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Two-loop Bhabha scattering in QED: Vertex and one-loop by one-loop contributions
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In the context of pure QED, we obtain analytic expressions for the contributions to the Bhabha
scattering differential cross section at order �4, which originate from the interference of two-loop
photonic vertices with tree-level diagrams and from the interference of one-loop photonic diagrams
amongst themselves. The ultraviolet renormalization is carried out. The IR-divergent soft-photon emission
corrections are evaluated and added to the virtual cross section. The cross section obtained in this manner
is valid for on-shell electrons and positrons of finite mass and for arbitrary values of the center of mass
energy and momentum transfer. We provide the expansion of our results in powers of the electron mass,
and we compare them with the corresponding expansion of the complete order �4 photonic cross section,
recently obtained by A. A. Penin [Phys. Rev. Lett. 95, 010408 (2005).]. As a by-product, we obtain the
contribution to the Bhabha scattering differential cross section of the interference of the two-loop photonic
boxes with the tree-level diagrams, up to terms suppressed by positive powers of the electron mass. We
evaluate numerically the various contributions to the cross section, paying particular attention to the
comparison between exact and expanded results.
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I. INTRODUCTION

The Bhabha scattering process plays a crucial role in
the study of elementary particle phenomenology, since it is
the process employed in the luminosity measurement at
e�e� colliders. The small-angle Bhabha scattering at high
(� 100 GeV) center of mass energy and the large-angle
Bhabha scattering at intermediate (1–10 GeV) energies
have cross sections that are large and QED dominated;
these two characteristics allow for precise experimental
measurements, as well as for a detailed theoretical evalu-
ation of the cross section.

The radiative corrections to the Bhabha scattering in
pure QED have been extensively studied (see [1], and
references therein). The O��3� corrections have been
known for a long time, even in the full electroweak stan-
dard model [2]. The second order QED corrections O��4�
were the subject of renewed interest in the past few years,
and several works have been devoted to the study of second
order radiative corrections, both virtual and real, enhanced
by factors of lnn�s=m2� (with n � 1; 2, s the c.m. energy,
and m the mass of the electron) [3–5]. The complete set of
these corrections was finally obtained in Ref. [6] by em-
ploying the QED virtual corrections for massless electron
and positrons of Ref. [7], the results of Ref. [8], and by
using the known structure of the IR poles in dimensional
regularization [9]. Very recently, the complete set of pho-
tonic O��4� corrections to the cross section that are not
suppressed by positive powers of the ratio m2=s were
obtained in Ref. [10]. The subset of virtual corrections of
O��4� involving a closed fermion loop, together with the
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corresponding soft-photon emission corrections, were ob-
tained in an analytic and nonapproximated form in
Refs. [11–13]. The results contained in these papers do
not rely on any mass expansion, and they are valid for
arbitrary values of the c.m. energy s, momentum transfer t,
and electron mass m. In Refs. [11–13], the calculation of
the relevant loop diagrams was performed by employing
the Laporta-Remiddi algorithm [14], which takes advan-
tage of the integration by parts [15] and Lorentz-invariance
[16] identities in order to reduce the problem to the calcu-
lation of a small set of master integrals. The master inte-
grals are calculated using the differential equations method
[17]; their expression is given in terms of harmonic poly-
logarithms (HPLs) [18]. Both IR and UV divergencies
were regularized in the dimensional regularization scheme
[19] and they appear, in the intermediate results, as singu-
larities in �D� 4�, where D is the dimension of the space-
time. It is natural to apply the same approach to the
calculation of the complete set of O��4� virtual correc-
tions. At present, the list of the master integrals required to
complete the calculation is available in Refs. [20,21].
However, only very few of the master integrals related to
the two-loop photonic box diagrams have thus far been
calculated [20–22]. The subset of second order radiative
corrections due to the interference of one-loop diagrams
was studied in Ref. [23].

In using the results of Refs. [24,25], we calculate in this
paper the following O��4� corrections to the differential
cross section in QED:
(i) c
-1
orrections due to the interference of the two-loop
photonic vertex diagrams with the tree-level
amplitude;
(ii) c
orrections due to the interference of one-loop
photonic diagrams amongst themselves;
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(iii) c
1The
obtained
orrections due to the emission of two real soft
photons from a tree-level diagram and of one soft
photon from a one-loop photonic diagram.
These three classes of diagrams provide separately gauge
independent contributions to the cross section.1 All of the
contributions mentioned above are calculated for finite
electron mass and for arbitrary values of the c.m. energy
s and momentum transfer t. We employ dimensional regu-
larization in order to regularize both UV and IR divergen-
cies. The UV renormalization is carried out in the on-shell
scheme. By following the same technique of Ref. [13], we
pair virtual and soft-photon emission corrections in order
to check the cancellation of the IR singularities. Our results
contain residual IR poles; we discuss their origin and their
cancellation against corresponding terms arising from the
two-loop photonic graphs.

