy (the gap) equal to j�j at the
Fermi level (E � ���8) is required. Similarly, there is
no energy cost to create a blue quark at its Fermi level E �
�� 2�8; i.e. blue quarks are gapless in the 2SC phase. In
the normal phase of the model, i.e. at �<�c, the minimal
energy �m��� is needed for the creation of a quark of any
color. Note that, in both the 2SC and normal phases of the
056007
model, the minimal energy required for a quark creation
differs from the minimal energy required for the creation of
an antiquark of the same color. This fact reflects the break-
ing of charge conjugation symmetry in the presence of
chemical potentials.

Without loss of generality, we will assume throughout
the paper that � is a real non-negative quantity. Given the
explicit expression for the quark propagator S0, in the next
sections we will calculate two-point (unnormalized) corre-
lators of meson and diquark fluctuations over the ground
state in the one-loop (mean-field) approximation and find
their masses.
IV. MASSES OF THE � AND � MESONS

It turns out that the S�2�mixed part (18) of the effective
action is composed from ��x�, �s

2�x�, and �s�
2 �x� fields

only. So it provides us with nondiagonal matrix elements
��X (X � �s�

2 ;�
s
2) of the inverse propagator matrix of �,

�s�
2 , and �s

2. Moreover, each term in S�2�mixed is proportional
to � or �� as well as to the constituent quark mass m (see
the appendix). Hence, in the color symmetric phase (� �
0) there is no mixing between � meson and diquark �s

2 at
all. The parameter m is small (or even equals zero if m0 �
0) in the 2SC phase, so we ignore for simplicity the �-�s

2
mixing effect in this phase, too. As a result, in order to get
the masses of mesons we use only the effective action (16),
which has the form S�2�mesons � S�2��� � S�2���, where

S�2��� � �
Z
d4x

�2

4G
�
i
4

TrscfxfS11�S11�� 2S12�S21�

� S22�S22�g

	 �
1

2

Z
d4ud4v��u���u� v���v�; (28)

S �2��� � �
Z
d4x

�2
a

4G

�
i
4

TrscfxfS11�i�
5�a�a�S11�i�

5�b�b�

� 2S12�i�5�a�ta�S21�i�5�b�b�

� S22�i�
5�a�

t
a�S22�i�

5�b�
t
b�g

	 �
1

2

Z
d4ud4v�k�u�	kl�u� v��l�v�: (29)

In these formulas ��x� y� is the inverse propagator of �
mesons, and 	ab�x� y� is the (diagonal) matrix of the
inverse �-meson propagator. Evidently,

��x� y� � �
	2S�2���

	��y�	��x�
;

	ab�x� y� � �
	2S�2���

	�b�y�	�a�x�
:

(30)
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Next, using in (28) and (29) the expressions (24)–(27) for
the matrix elements Sij, it is possible to obtain with the
help of relations (30) the functions ��x� y�, 	ab�x� y�,
and then their momentum space representations, ��p�,
	ab�p�, correspondingly.6 The zeros of these functions
determine the particle and antiparticle dispersion laws,
i.e. the relations between their energy and three-momenta.
In the present paper, we are interested mainly in the inves-
tigation of the modification of meson and diquark masses
in dense and cold color neutral quark matter. In this case,
the particle mass is defined as the value of its energy in the
rest frame, ~p � 0 (see, e.g., [9,29]), where the calculation
of inverse propagators for � and � mesons is significantly
simplified. Indeed, in the rest frame it is possible to get:

	ab�p0� �
	ab
2G
� 8	ab

Z d3q

�2��3
E��E

�
� � E

�E� ��2

E��E
�
�



E�� � E

�
�

�E�� � E
�
� �

2 � p2
0

� 16	ab
Z d3q

�2��3

�E� ���E

4E2 � p2
0

	 	ab	�p0�; (31)

��p0� � �0�p
2
0� � �1�p

2
0�; (32)

�0�p2
0� �

1

2G
� 8

Z d3q

�2��3
~q2

E2

E��E
�
� � E

�E� � �2

E��E
�
�



E�� � E

�
�

�E�� � E
�
� �

2 � p2
0

� 16
Z d3q

�2��3
~q2

E

�E� ���

4E2 � p2
0

; (33)

�1�p
2
0� � 16�2m2

Z d3q

�2��3E2

�
1

E�� �p
2
0 � 4�E�� �

2�

�
1

E�� �p
2
0 � 4�E�� �

2�

�
; (34)

where the same notations as in (19) were used. The zeros of
the functions (31) and (32) give us the masses of � and �
mesons, respectively (see Fig. 3).7 We see that in the 2SC
phase the masses of the sigma and pi mesons are about
300 MeV. Moreover, the pion is a stable particle in this
6One should not be confused by the coordinate or momentum
space representation which is used for the inverse propagators
and other quantities, since this is clear from the arguments of
these functions or the context.

7In our numerical investigations of the 2SC phase, presented in
Fig. 3, we have ignored in (32) the term �1�p

2
0� proportional to

�2m2, since it is comparable (or even less) in magnitude with
nondiagonal elements ��X�p0� (X � �s�

2 ;�
s
2) of the full inverse

propagator matrix of �, �s�
2 , and �s

2 (see the appendix), which
are not taken into account in the above consideration.
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phase (only electroweak decay channels are allowed). This
conclusion is supported by the following arguments. It is
clear that the first and the second integrals in (31) are
analytical functions in the whole complex p2

0 plane, except
the cuts E2

min < p2
0 <1 and �2 ���2 < p2

0 <1, respectively

[here Emin �
�����������������������������������
� ���m�2 � j�j2

p
�

�����������������������������������
� ���m�2 � j�j2

p
is

the minimum of the expression E�� � E
�
� , which is taken

at the point j ~pj � 0]. Evidently, Emin corresponds to the
threshold for the pion decay into a red-green quark-
antiquark pair, whereas 2 �� corresponds to the threshold
for the pion decay into a blue quark-antiquark pair. It is
easily seen from Fig. 3 that in the 2SC phase the pion mass
is less than the values of these two thresholds. Because
there are no other singularities in (31) corresponding to
different channels of the pion decay, we can conclude that
in the 2SC phase the pion is a stable particle.