We also expand our results, which retain the full depen-
dence on the electron mass, in the limit in which the
electron mass is negligible with respect to the
Mandelstam invariants. In this way, it is possible:
(i) t
o prove that our results reproduce the correct
small-angle Bhabha scattering cross section at
O��4�, which is determined by the Dirac vertex
form factor only [4];
(ii) t
o provide strong cross-checks of a large part of the
result of Ref. [10];
(iii) t
o find, by subtracting our result from the cross
section of Ref. [10], the contribution to the cross
section of the interference between two-loop pho-
tonic boxes and the tree-level amplitude;
(iv) t
o investigate the numerical relevance of the terms
suppressed by positive powers of the electron mass.
This paper is structured as follows: After a brief sum-
mary of our notation in Sec. II, in Sec. III we discuss the
irreducible two-loop vertex photonic corrections, provid-
ing an expression for their contribution to the virtual
differential cross section. In Secs. IV, V, and VI, we cal-
culate the interference of the reducible vertex diagrams
with the tree-level amplitude, the interference of the one-
loop vertex diagrams with themselves and with the one-
loop box diagrams, respectively, and we obtain the corre-
sponding contributions to the virtual differential cross
section. In Sec. VII, we complete the analysis of the
interference amongst one-loop diagrams by considering
the interference of one-loop boxes. In Sec. VIII, we discuss
the soft-photon emission at O��4�, and, in Sec. IX, we
explicitly show how the cancellation of the IR divergencies
works between virtual and soft corrections. In Sec. X, we
analyze the expansion of our results in the limit m2=s! 0;
we discuss the behavior of the cross section at small angle,
compare our calculations with the results present in the
literature, and discuss the numerical accuracy of the
partial results presented in the following sections are
by performing the calculations in the Feynman gauge.
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expansion. Section XI contains our conclusions. In
Appendix A, we collect the definition of some functions
introduced in the paper. Finally, in Appendix B, we provide
the expressions of the contribution of the two-loop pho-
tonic boxes to the differential cross section at order �4 in
the limit m2=s! 0; all of the functions of the Mandelstam
variables introduced and employed throughout the paper
are available in electronic format in Ref. [26].
II. KINEMATIC NOTATION AND CONVENTIONS

In this paper, we employ the notation and conventions
adopted in Refs. [11–13], which are summarized in the
present section. We consider the Bhabha scattering pro-
cess:

e��p1� � e
��p2� ! e��p3� � e

��p4�; (1)

where p1, p2, p3, and p4 are the momenta of the incoming
electron, incoming positron, outgoing electron, and out-
going positron, respectively. All of the external particles
are on their mass shell, i.e. p2

i � �m
2 (i � 1; . . . ; 4),

where m is the electron mass.
The Mandelstam invariants s, t, and u are related to the

beam energy (E) and scattering angle in the center of mass
frame of reference (�) by the relations

s � �P2 � ��p1 � p2�
2 � 4E2; (2)

t � �Q2 � ��p1 � p3�
2 � �4�E2 �m2�sin2 �

2
; (3)

u � �V2 � ��p1 � p4�
2 � �4�E2 �m2�cos2 �

2
: (4)

Moreover, the Mandelstam invariants satisfy the relation
s� t� u � 4m2.

The analytic expressions for the vertex and box form
factors that we employ in the rest of the paper are calcu-
lated in the nonphysical kinematic region s < 0 and are
then analytically continued to the physical region s > 4m2.
In order to express the results (for s < 0) in a compact
form, it is convenient to introduce the dimensionless var-
iables x, y, and z, defined through the following relations:

s � �m2 �1� x�
2

x
; x �

������������������
4m2 � s
p

�
�������
�s
p

������������������
4m2 � s
p

�
�������
�s
p ;

0 � x � 1;

(5)

t � �m2 �1� y�
2

y
; y �

�����������������
4m2 � t
p

�
������
�t
p

�����������������
4m2 � t
p

�
������
�t
p ;

0 � y � 1;

(6)
-2
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u � �m2 �1� z�
2

z
; z �

������������������
4m2 � u
p

�
�������
�u
p

������������������
4m2 � u
p

�
�������
�u
p ;

0 � z � 1:

(7)

The analytic continuation of all the form factors to the
physical region s > 4m2 can be readily obtained by replac-
ing x! �x0 � i�, where � is an infinitesimal positive
quantity and where

TWO-LOOP BHABHA SCATTERING IN QED: VERTEX . . .
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x0 � �

������������������
s� 4m2
p

�
���
s
p

������������������
s� 4m2
p

�
���
s
p ; (8)

(see [12] for a more detailed discussion).
The Bhabha scattering differential cross section, calcu-

lated by summing over the spins of the final state and
averaged over the spins of the initial one, can be expanded
in powers of the fine structure constant � as follows:
d��s; t;m2�

d�
�
d�0�s; t; m2�

d�
�

X
i�V;S

��
�
�

�
d��i�1 �s; t;m

2�

d�
�

�
�
�

�
2 d��i�2 �s; t;m

2�

d�

�
; (9)
(a)

p1 p3

Q

(b) (c) (d)

FIG. 1. Two-loop irreducible diagrams contributing to the
photonic vertex corrections of the electron current in the t
channel. The two diagrams, analogous to (c) and (d), which
have an insertion of a one-loop vertex or a self-energy correction
on the outgoing electron line, are not shown.
where the superscripts V and S indicate virtual and soft-
photon emission contributions, respectively, while the sub-
scripts 0, 1, and 2 label the tree-level, O��3�, and O��4�
corrections, respectively.

The tree-level [O��2�] and O��3� corrections are well
known (their explicit expressions are collected, for ex-
ample, in Refs. [12,13]). The contribution of O��4� to
the virtual cross section can be further split as follows:

d��V�2 �s; t;m
2�

d�
�
d��V;ph Boxes�

2 �s; t;m2�

d�

�
d��V;ph Vertices�

2 �s; t; m2�

d�

�
d��V;NF�1�

2 �s; t;m2�

d�
; (10)

where the superscript NF � 1 indicates the UV-
renormalized diagrams including a closed fermion loop
(calculated, together with the corresponding soft-radiation
diagrams, in Refs. [12,13]). The superscript ‘‘ph Vertices’’
indicates the contribution of all of the UV-renormalized
photonic corrections which include at least one vertex
diagram, while the superscript ‘‘ph Boxes’’ indicates the
contribution to the cross section of the photonic corrections
which include box diagrams only.

This paper is dedicated to the calculation of
d��V;ph Vertices�

2 =d�, as well as to the calculation of the
contribution to d��V;ph Boxes�

2 =d� deriving from the inter-
ference of one-loop box diagrams amongst themselves; the
soft-photon emission corrections that cancel the residual
IR poles in the quantities mentioned above are also dis-
cussed. By employing these results and the findings of
Ref. [10], we also obtain the contribution of the interfer-
ence of the two-loop photonic boxes to the cross section at
order �4, up to terms of order m2=s excluded.

III. IRREDUCIBLE TWO-LOOP VERTEX
CORRECTIONS

In this section, we obtain the contribution of the irre-
ducible photonic vertex corrections to the Bhabha scatter-
ing differential cross section at order �4. Four of the two-
loop irreducible vertex graphs, which correct the electron
current in the t-channel photon-exchange contribution to
the Bhabha scattering, are shown in Fig. 1. There are two
other graphs contributing to the process: these are the
mirror images of diagrams 1(c) and 1(d) with the fermionic
arrow reversed, and their contribution to the differential
cross section is identical to that of the diagrams in 1(c) and
1(d). We explicitly checked that the sum of the graphs 1(a)
and 1(b) and of the graphs 1(c) and 1(d) are separately
gauge independent in the class of the covariant linear
gauges.

The explicit expressions of diagrams 1(a)–1(d) were
calculated in Ref. [25]. The electron current which in-
cludes the two-loop photonic corrections can be written as

���p1; p3� �

�
�
�

�
2
�
F�2l;ph�

1 �t���

�
1

2m
F�2l;ph�

2 �t�����p1 � p3�

�
;

(11)

where ��� � �i=2	��; ��
. The electron spinors and the
dependence of the form factors F�2l;ph�

i �t� (i � 1; 2) on the
electron mass m are omitted in Eq. (11). The expression of
the contribution of the single diagrams to the UV-
renormalized form factors F�2l;ph�

i �t� can be found in
Refs. [25,26]. The form factors shown in Eq. (11) still
include IR singularities, which are regularized within the
dimensional regularization scheme. The Laurent expan-
sion of the form factors is
-3
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FIG. 2. Two-loop photonic vertex diagrams contributing to
Bhabha scattering.
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F�2l;ph�
1 �t� �

F�2l;ph;�2�
1 �t�

�D� 4�2
�
F�2l;ph;�1�

1 �t�
�D� 4�

� F�2l;ph;0�
1 �t�

�O�D� 4�;

F�2l;ph�
2 �t� �

F�2l;ph;�1�
2 �t�
�D� 4�

� F�2l;ph;0�
2 �t� �O�D� 4�; (12)

where D is the dimensional regulator.
The four photonic two-loop vertex correction diagrams

contributing to Bhabha scattering are shown in Fig. 2,
where the shaded circle represents the sum of the vertex
graphs shown2 in Fig. 1.

The interference of diagrams 2(b) and 2(d) with the tree-
level amplitude provides a contribution to the differential
cross section that is identical to the one of diagrams 2(a)
and 2(c), respectively. This can easily be proved by ob-
serving that diagram 2(b) [2(d)] can be obtained from 2(a)
[2(c)] by applying the transformations p2 $ �p3 and
p4 $ �p1 and that these transformations leave the
Mandelstam invariants s and t unchanged.