The neglect of the mixing between the � meson and
�s

2-scalar diquark also results in a stable � meson.
However, if the mixing is taken into account, then in the
2SC phase the �meson is a resonance, decaying into a pair
of quarks, whose width is a rather small quantity, i.e. about
30 MeV (see the appendix).

V. MASSES OF SCALAR DIQUARKS

As in the previous section, we will ignore for simplicity
the term S�2�mixed (18), which mixes � and �s�

2 ;�
s
2 diquarks,

in the effective action (15). In this case, in order to obtain
the masses of diquarks, we need to analyze the term
S�2�diquarks (17) only. It can be easily presented in the follow-
ing form:

S �2�diquarks �
X

A�2;5;7

fS�2�sAA � S�2�pAAg; (35)

where labels s; p denote the contributions from scalar and
pseudoscalar diquark fields, correspondingly, and
-8



8Recently, the Bethe-Salpeter equation approach has been
used to obtain diquark masses in the 2SC phase of cold dense
QCD at asymptotically large values of the chemical potential
[30]. There, the mass of the diquark was defined as the energy of
a bound state of two virtual quarks in the center of mass frame,
i.e. as in our approach, in the rest frame for the whole diquark.
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S �2�sAA � �
Z
d4x

�s
A�s�

A

4Hs

�
i
2

TrscfxfS11i�
s
A�

5�2�AS22i�
s�
A �

5�2�Ag;

(36)

S �2�pAA � �
Z
d4x

�p
A�p�

A

4Hp

�
i
2

TrscfxfS11�p
A�2�AS22�p�

A �2�Ag; (37)

for fixed A � 5; 7, and

S �2�s22 � �
Z
d4x

�s
2�s�

2

4Hs

�
i
4

TrscfxfS12i�
s�
2 �

5�2�2S12i�
s�
2 �

5�2�2

� 2S11i�
s
2�

5�2�2S22i�
s�
2 �

5�2�2

� S21i�
s
2�

5�2�2S21i�
s
2�

5�2�2g; (38)

S �2�p22 � �
Z
d4x

�p
2 �p�

2

4Hp

�
i
4

TrscfxfS12�p�
2 �2�2S12�p�

2 �2�2

� 2S11�p
2�2�2S22�p�

2 �2�2

� S21�p
2�2�2S21�p

2�2�2g: (39)

It follows from (35)–(39) that there is no mixing between
scalar and pseudoscalar diquarks. Moreover, scalar di-
quarks (or pseudoscalar ones), as such, are not mixed to
one another. Starting from the above formulas, we will find
the inverse propagators of diquarks which might be intro-
duced by the following way (A � 2; 5; 7):

S �2�sAA � �
1

2

X
X;Y

Z
d4ud4vX�u��AsXY�u� v�Y�v�; (40)

S �2�pAA � �
1

2

X
P;Q

Z
d4ud4vP�u��ApPQ�u� v�Q�v�; (41)

where (for each fixed value of A) X�x�; Y�x� �
�s
A�x�;�

s�
A �x�, P�x�; Q�x� � �p

A�x�;�
p�
A �x�, and �AsXY�z� or

�ApPQ�z� are matrix elements of the 2
 2 inverse propagator
matrix for �s

A�x�;�
s�
A �x� or �p

A�x�;�
p�
A �x� fields, respec-

tively. Given diquark propagators, it is possible then to
obtain the masses of diquarks.

A. Scalar diquarks in the 2SC phase (� � 0, �8 � 0)

In the present section, using (40) for different A �
2; 5; 7, we will study step by step the masses of scalar
diquark excitations in the 2SC phase of the model (2),
when the color neutrality condition is taken into account.
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Let us begin with the �s
5-�s�

5 diquark sector. It follows
from (40) at A � 5 that

�5s
XY�x� y� � �

	2S�2�s55

	Y�y�	X�x�
(42)

[recall that X; Y � �s
5�x�;�

s�
5 �x� in the case under consid-

eration]. Note also that �5s�z� is a symmetric matrix, i.e.
�5s
XY�z� � �5s

YX��z�. It is clear from (40) and (42) that
�5s

�s
5
�s

5
�z� � �5s

�s�
5

�s�
5
�z� � 0, and this matrix has nonzero

elements of the form (in the momentum space representa-
tion):

�5s
�s�

5
�s

5
�p� �

1

4Hs
� iTrsc

Z d4q

�2��4
fS11�q� p�i�

5�5


 S22�q�i�5�5g; (43)

�5s
�s

5
�s�

5
�p� �

1

4Hs
� iTrsc

Z d4q

�2��4
fS22�q� p�i�

5�5


 S11�q�i�
5�5g; (44)

where the Fourier-transformed expressions S11�q�, S22�q�
can be easily determined from (24) and (25). It follows
from (43) and (44) that �5s

�s�
5

�s
5
��p� � �5s

�s
5
�s�

5
�p�. Since we

are interested in diquark masses, it is necessary to use the
rest frame in (43) and (44), i.e. p � �p0; 0; 0; 0� (see also
[9,29]). In this case, the calculation of matrix elements (43)
and (44) is greatly simplified, and mass excitations are
connected with the zeros of the quantity det�5s�p0� in the
p2

0 plane.8 So we have

�5s
�s�

5
�s

5
�p0� �

1

4Hs
� 4i

Z d4q

�2��4




�
q0 � E

�

�p0 � q0 � �E���q2
0 � �E

�
� �

2�

�
q0 � E

�

�p0 � q0 � �E���q2
0 � �E

�
� �

2�

�
: (45)

The p0; q0 dependency in the integrand of (45) is presented
in an evident form. Other quantities in (45), such as E�,
etc., depend on j ~qj only. The expression (45) is valid for
both � � 0 and � � 0. For the case � � 0, i.e. in the color
superconducting phase, it is possible to use the gap equa-
tion (20) in order to eliminate the coupling constant Hs
from this formula. In this way we find:
-9
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�5s
�s�

5
�s

5
�p0� � 4i�p0 � 3�8�

Z d4q

�2��4




�
1

�p0 � q0 � �E���q2
0 � �E

�
� �

2�

�
1

�p0 � q0 � �E���q2
0 � �E

�
� �

2�

�
	 2�p0 � 3�8�H�p0�;

�5s
�s

5
�s�

5
�p0� � �2�p0 � 3�8�H��p0�:

(46)

The last equation in (46) is due to the relation
�5s

�s�
5

�s
5
��p0� � �5s

�s
5
�s�

5
�p0�. Recall that in (46) q0 � p0

and q0 are shorthand for �p0 � q0� � i"  sgn�p0 � q0�
and q0 � i"  sgn�q0�, where "! 0� [see also comment
after formula (21)]. Performing in (46) the q0 integration,
one obtains

H�p0� �
Z d3q

�2��3

�

� �E��

�p0 � �E� � E�� �E
�
�

�

�� �E��

�p0 � �E� � E�� �E
�
�

�

� �E��

�p0 � �E� � E�� �E
�
�

�

�� �E��

�p0 � �E� � E�� �E
�
�

�
: (47)

Now with the help of (46) one easily gets the expression for
the determinant of the inverse propagator matrix �5s�p0� in
the rest frame:

det�5s�p0� � �5s
�s�

5
�s

5
�p0��

5s
�s

5
�s�

5
�p0�

	 �4�p2
0 � 9�2

8�H�p0�H��p0�: (48)

The diquark squared mass spectrum in the �s
5 sector of the

theory is defined by zeros of the det�5s�p0� in the p2
0 plane.

Evidently, the point p2
0 � 9�2

8 is the solution of the equa-
tion det�5s�p0� � 0. Let us suppose that some nonzero
point p0 � �M

s
D is the zero of the function H�p0�, i.e.

H��Ms
D� � 0. Then at p0 � Ms

D the determinant (48) is
also equal to zero, so the point p2

0 � �M
s
D�

2 is another zero
of det�5s�p0� in the p2

0 plane, and the second bosonic
excitation of this sector has nonzero mass Ms

D. It follows
from (22) and (47) that H�p0� is proportional to hQ8i at the
point p0 � 3�8. Namely, H�3�8� 	 �hQ8i=�4�2�. Since
hQ8i is zero due to the constraint (22), we may conclude
that Ms

D � 3j�8j. Hence, in the �s
5 sector of the model

there are two real bosonic excitations with equal masses
Ms
D 	 3j�8j.
The similar is true for the �s

7 sector of the model, so, in
the whole �s

5;�
s
7 sector of the NJL model that is under the

color neutrality constraint, there are four massive scalar
excitations with equal masses Ms

D 	 3j�8j. These parti-
cles form two real antidoublets of the SUc�2� group or one
complex antidoublet.
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Consider now the diquark excitations of the 2SC ground
state in the �s

2-�s�
2 sector of the model. In this case, the

matrix �2s�p0� (the momentum representation for the in-
verse propagator matrix at ~p � 0, i.e. in the rest frame) has
the following structure:

�2s
�s

2�s
2
�p0� � �2s

�s�
2 �s�

2
�p0� � 4�2I0�p2

0�;

�2s
�s

2�s�
2
�p0� � �2s

�s�
2 �s

2
��p0�

� �4�2 � 2p2
0�I0�p

2
0� � 4p0I1�p

2
0�;

(49)

where

I0�p2
0� �

Z d3q

�2��3
1

E�� �4�E
�
� �

2 � p2
0�

�
Z d3q

�2��3
1

E�� �4�E
�
� �

2 � p2
0�
; (50)

I1�p
2
0� �

Z d3q

�2��3
E�

E�� �4�E
�
� �

2 � p2
0�

�
Z d3q

�2��3
E�

E�� �4�E
�
� �

2 � p2
0�
: (51)

The mass spectrum is defined by the equation

det�2s�p0� 	 4p2
0f�p

2
0 � 4�2�I2

0�p
2
0� � 4I2

1�p
2
0�g � 0:

(52)

In the p2
0 plane this equation has an evident zero, corre-

sponding to a Nambu-Goldstone boson, p2
0 � 0. Detailed
-10
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investigation, similar to that from Ref. [9], shows that on
the second Riemann sheet of p2

0 there is another zero of
(52) which corresponds to a heavy resonance. Its mass M
and width � are depicted in Fig. 4.

As a result, we conclude that in the 2SC phase there are
four light real scalar diquark excitations with mass 3j�8j
and one Nambu-Goldstone boson, which appears due to a
spontaneous breaking of the SUc�2� 
 U�8

�1� color sym-
metry down to SUc�2�. Moreover, a heavy scalar diquark
resonance, which is an SUc�2� singlet, is also presented in
the mass spectrum of the model at �>�c � 342 MeV
(see Fig. 4).

B. Scalar diquarks in the normal phase
(� � 0, �8 � 0)

In the SUc�3�-symmetric phase (�<�c), the diquark
gap � is zero and the three complex diquark fields �s

A�x�
(A � 2; 5; 7) are not mixed with other fields in the second
order effective action of the model. Moreover, at � � 0, as
is easily seen from the color neutrality constraint (22), we
have �8 � 0. So, in order to study the diquark masses, it is
enough to consider, e.g., the �s

5-diquark sector. In this
phase the determinant of the inverse propagator matrix
�5s�p0� looks like (we use the rest frame, where ~p � 0)

det�5s�p0� � �5s
�s�

5
�s

5
�p0��

5s
�s

5
�s�

5
�p0�

� �5s
�s�

5
�s

5
�p0��

5s
�s�

5
�s

5
��p0�; (53)

where �5s
�s�

5
�5
�p0� is presented in (45). [Note that the last

equality in formula (48) for det�5s�p0� in the 2SC phase is
based on the usage of a nontrivial solution � � 0 of the
gap equation (20). So, in the normal SUc�3�-symmetric
phase, where � � 0, it is not valid.] Taking into account
the relationm>� that is realized in the normal phase only