The contribution of the diagram in Fig. 2(a) to the
Bhabha scattering differential cross section at order �4

can be written as

d��V;ph Vertices�
2

d�

���������ph Irr:Ver:;2a�
�
�2

s

�
1

st
V�2l;Irr:Ver:�

1 �s; t�

�
1

t2
V�2l;Irr:Ver:�

2 �s; t�
�
:

(13)

The functions V�2l;Irr:Ver:�
i �s; t� (i � 1; 2) have the Laurent

expansion

V�2l;Irr:Ver:�
i �s; t� �

V�2l;Irr:Ver:;�2�
i �s; t�

�D� 4�2
�
V�2l;Irr:Ver:;�1�
i �s; t�
�D� 4�

� V�2l;Irr:Ver:;0�
i �s; t� �O�D� 4�; (14)

with

V�2l;Irr:Ver:;�2�
i �s; t� � ci1�s; t�ReF�2l;ph;�2�

1 �t�; (15)
2The diagrams in Figs. 1(c) and 1(d) enter the sum with a
multiplicity factor of 2.
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V�2l;Irr:Ver:;�1�
i �s; t� � ci1�s; t�ReF�2l;ph;�1�

1 �t�

� ci2�s; t�ReF�2l;ph;�2�
1 �t�

� ci3�s; t�ReF�2l;ph;�1�
2 �t�; (16)

V�2l;Irr:Ver:;0�
i �s; t� � ci1�s; t�ReF�2l;ph;0�

1 �t�

� ci2�s; t�ReF�2l;ph;�1�
1 �t�

� ci4�s; t�ReF�2l;ph;�2�
1 �t�

� ci3�s; t�ReF�2l;ph;0�
2 �t�

� ci6�s; t�ReF�2l;ph;�1�
2 �t�: (17)

The functions cij are polynomials of the Mandelstam
variables; their explicit expressions are collected in
Appendix A, while the Laurent coefficients of the form
factors F�2l;ph�

i (i � 1; 2) were introduced in Eq. (12). Even
if the form factors are real for a physical (spacelike) t, we
write ReF�2l;ph�

i �t� (i � 1; 2) in the equations above for
convenience of later use.

The contribution to the differential cross section of the
interference of the diagram in Fig. 2(c) with the tree-level
amplitude can be obtained from the contribution of
diagram 2(a) by replacing p2 $ �p3. This is equivalent
to exchanging s$ t, so that one finds

d��V;ph Vertices�
2

d�

���������ph Irr:Ver:;2c�
�
�2

s

�
1

s2 V
�2l;Irr:Ver:�
2 �t; s�

�
1

st
V�2l;Irr:Ver:�

1 �t; s�
�
:

(18)

According to the definitions in Eqs. (15)–(17), the right-
hand side of Eq. (18) involves the functions F�2l;ph�

i �s�,
which develop then an imaginary part above threshold (s >
4m2). These imaginary parts do not contribute to the
differential cross section at this order.

Finally, the total contribution of the four diagrams in
Fig. 2 to the Bhabha scattering differential cross section at
order �4 is

d��V;ph Vertices�
2

d�

���������ph Irr:Ver:�
� 2

�2

s

�
1

s2 V
�2l;Irr:Ver:�
2 �t; s�

�
1

t2
V�2l;Irr:Ver:�

2 �s; t�

�
1

st
�V�2l;Irr:Ver:�

1 �s; t�

� V�2l;Irr:Ver:�
1 �t; s��

�
: (19)

The first, second, and third terms within squared brackets
in the right-hand side of Eq. (19) are the s-s, t-t, and s-t
channel interference amplitudes, respectively.
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(a) (b)

FIG. 3. Two-loop reducible vertex diagrams contributing to
Bhabha scattering.
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IV. REDUCIBLE TWO-LOOP VERTEX
CORRECTIONS

In this section, we consider the interference of the two-
loop reducible vertex diagrams, shown in Fig. 3, with the
tree-level Bhabha scattering amplitude. The two reducible
diagrams contain a one-loop vertex correction in both
fermionic currents. Their contribution to the differential
cross section at order �4 can be written in terms of the one-
loop UV-renormalized vertex form factors F�1l�i (i � 1; 2)
(see [12,26]) and of the functions cij (i � 1; 2, j � 1; 6)
introduced in the previous section. It must also be observed
that the term linear in �D� 4� is needed in the Laurent
expansion of the one-loop vertex form factors.