(see Fig. 1), we see that E 	
������������������
~q2 �m2

p
>� and, as a

consequence, E� > 0 are fulfilled in this phase. So one
can easily integrate in (45) over q0 and obtain the following
expression that is suitable only for SUc�3�-symmetric
phase:

�5s
�s�

5
�s

5
�p0� �

1

4Hs
� 16

Z d3q

�2��3
E

4E2 � �p0 � 2��2

	
1

4Hs
� Fs���; (54)

where � � �p0 � 2��2. Clearly, the diquark mass spec-
trum is defined by the equation det�5s�p0� � 0 or by zeros
of (54), where the function Fs��� is analytical in the whole
complex � plane, except for the cut 4m2 < � along the real
axis. (In general, Fs��� is defined on a complex Riemann
surface which is to be described by several sheets.
However, a direct numerical computation based on
Eq. (54) gives its values on the first sheet only [we use
the parameter set (23)]. To find a value on the rest of the
Riemann surface, a special procedure of continuation is
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needed.) The numerical analysis of (54) on the first
Riemann sheet shows that the equation �5s

�s�
5

�5
�p0� � 0

has a root (�0) on the real axis (0< �0 < 4m2), providing
us with the following massive diquark modes which are the
solutions of Eq. (53):

�Ms
��

2 � �1:998m� 2��2;

�Ms
�� �

2 � �1:998m� 2��2:
(55)

We relate Ms
� in (55) to the mass of the diquark with the

baryon number B � 2=3 and Ms
�� to the mass of the

antidiquark with B � �2=3. (Qualitatively, a similar be-
havior of diquark and antidiquark masses vs � was ob-
tained in Ref. [31] in the NJL model with two-colored
quarks.) The difference between diquark and antidiquark
masses in (55) is explained by the absence of a charge
conjugation symmetry in the presence of a chemical
potential.

Finally, due to the underlying color SU�3�c symmetry,
the previous statement is valid also for ��5;�5 and ��7;�7.
As a result, we have a color antitriplet of diquarks with the
massMs

� (55) as well as a color triplet of antidiquarks with
the mass Ms

�� . The results of numerical computations are
presented in Fig. 4 for �<�c � 342 MeV.

Recall that, in our analysis, we have used the constraint
Hs � 3G=4, thereby fixing the constant Hs throughG. It is
useful, however, to discuss now the influence of Hs on
diquark masses. Indeed, it is clear from (54) that the root �0

lies inside the interval 0< �0 < 4m2 only if H�s < Hs <
H��s , where H�s and H��s are defined by

H�s 	
1

4Fs�4m2�

�
�2

4��
�������������������
m2 ��2
p

�m2 ln����
�������������������
m2 ��2
p

�=m��
;

H��s 	
1

4Fs�0�

�
�2

4��
�������������������
m2 ��2
p

�m2 ln����
�������������������
m2 ��2
p

�=m��

�
3mG

2�m�m0�
: (56)

In this case, there are stable diquarks and antidiquarks in
the color symmetric phase. The behavior of their masses
qualitatively resembles that given by Eqs. (55). For a rather
weak interaction in the diquark channel (Hs <H�s ), �0 runs
onto the second Riemann sheet, and unstable diquark
modes (resonances) appear. Unlike this, a sufficiently
strong interaction in the diquark channel (Hs >H��s )
pushes �0 towards the negative semiaxis, i.e. �p0 � 2��2 <
0. The latter indicates a tachyon singularity in the diquark
propagator, evidencing that the SUc�3�-color symmetric
ground state is not stable. Indeed, at a very large Hs, as
-11
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has been shown in Ref. [32] atHp � 0, the color symmetry
is spontaneously broken even at a vanishing chemical
potential. We guess that this result remains true at rather
small values ofHp (Hp < Hs) as well, justifying the above
mentioned tachyon singularity of the diquark propagator.
VI. MASSES OF PSEUDOSCALAR DIQUARKS

It is clear from (35) that in the framework of the NJL
model (2) pseudoscalar diquarks are not mixing with each
other as well as with meson and scalar diquark fields. So, to
get their masses, we will start from the general expression
(41) for the inverse propagator matrices of pseudoscalar
diquarks.
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A. Pseudoscalar diquarks in the 2SC phase
(� � 0, �8 � 0)

In the 2SC phase there is an SU�2�c symmetry between
�p

5 -�p�
5 and �p

7 -�p�
7 sectors, so it is enough to study an

inverse propagator, e.g., in one of these sectors. For A � 5
it follows from (41) that

�5p
PQ�x� y� � �

	2S�2�p55

	Q�y�	P�x�
; (57)

where P�x�; Q�x� � �p
5 �x�;�

p�
5 �x�. Further, using the evi-

dent expression (37) for S�2�p55, one can obtain the matrix
elements (57) in the rest frame, ~p � 0, of the momentum
space representation
�5p
�p�

5
�p

5

�p0� �
1

4Hp
� 4

Z d3q

�2��3

�
m2

E2

�
� �E� � p0 � E

��
�� �E��

�p0 � �E��2 � �E�� �
2
�

E� � E��
2�p0 � �E� � E�� �E

�
�

�
� �E� � p0 � E

��
� �E��

�p0 � �E��2 � �E�� �
2

�
E� � E��

2�p0 � �E� � E�� �E
�
�

�
�
~q2

E2

�
�E� � �E� � p0�
� �E��

�p0 � �E��2 � �E�� �
2
�

E� � E��
2�p0 � �E� � E�� �E

�
�

�
� �E� � p0 � E��
�� �E��

�p0 � �E��2 � �E�� �
2
�

E� � E��
2�p0 � �E� � E�� �E

�
�

��
; (58)

�5p
�p

5
�p�

5

�p� � �5p
�p�

5
�p

5

��p�, and �5p
�p

5
�p

5
�p� � �5p

�p�
5

�p�
5

�p� � 0. Let 1=4Hp � �1=4Hs� � �. Then, using for 1=4Hs the gap

equation (20) (recall that in the 2SC phase � � 0), we obtain from (58) [transforming the multiplier before the second
square bracket in (58) as ~q2=E2 � 1�m2=E2]:

�5p
�p�

5
�p

5

�p0� � �� 2�p0 � 3�8�H�p0� �m2 ~H�p0�; (59)

whereH�p0� is defined in (47). Since in the 2SC phasem� � (orm even a zero ifm0 � 0), we ignore the last term in (59)
[due to this reason, an explicit form of ~H�p0� is not presented here] and obtain in this way the following expression for the
determinant of the matrix �5p�p0�:

det�5p�p0� � �5p
�p�

5
�p

5

�p0��
5p
�p

5
�p�

5

�p0� � �5p
�p�

5
�p

5

�p0��
5p
�p�

5
�p

5

��p0� � ��� 2�p0 � 3�8�H�p0����� 2�p0 � 3�8�H��p0��

� ��� 2�p0 � 3�8�
2���� 2�p0 � 3�8�

2�; (60)

where � dH�p0�=dp0jp0�3�8
. In the last relation in (60), we have expanded the functionH�p0� into a Taylor series of p0

at the point p0 � 3�8 and took into account that H�3�8� equals zero under the color neutrality constraint (see the end of
Sec. VA). Solving in this approximation the equation det�5p�p0� � 0, it is possible to find pseudoscalar diquark
excitations with two different masses:

Mp
D1 � j3�8 �

��������������������
��=�2�

q
j; Mp

D2 �
��������������������
��=�2�

q
� 3�8: (61)

Since < 0 [as is easily seen from (47)], we conclude from formulas (61) that at �> 0 both Mp
D1 and Mp

D2 are real
(positive) quantities, suggesting that these pseudoscalars are stable particles at Hp � Hs. [The case �< 0, which
corresponds to an unstable 2SC ground state, will be discussed in detail below, after (66).] The similar is true in the
�p

7 -�p�
7 sector of the model, so in the whole �p

5 -�p�
5 , �p

7 -�p�
7 sector of the NJL model which is under the color neutrality

constraint, there are four massive pseudoscalar excitations: two of them form an SUc�2� antidoublet with mass Mp
D1;

another two particles form an SUc�2� antidoublet with mass Mp
D2.

Now let us consider the 2SC ground state excitations in the �p
2 -�p�

2 sector. In this case, starting from the effective action
(39), it is possible to obtain the inverse propagator matrix �2p which is defined by the relation (41). In the rest frame, where
p � �p0; 0; 0; 0�, its Fourier-transformed matrix elements look like
-12
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�2p
�p�

2 �p
2

�p0� �
1

4Hp
� 4i

Z d4q

�2��4

�
2m2

E2 
p0 � q0 � E�

�p0 � q0�
2 � �E�� �

2 
q0 � E�

q2
0 � �E

�
� �

2 �
~q2

E2

�
p0 � q0 � E�

�p0 � q0�
2 � �E�� �

2 
q0 � E�

q2
0 � �E

�
� �

2

�
p0 � q0 � E�

�p0 � q0�
2 � �E�� �

2 
q0 � E�

q2
0 � �E

�
� �

2

��
; (62)

�2p
�p

2 �p�
2

�p0� � �2p
�p�

2 �p
2

��p0�; �2p
�p

2 �p
2
�p0� � �2p

�p�
2 �p�

2

�p0� � �4�2P�p0�;

P�p0� �
Z d4q

i�2��4

�
2m2

E2 
1

�p0 � q0�
2 � �E�� �

2 
1

q2
0 � �E

�
� �

2 �
~q2

E2

�
1

�p0 � q0�
2 � �E�� �

2 
1

q2
0 � �E

�
� �

2

�
1

�p0 � q0�
2 � �E�� �

2 
1

q2
0 � �E

�
� �

2

��
: (63)
Using in (62) and (63) the substitution 1=4Hp �
�1=4Hs� � � and then eliminating the coupling constant
Hs in favor of another model parameter [with the help of
the gap equation (20)], we obtain after q0 integrations:

P�p0� � I0�p2
0� �m

2A�p0�;

�2p
�p�

2 �p
2

�p0� � �� �4�2 � 2p2
0�I0�p

2
0� � 4p0I1�p

2
0�

�m2B�p0�; (64)

where I0�p2
0� and I1�p2

0� are presented in (50) and (51),
respectively. The last terms in each of expressions (64) are
proportional to m2. In the 2SC phase the constituent quark
massm is a vanishingly small quantity (or it is exactly zero
if the current quark mass vanishes, m0 � 0) as compared
with �, etc. (see Fig. 1), so we will ignore the contributions
of these terms in the matrix elements (62) and (63). Thus,
there is no need to have explicit expressions for the func-
tions A�p0� and B�p0� from (64). In this approximation the
determinant of the inverse propagator matrix �2p�p0� looks
like:

det�2p�p0� � �2p
�p�

2 �p
2

�p0��
2p
�p

2 �p�
2

�p0�

� �2p
�p

2 �p
2
�p0��

2p
�p�

2 �p�
2

�p0�

� ��� 2p2
0I0�p2

0����� 2�p2
0 � 4�2�I0�p2

0��

� 16p2
0I

2
1�p

2
0�: (65)

Obviously, at � � 0 the equation det�2p�p0� � 0 coin-
cides with Eq. (52) and has the same solutions. The first
one, p2

0 � 0, corresponds to a stable massless pseudoscalar
excitation; the second one lies in the second Riemann sheet
of the variable p2

0. So it is a heavy pseudoscalar resonance
and its mass and width are represented in Fig. 4. At small
nonzero values of �, it is reasonable to suppose that the
equation det�2p�p0� � 0 has a root lying on the second
Riemann sheet of p2

0 as well. It might be considered as a
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weak disturbance of the resonance solution of this equation
at � � 0, so its mass and width behavior vs � are quali-
tatively the same as in Fig. 4. Another solution of this
equation, p2

0 � �M
p
D3�

2, should not be significantly differ-
ent from the solution p2

0 � 0 at � � 0. So, in searching for
�Mp

D3�
2, one can expand the expression (65) into a Taylor

series of p2
0 � 0:

�Mp
D3�

2 �
���� 8�2a�

16b2 � 2a��� 8�2a� � 2��a� 4�2a0�
;