The contribution of diagram 3(a) to the cross section is
given by

d��V;ph Vertices�
2

d�

���������ph Red:Ver:;3a�
�
�2

s

�
1

st
V�2l;Red:Ver:�

1 �s; t�

�
1

t2
V�2l;Red:Ver:�

2 �s; t�
�
;

(20)

where the Laurent expansion of V�2l;Red:Ver:�
i is
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V�2l;Red:Ver:�
i �

V�2l;Red:Ver:;�2�
i

�D� 4�2
�
V�2l;Red:Ver:;�1�
i

�D� 4�

� V�2l;Red:Ver:;0�
i �O�D� 4�; (21)
with
V�2l;Red:Ver:;�2�
i �s; t� � ci1�s; t�	�ReF�1l;�1�

1 �t��2

� �ImF�1l;�1�
1 �t��2
; (22)
V�2l;Red:Ver:;�1�
i �s; t� � ci2�s; t�	�ReF�1l;�1�

1 �t��2 � �ImF�1l;�1�
1 �t��2
 � 2ci1�s; t�	ReF�1l;�1�

1 �t�ReF�1l;0�1 �t�

� ImF�1l;�1�
1 �t�ImF�1l;0�1 �t�
 � 2ci3�s; t�	ReF�1l;�1�

1 �t�ReF�1l;0�2 �t� � ImF�1l;�1�
1 �t�ImF�1l;0�2 �t�
; (23)

V�2l;Red:Ver:;0�
i �s; t� � ci4�s; t�	�ReF�1l;�1�

1 �t��2 � �ImF�1l;�1�
1 �t��2
 � 2ci2�s; t�	ReF�1l;�1�

1 �t�ReF�1l;0�1 �t�

� ImF�1l;�1�
1 �t�ImF�1l;0�1 �t�
 � 2ci6�s; t�	ReF�1l;�1�

1 �t�ReF�1l;0�2 �t� � ImF�1l;�1�
1 �t�ImF�1l;0�2 �t�


� 2ci1�s; t�	ReF�1l;�1�
1 �t�ReF�1l;1�1 �t� � ImF�1l;�1�

1 �t�ImF�1l;1�1 �t�
 � 2ci3�s; t�	ReF�1l;�1�
1 �t�ReF�1l;1�2 �t�

� ImF�1l;�1�
1 �t�ImF�1l;1�2 �t�
 � ci1�s; t�	�ReF�1l;0�1 �t��2 � �ImF�1l;0�1 �t��2
 � 2ci3�s; t�

� 	ReF�1l;0�1 �t�ReF�1l;0�2 �t� � ImF�1l;0�1 �t�ImF�1l;0�2 �t�
 � ci5�s; t�	�ReF�1l;0�2 �t��2 � �ImF�1l;0�2 �t��2
:

(24)

Similarly, the contribution of diagram 3(b) to the cross section at order �4 is given by

d��V;ph Vertices�
2

d�

���������ph Red:Ver:;3b�
�
�2

s

�
1

st
V�2l;Red:Ver:�

1 �t; s� �
1

s2 V
�2l;Red:Ver:�
2 �t; s�

�
: (25)

It is then possible to conclude that the interference of the diagrams in Fig. 3 with the tree-level amplitude gives the
following contribution to the cross section:

d��V;ph Vertices�
2

d�

���������ph Red:Ver:�
�
�2

s

�
1

s2 V
�2l;Red:Ver:�
2 �t; s� �

1

t2
V�2l;Red:Ver:�

2 �s; t� �
1

st
�V�2l;Red:Ver:�

1 �s; t� � V�2l;Red:Ver:�
1 �t; s��

�
:

(26)

The first, second, and third terms within squared brackets in the right-hand side of Eq. (26) are the s-s, t-t, and s-t channel
interference amplitudes, respectively.
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V. INTERFERENCE OF ONE-LOOP VERTEX
DIAGRAMS

In this section, we obtain the Bhabha scattering cross
section at order �4 deriving from the interference of the
diagrams in Fig. 4.

We begin by considering the contribution of the ampli-
tude of diagram 4(a) squared; one finds that

d��V;ph Vertices�
2

d�

���������ph Ver:Ver:;4a�
�
�2

s
1

t2
I1�s; t�: (27)

In Eq. (27), we introduce the function I1 that has the
(a) (b) (c) (d)

FIG. 4. One-loop vertex diagrams contributing to Bhabha scat-
tering.
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following Laurent expansion in powers of �D� 4�:

I1�s; t� �
I��2�

1 �s; t�

�D� 4�2
�
I��1�

1 �s; t�
�D� 4�

� I�0�1 �s; t� �O�D� 4�;

(28)

with

I��2�
1 �s; t� � 1

2c21�s; t�	�ReF�1l;�1�
1 �t��2 � �ImF�1l;�1�

1 �t��2
;

(29)
I��1�
1 �s; t� � 1

2c22�s; t�	�ReF�1l;�1�
1 �t��2 � �ImF�1l;�1�

1 �t��2
 � c21�s; t�	ReF�1l;�1�
1 �t�ReF�1l;0�1 �t� � ImF�1l;�1�

1 �t�ImF�1l;0�1 �t�


� c23�s; t�	ReF�1l;�1�
1 �t�ReF�1l;0�2 �t� � ImF�1l;�1�

1 �t�ImF�1l;0�2 �t�
; (30)

I�0�1 �s; t� � c22�s; t�	ReF�1l;�1�
1 �t�ReF�1l;0�1 �t� � ImF�1l;�1�

1 �t�ImF�1l;0�1 �t�
 � c21�s; t�	ReF�1l;�1�
1 �t�ReF�1l;1�1 �t�

� ImF�1l;�1�
1 �t�ImF�1l;1�1 �t�
 � c22�s; t�	ReF�1l;�1�

1 �t�ReF�1l;0�2 �t� � ImF�1l;�1�
1 �t�ImF�1l;0�2 �t�


� c23�s; t�	ReF�1l;�1�
1 �t�ReF�1l;1�2 �t� � ImF�1l;�1�

1 �t�ImF�1l;1�2 �t�
 � 1
2c21�s; t�	�ReF�1l;0�1 �t��2 � �ImF�1l;0�1 �t��2


� c23�s; t�	ReF�1l;0�1 �t�ReF�1l;0�2 �t� � ImF�1l;0�1 �t�ImF�1l;0�2 �t�
 � c27�s; t�	�ReF�1l;0�2 �t��2 � �ImF�1l;0�2 �t��2
: (31)
The expression of the functions cij in terms of the
Mandelstam invariants can be found in Appendix A, while
the expression of the one-loop vertex form factors appear-
ing in the functions I1 can be found in Refs. [12,25] and are
collected in Ref. [26].

Also, the contribution of the square of the diagram in
Fig. 4(c) can be easily expressed by employing the function
I1:

d��V;ph Vertices�
2

d�

���������ph Ver:Ver:;4c�
�
�2

s
1

s2 I1�t; s�: (32)

The interference between the diagrams in Figs. 4(a) and
4(b) generates a term in the cross section that can be
written as

d��V;ph Vertices�
2

d�

���������ph Ver:Ver:;4a;b�
�
�2

s
1

t2
I2�s; t�; (33)

where the function I2 is given by
I2�s; t� �
I��2�

2 �s; t�

�D� 4�2
�
I��1�

2 �s; t�
�D� 4�

� I�0�2 �s; t� �O�D� 4�;

(34)

with

I��2�
2 �s; t� � 2I��2�

1 �s; t�; (35)

I��1�
2 �s; t� � 2I��1�

1 �s; t�; (36)

I�0�2 �s; t� � 2I�0�1 �s; t� � �c25�s; t� � 2c27�s; t��

� 	�ReF�1l;0�2 �t��2 � �ImF�1l;0�2 �t��2
: (37)

Similarly, the interference between the diagrams in
Figs. 4(c) and 4(d) generates the following contribution
to the differential cross section:

d��V;ph Vertices�
2

d�

���������ph Ver:Ver:;4c;d�
�
�2

s
1

s2 I2�t; s�: (38)

The interference of the diagrams in Figs. 4(a) and 4(c)
can be expressed in terms of a third function, I3:

d��V;ph Vertices�
2

d�

���������ph Ver:Ver:;4a;c�
�
�2

s
1

st
I3�s; t�: (39)

Also in this case, it is convenient to explicitly write the
Laurent expansion of the function I3:
-6
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I3�s; t� �
I��2�

3 �s; t�

�D� 4�2
�
I��1�

3 �s; t�
�D� 4�

� I�0�3 �s; t� �O�D� 4�; (40)

with

I��2�
3 �s; t� � c11�t; s�F

�1l;�1�
1 �t�ReF�1l;�1�

1 �s�; (41)

I��1�
3 �s; t� � c12�t; s�F

�1l;�1�
1 �t�ReF�1l;�1�

1 �s� � c11�t; s�	F
�1l;�1�
1 �t�ReF�1l;0�1 �s� � F�1l;0�1 �t�ReF�1l;�1�

1 �s�


� c13�t; s�	F
�1l;�1�
1 �t�ReF�1l;0�2 �s� � F�1l;0�2 �t�ReF�1l;�1�

1 �s�
; (42)

I�0�3 �s; t� � c14�t; s�F
�1l;�1�
1 �t�ReF�1l;�1�

1 �s� � c12�t; s�	F
�1l;�1�
1 �t�ReF�1l;0�1 �s� � F�1l;0�1 �t�ReF�1l;�1�

1 �s�
 � c11�t; s�

� 	F�1l;�1�
1 �t�ReF�1l;1�1 �s� � F�1l;1�1 �t�ReF�1l;�1�

1 �s�
 � c16�t; s�F
�1l;�1�
1 �t�ReF�1l;0�2 �s�

� c16�s; t�F
�1l;0�
2 �t�ReF�1l;�1�

1 �s� � c13�t; s�F
�1l;�1�
1 �t�ReF�1l;1�2 �s� � c13�s; t�F

�1l;1�
2 �t�ReF�1l;�1�

1 �s�

� c13�s; t�F
�1l;0�
2 �t�ReF�1l;0�1 �s� � c13�t; s�F

�1l;0�
1 �t�ReF�1l;0�2 �s� � c17�t; s�F

�1l;0�
2 �t�ReF�1l;0�2 �s�

� c11�t; s�F
�1l;0�
1 �t�ReF�1l;0�1 �s�: (43)
(a) (b) (c) (d)