(66)

where a � I0�0�, b � I1�0�, a0 � I00�0�. Note that both the
heavy resonance and stable excitation with mass squared
(66) in the pseudoscalar diquark channel are singlets with
respect to SUc�2�. Since a > 0, the expression (66) is a
positive one at rather small and positive values of �.
However, at sufficiently small but negative values of �, it
is a negative quantity; i.e. a tachyonic pseudodiquark
excitation appeared in the model. This fact indicates the
instability of the 2SC ground state with h�s

2�x�i � �,
h�s

5�x�i � 0, h�s
7�x�i � 0, and h�p

A�x�i � 0. Perhaps, in
this case, i.e. at Hp > Hs, the phase with nonzero ground
state expectation values of pseudoscalar diquarks,
h�p

A�x�i � 0, should be realized.
As a result, we have shown that in the 2SC phase of the

NJL model (2) there are five stable diquark excitations in
the pseudoscalar channel. They form a singlet as well as
two antidoublets (in the caseHp <Hs) of the SUc�2� group
with masses presented in (66) and (61), correspondingly.
Moreover, there is also a heavy resonance that is SUc�2�
singlet with mass about 1100 MeV in this channel.

B. The case of normal phase (� � 0, �8 � 0, m � 0)

Suppose that we are in the SUc�3�-symmetric (normal)
phase of our model, where � � 0. As is easily seen from
the color neutrality constraint (22), in this phase �8 � 0.
Moreover, here �E� � E� � E��> 0, since in this
-13
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phase m>� (see Fig. 1 at �<�c). Then, without loss of
generality, it is sufficient to study the mass spectrum, e.g.,
in the sector of �p

5 -�p�
5 diquarks. For the normal phase we

have from (58):

�5p
�p�

5
�p

5

�p0� �
1

4Hp
� 16

Z d3q

�2��3
~q2

E
1

4E2 � �p0 � 2��2

	
1

4Hp
� Fp���; (67)

where � � �p0 � 2��2 and the function Fp��� is increas-
ing on the interval ��1; 4m2�. Moreover, it is analytical in
the whole complex � plane, except for the cut 4m2 < �
along the real axis. The masses of pseudoscalar diquarks
are defined by the equation
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det�5p�p0� � �5ps
�p�

5
�p

5

�p0��
5p
�p

5
�p�

5

�p0�

� �5p
�p�

5
�p

5

�p0��
5p
�p�

5
�p

5

��p0� � 0; (68)
i.e. by zeros �0 of the matrix element (67) such that 0<
�0 < 4m2 or lying in the second Riemann sheet of the
complex variable �. (The first one corresponds to masses
of stable excitations, the second one to masses of reso-
nances.) In the present consideration, we restrict ourselves
to looking only for stable pseudoscalar diquarks. It is clear
that there is a single zero �0 of (67), obeying the condition
0< �0 < 4m2, if and only if the coupling constant Hp is
constrained by the relation H�p < Hp < H��p , where
H�p �
1

4Fp�4m2�
�

�2

4��
�������������������
m2 ��2
p

�m2 ln����
�������������������
m2 ��2
p

�=m��
;

H��p �
1

4Fp�0�
�

�2�
�������������������
m2 ��2
p

4�3m2�2 ��4 � 3m2�
�������������������
m2 ��2
p

ln����
�������������������
m2 ��2
p

�=m��
:

(69)
[Note thatH�p � H��s from (56).] In this case, the masses of
stable pseudoscalar diquarks and antidiquarks are the fol-
lowing:

�Mp
��

2 � �
�����
�0
p
� 2��2; �Mp

�� �
2 � �

�����
�0
p
� 2��2;

(70)

respectively. [The mass splitting in (70) is again explained
by the absence of a charge conjugation symmetry in the
presence of a chemical potential.] It follows from the
underlying color SU�3�c symmetry of the normal phase
that, at H�p < Hp <H��p , there is indeed a color antitriplet
of pseudoscalar diquarks with the mass Mp

� as well as a
color triplet of pseudoscalar antidiquarks with the mass
Mp

�� [see (70)]. For other regions of the Hp values, stable
pseudoscalar diquark excitations of the SU�3�c-color sym-
metric ground state are forbidden. For a rather weak inter-
action in this channel (Hp <H�p), �0 runs onto the second
Riemann sheet, and unstable pseudoscalar diquark modes
(resonances) appear. Unlike this, a sufficiently strong in-
teraction in this channel (Hp >H��p ) pushes �0 towards the
negative semiaxis, i.e. �p0 � 2��2 < 0. The later indicates
a tachyonic singularity in the pseudoscalar diquark propa-
gator, evidencing that the SU�3�c color symmetric ground
state is not stable. In this case we guess that a parity-
breaking color superconducting phase is realized in which
the ground state expectation values of pseudoscalar di-
quarks are not zero, h�p

A�x�i � 0.
Finally, a few words about diquarks in the particular case

(recall that �<�c) Hs � Hp 	 H, which corresponds to
a NJL model inspired by a one-gluon exchange approxi-
mation in QCD. In this case we see that, if 0<H <H�s ,
then both scalar and pseudoscalar diquarks are resonances.
If H�s < H <H��s , then in the normal phase, including the
case � � 0, only scalar diquarks are stable, but pseudo-
scalar ones are unstable particles. For larger values of H,
the normal phase is unstable in itself, since either or both
the scalar diquark propagator (at H��s � H�p < H <H��p )
and the pseudoscalar one (at H��p < H) have tachyonic
singularities. Hence, one can conclude that at Hs � Hp 	

H scalar diquarks are allowed to exist, at H�s < H <H��s ,
as stable excitations of the normal phase. Pseudoscalar
diquarks in this phase are always unstable particles
(resonances).
VII. SUMMARY AND DISCUSSION

In our previous papers [8,9], the masses of mesons and
diquarks, surrounded by moderately dense quark matter,
were investigated in the framework of NJL model (1) at
Hp � 0, and the color neutrality constraint was missed, for
simplicity. In the present paper, we have calculated the
mass spectrum of meson and diquark excitations in the
color neutral cold dense quark matter. We started from a
low-energy Nambu–Jona-Lasinio–type effective model
(2) for quarks of two flavors, with a quark chemical poten-
tial �, and extended by including the chemical potential
�8 of the 8th color charge. Moreover, the interaction in the
pseudoscalar diquark channel was taken into account, in
addition. We considered only the interplay between normal
and 2SC phases. This is a quite reasonable assumption in
the framework of the model (1). Then it was shown that, in
the presence of color neutrality, the transition to the 2SC
phase occurred at a somewhat smaller value of the quark
-14
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chemical potential (�c � 342 MeV) than without this
constraint (�c � 350 MeV).