FIG. 5. One-loop box diagrams contributing to Bhabha scat-
tering.
Finally, it is easy to verify that all of the interferences
between s- and t-channel diagrams in Fig. 4 give a con-
tribution to the cross section identical to the one in
Eq. (39), while the squared amplitude of the
diagram 4(b) [4(d)] coincides with the squared amplitude
of diagram 4(a) [4(c)]. We can then conclude that the total
contribution of the interferences of the diagrams in Fig. 4
to the Bhabha scattering cross section is given by

d��V;ph Vertices�
2

d�

���������ph Ver:Ver:�
�
�2

s

�
1

t2
�2I1�s; t� � I2�s; t��

�
4

st
I3�s; t� �

1

s2 �2I1�t; s�

� I2�t; s��
�
:

(44)

VI. INTERFERENCE OF ONE-LOOP VERTEX AND
ONE-LOOP BOX DIAGRAMS

In the present section, we consider the interference of
the diagrams in Fig. 4 with the diagrams in Fig. 5.

In order to write down the contributions that these
interferences provide to the Bhabha scattering cross sec-
tions at order �4, it is convenient to introduce the functions
I4;i�x1; x2; x3�, where i � 1; . . . ; 3 and where xj (j �
1; . . . ; 3) represents one of the Mandelstam invariants s, t,
and u; these functions have the following Laurent expan-
sion in �D� 4�:

I4;i�x1; x2; x3� �
I��2�

4;i �x1; x2; x3�

�D� 4�2
�
I��1�

4;i �x1; x2; x3�

�D� 4�

� I�0�4;i �x1; x2; x3� �O�D� 4�: (45)
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The coefficients of the Laurent expansion are given by

I��2�
4;i �x1; x2; x3� � x3Re	�F�1l;�1�

1 �x1��
�B�1l;�1�

i �x2; x3�
;

(46)

I��1�
4;i �x1; x2; x3� � x3Re	�F�1l;�1�

1 �x1��
�B�1l;0�i �x2; x3�

� �F�1l;0�1 �x1��
�B�1l;�1�

i �x2; x3�

� �F�1l;0�2 �x1��
�B�1l;�1�

i�3 �x2; x3�
; (47)

I�0�4;i �x1; x2; x3� � x3Re	�F�1l;�1�
1 �x1��

�B�1l;1�i �x2; x3�

� �F�1l;0�1 �x1��
�B�1l;0�i �x2; x3�

� �F�1l;1�1 �x1��
�B�1l;�1�

i �x2; x3�

� �F�1l;0�2 �x1��
�B�1l;0�i�3 �x2; x3�

� �F�1l;1�2 �x1��
�B�1l;�1�

i�3 �x2; x3�
: (48)

Besides for the one-loop vertex form factors already
employed in the previous sections, one encounters in the
equations above the functions B�1l;j�i (i � 1; . . . ; 3, j �
�1; 0; 1) introduced in Ref. [12] to describe the contribu-
tion of the diagrams in Fig. 5 to the Bhabha scattering cross
-7
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section3 at O��3�. The auxiliary functions B�1l;j�i (i �
4; . . . ; 6, j � �1; 0) are introduced for the first time here,
and their expressions in terms of HPLs and the dimension-
less variables x, y, and z can be found in Ref. [26].

The interference of diagram 4(a) with diagram 5(a) gives
the following contribution to the differential cross section:

d��V;ph Vertices�
2

d�

���������ph Ver:Box;4a;5a�
�
�2

4s
1

t2
I4;2�t; s; t�: (49)

The notation has been chosen to clarify that Eq. (49) is
related to the interference of two t-channel diagrams.

Similarly, it is possible to write all the interferences of
diagrams 4(a) and 4(c) with the diagrams in Fig. 5 in terms
of the functions I4;i:

d��V;ph Vertices�
2

d�

���������ph Ver:Box;4a;5b�
� �

�2

4s
1

t2
I4;2�t; u; t�;

(50)

d��V;ph Vertices�
2

d�

���������ph Ver:Box;4a;5c�
�
�2

4s
1

st
I4;1�t; t; s�; (51)

d��V;ph Vertices�
2

d�

���������ph Ver:Box;4a;5d�
�
�2

4s
1

st
I4;3�t; u; s�; (52)
3While the analytic expressions of the functions B�1l;�1�
i and