It was proved in the present paper that in both models (1)
and (2), i.e. with or without a color neutrality constraint,
the �meson is mixed with the scalar diquark �s

2 in the 2SC
phase. In the previous paper [9], this mixing was ignored in
the consideration of the �-meson mass. At first, we have
found that, if �-�s

2 mixing is ignored as in Ref. [9], then
the color neutrality requirement does not change qualita-
tively the properties of � and � mesons, obtained in the
framework of NJL model (1) without the �8 term. This is
an expected result, since both models (1) and (2) have an
identical chiral symmetry. Hence, at small values of �8

(see Fig. 2) the meson masses acquire small corrections as
well (compare Fig. 2 from Ref. [9] and Fig. 3 of our present
paper). It follows from our consideration that in this case
(without mixing) both � and � mesons are stable particles
in the 2SC phase with masses of about 340 Mev (Fig. 3).
However, if mixing is taken into account, then in the 2SC
phase the � meson is a resonance, decaying into a pair of
quarks with a rather small width �30 MeV (see the ap-
pendix). As far as we know, the properties of � and �
mesons in the 2SC phase have not been discussed in the
literature before.

Moreover, the properties of scalar diquarks in the 2SC
phase are changed drastically, when the color neutrality
condition is imposed. Indeed, for the model (1) we have
found in the 2SC phase an anomalous number of three
Nambu-Goldstone bosons, the SUc�2� antidoublet of light
diquarks, and a heavy resonance that is an SUc�2� singlet
[8,9]. Contrarily, our present investigation shows that in the
model (2) the scalar diquark sector of the 2SC phase
contains two real SUc�2� antidoublets of light excitations
with the same mass 3j�8j, one Nambu-Goldstone boson,
and a heavy resonance with mass about 1100 MeV (see
Fig. 4). To understand such a sharp difference in scalar
diquark masses, predicted by these two models, it is nec-
essary to compare their color symmetries. The first model,
Lagrangian (1), is invariant under SUc�3�. However, in the
second model (2) this symmetry is broken explicitly, due to
the presence of the �8 term, to the subgroup SUc�2� 

U�8
�1�. Then, in the 2SC phase, where the ground state is

an SUc�2� invariant for both models [here h�s
2�x�i � 0,

h�s
5;7�x�i � 0], we have spontaneous breaking of the above

mentioned symmetries. As a consequence, there are five
broken symmetry generators and an abnormal number of
three NG bosons for the model (1) (the explanation of this
fact is presented in detail in Ref. [8]). On the other hand,
for model (2) we have in the 2SC phase only one broken
U�8

-symmetry generator, resulting in a single NG boson.
The properties of the pseudoscalar diquarks in the 2SC

phase depend essentially on the relation between coupling
constants Hs and Hp. First, note that at Hp > Hs the 2SC
phase is an unstable one due to a negative mass squared
(66) of an SUc�2�-singlet pseudoscalar mode (tachyonic
056007
instability). At Hp < Hs the pseudoscalar excitations of
this channel form in the 2SC phase two real stable SUc�2�
antidoublets with different masses (61), as well as the
stable light SUc�2� singlet with mass (66) and a heavy
resonance with mass �1100 MeV.

We have also found that the antidiquark masses exceed
those of the diquarks in the normal SUc�3� symmetric
phase (for �<�c � 342 MeV). This splitting of the
masses is explained by the violation of C parity (charge
conjugation) in the presence of a chemical potential. In
contrast, at � � 0 the model is C-invariant and all di-
quarks and antidiquarks of the same parity have an iden-
tical mass. It follows from our investigation that stable
quark pair formation occurs in the scalar channel at a
weaker coupling strength than in the pseudoscalar one.
Indeed, if the parameter set of the model is fixed by the
relations (23), then in the normal phase scalar diquarks are
stable particles (with masses about 700 MeV at � � 0),
since in this case H�s < Hs � 3G=4<H��s [see (56)].
However, only at sufficiently high values of Hp, i.e. at
H��s � H�p < Hp < H��p [see (69)], might stable pseudo-
scalar diquarks exist in the normal phase. On the other
hand, if Hp <Hs � 3G=4, then in the normal phase pseu-
doscalar diquarks are resonances, decaying into two
quarks. If � exceeds the critical value �c and the system
passes to the 2SC phase at Hp <Hs � 3G=4, then five of
six pseudoscalar diquarks acquire stability. Really, in the
2SC phase, in contrast to the normal one, all particles move
inside the medium, so their decay might be prohibited by a
Pauli blocking principle (Mott effect). Suppose that Hp �

Hs 	 H (in this case the NJL model is inspired by a one-
gluon exchange approximation in QCD). Then at H <H��s
the normal phase is a stable one, but at H >H��s a ta-
chyonic instability appears, so the normal phase is de-
stroyed (see Sec. V B). We have shown for this particular
case that in the normal phase there might exist stable scalar
diquarks; however, pseudoscalar diquark modes are always
unstable excitations.

Of course, all observable particles render themselves as
colorless objects in the hadronic phase, and the diquarks
are expected to be confined, as they are no SU�3�c color
singlets. Nevertheless, one may look at our and other
related results on diquark masses as an indication of the
existence of rather strong quark-quark correlations inside
baryons, which might help to explain baryon dynamics.
Some lattice simulations reveal strong attraction in the
diquark channel [33] with a diquark mass �600 MeV.
Recently, in Ref. [34], the mass and extremely narrow
width, as well as other properties, of the pentaquark 
�

were explained just on the assumption that it is composed
of an antiquark and two highly correlated ud pairs. At the
present time, the nature of the mechanism which may
entail strong attraction of quarks in diquark channels is
actively discussed both in the nonperturbative QCD and in
other models (see, e.g., [35], and references therein).
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For simplicity, we have studied the masses of the one-
particle excitations of the color neutral quark matter.
Similar investigations can be performed in both the color
neutral and the -equilibrated two-flavor NJL models,
where electric charge neutrality is required in addition,
so one more (electric charge) chemical potential �Q

must be introduced. In this case, for some range of the
coupling constant Hs the gapless 2SC phase (g2SC) is
realized [see, e.g., [4], where the particular case Hp � 0
of the NJL model (1) was considered]. In contrast to the
ordinary 2SC phase, two additional gapless quark excita-
tions then appeared in the g2SC phase, but its meson and
diquark mass spectrum, presumably, will not change quali-
tatively. Our belief is based on the structure of the ground
state expectation values of scalar diquarks in the g2SC
phase, i.e. h�s

2�x�i 	 � � 0, h�s
5;7�x�i � 0. This is ex-

pected to be identical to that of our present consideration
when only the color neutrality of the quark matter is taken
into account.

ACKNOWLEDGMENTS

We are grateful to D. Blaschke and M. K. Volkov for
stimulating discussions and critical remarks. After having
completed the main part of this work, we were informed by
L. He, M. Jin, and P. Zhuang of their paper [36]. These
authors get similar results for light scalar diquark bosons in
the case of color neutrality. We thank them for informing
us of their results. This work has been supported in part by
DFG Project No. 436 RUS 113/477/0-2, RFBR Grant
No. 05-02-16699, the Heisenberg-Landau Program 2004,
and the ‘‘Dynasty’’ Foundation.

APPENDIX: CORRECTION TO THE �-MESON
MASS

In Sec. IV the numerical values for the �-meson mass
M� was obtained in the assumption that the mixing of �
with �s

2 is absent. Moreover, we have shown in this ap-
proach that the � meson is a stable particle in the 2SC
phase. Now let us prove that a deeper investigation of the
�-meson mass, based on the inclusion of the mixing be-
tween � and �s

2, results in the conclusion that in the 2SC
phase � is a resonance, having a small decay width into a
quark pair.

Indeed, starting from the total number of effective ac-
tions (18), (28), and (38) it is possible to find the 3
 3
inverse propagator matrix G�1 of �, �s

2, and �s�
2 fields. In

the center of mass frame of the momentum space repre-
sentation ( ~p � 0), it has the following form in the 2SC
phase:

G �1�p0� �

��p0�; ���s
2
�p0�; ���s�

2
�p0�

��s
2�
�p0�; �2s

�s
2�s

2
�p0�; �2s

�s
2�s�

2
�p0�

��s�
2 �
�p0�; �2s

�s�
2 �s

2
�p0�; �2s

�s�
2 �s�

2
�p0�

0BB@
1
CCA;

(A1)
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where

���s
2
�p0� � ��s�

2 �
�p0� � ���s�

2
��p0� � ��s

2�
��p0�

� 4m�
Z d3q

�2��3

�
2E� � p0

EE�� �4�E
�
� �

2 � p2
0�

�
2E� � p0

EE�� �4�E
�
� �

2 � p2
0�

�
: (A2)

Other matrix elements from (A1) are presented in (32) and
(49). Note that the matrix elements (A2), mixing�with �s

2
and �s�

2 , are proportional to the dynamical quark mass m.
So in the 2SC phase bothm and these matrix elements may
be considered as small quantities (see Fig. 1). The mass
spectrum is defined by the equation det�G�1�p0�� � 0,
which has a rather complicated form [note that
det�G�1�p0�� is an even function vs p0, i.e. it depends on
p2

0]:

F�p2
0��0�p

2
0� � m2�2f�p2

0�; (A3)

where

F�p2
0� � �2s

�s
2�s

2
�2s

�s�
2 �s�

2
� �2s

�s�
2 �s

2
�2s

�s
2�s�

2
;

m2�2f�p2
0� � ��2����2

�2s
��2��2
� ����2

���2�
�2s

�2�2

� ���2
���2�

�2s
�2��2
� ����2

��2��2s
��2�2

� F�p2
0��1�p

2
0�; (A4)

and the functions �0, �1 are defined in (33) and (34). In the
p2

0 plane Eq. (A3) has three solutions. One of them corre-
sponds to a Nambu-Goldstone boson, p2

0 � 0. The other
two we denote as �p2

0�� and �p2
0��. Since m is a small

quantity, the right-hand side (RHS) of (A3) can be consid-
ered as a small perturbation. Then the solution �p2

0�� [as
well as �p2

0��] can be constructed in the framework of a
perturbative expansion, based on the smallness of the RHS
of (A3). In the zeroth order we have F�p2

0��0�p2
0� � 0, so

�p2
0�
�0�
� � M2

�, where M� is the zero of the function �0�p2
0�

and is graphically represented in Fig. 3. One can easily
obtain the first perturbative correction

�p2
0�� � M2

� �
m2�2f�M2

��

F�M2
���

0
0�M

2
��
�    (A5)

and so on. Now let us put our attention on the fact that
f�p2

0� and F�p2
0� are analytical functions in the whole

complex p2
0 plane except the cut, composed from all real

points such that 4�2 < p2
0 <1. [In the rest of the real p2

0
axis, f�p2

0� and F�p2
0� take real values.] Through the cut,

these functions can be analytically continued to the second
Riemann sheet. In our case, M� � 350 MeV and ��
100 MeV, so M2

� 2 �4�2;1�, i.e. it lies on the cut.
Hence, both f�M2

�� and f�M2
�� have imaginary parts, and

the solution (A5) lies in the second Riemann sheet. It
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means that �p2
0�� corresponds to a resonance in the mass

spectrum. Numerical estimates show that the width of this
resonance is a rather small quantity, less than 30 MeV.
056007
Similar corrections can be easily performed for the
heavy scalar diquark resonance mass, corresponding to
another solution �p2

0�� of Eq. (A3).
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