B�1l;0�i are explicitly given in Ref. [12], the expressions of the
functions B�1l;1�i are not. They are the coefficients of �D� 4� in
the Laurent expansion of the functions B�1l�i [Eq. (45) in
Ref. [12]] that were not needed in that context. Their expression
in terms of HPLs and dimensionless variables can be found in
Ref. [26].
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d��V;ph Vertices�
2

d�

���������ph Ver:Box;4c;5a�
�
�2

4s
1

st
I4;1�s; s; t�; (53)
d��V;ph Vertices�
2

d�

���������ph Ver:Box;4c;5b�
�
�2

4s
1

st
I4;3�s; u; t�; (54)
d��V;ph Vertices�
2

d�

���������ph Ver:Box;4c;5c�
�
�2

4s
1

s2 I4;2�s; t; s�; (55)
d��V;ph Vertices�
2

d�

���������ph Ver:Box;4c;5d�
� �

�2

4s
1

s2 I4;2�s; u; s�:

(56)

The interference of diagram 4(b) [4(d)] with a diagram
in Fig. 5 is identical to the interference of diagram 4(a)
[4(c)] with the same diagram in Fig. 5. Therefore, the total
contribution of the interferences between one-loop vertex
diagrams and one-loop box diagrams to the Bhabha scat-
tering cross section is twice the sum of Eqs. (49)–(56);
namely,
d��V;ph Vertices�
2

d�

���������ph Ver:Box�
�
�2

2s

�
1

t2
�I4;2�t; s; t� � I4;2�t; u; t�� �

1

st
�I4;1�t; t; s� � I4;3�t; u; s� � I4;1�s; s; t� � I4;3�s; u; t��

�
1

s2 �I4;2�s; t; s� � I4;2�s; u; s��
�
: (57)
VII. INTERFERENCE OF ONE-LOOP BOX
DIAGRAMS

With reference to Eq. (10), it is possible to further split
��V;ph Boxes�

2 in the sum of two contributions; the first origi-
nates from the interference of two-loop photonic box dia-
grams and tree-level diagrams, the second originates from
the interference of two one-loop box diagrams:

d��V;ph Boxes�
2

d�
�
d��V;ph Boxes�

2

d�

���������ph BoxBox�

�
d��V;ph Boxes�

2

d�

���������2LBox�
: (58)

The two-loop photonic box diagrams in them � 0 case are
at the moment still unknown, and the calculation of the
second term in the right-hand side of Eq. (58) currently
remains as an open problem (see [20,21]).

On the contrary, the calculation of the first term in
Eq. (58) is, in principle, straightforward. The interference
of each pair of the one-loop box diagrams shown in Fig. 5
provides a contribution to the differential cross section of
the form

d��V;ph Boxes�
2

d�

���������ph BoxBox;ij�
�
�2

4s
Cij�x; y; z�; (59)

where the indices i; j run over the diagram labels (i; j �
a; b; c; d) and where we have introduced new functions Cij.
The explicit expression of the latter, already continued to
the physical region s > 4m2, is particularly long and can be
found in Ref. [26].
VIII. SOFT-PHOTON EMISSION AT ORDER �4

All of the two-loop photonic corrections discussed in the
previous sections are UV-renormalized, but they still in-
clude double and single poles in �D� 4�. These singular-
-8
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ities have an IR origin, and they can be eliminated by
adding the contribution of the real soft-photon emission
diagrams at order �4 to the virtual cross section.

Before discussing the soft corrections to the Bhabha
scattering differential cross section of order �4, the reader
is reminded that the soft corrections at order �3, discussed
in detail in Ref. [13], can be written in the factorized form

�
�
�

�
d�S1�s; t;m

2�

d�
�

�
�
�

�
d�D0 �s; t;m

2�

d�
SIR; (60)

where �D0 �s; t;m
2� is the tree-level cross section obtained

by calculating the traces of Dirac matrices inD dimensions
and where SIR is defined as

SIR � 4
X4

j�1

J1j; J1j � �j�p1 
 pj�I1j; (61)

with �1 � �4 � 1 and �2 � �3 � �1, and

I1j �
1

��3� D
2��

�D�4�=2

m�D�4�

4�2

Z ! dD�1k
k0

�
1

�p1 
 k��pj 
 k�
: (62)

The integral in Eq. (62) can be found in Ref. [27] (see also
Appendix A of Ref. [13]); the integration over the momen-
tum of the soft photon (k) is restricted to the region j ~kj �
k0 <!, where ! is the cutoff on the energy of the unob-
served soft photon. The expansion of �D0 �s; t;m

2� in
powers of �D� 4� is

d�D0 �s; t;m
2�

d�
�
d�0�s; t;m

2�

d�
� �D� 4�

d��1�0 �s; t; m
2�

d�

� �D� 4�2
d��2�0 �s; t;m

2�

d�
�O��D� 4�3�;

(63)

where �0�s; t; m
2� is the well known tree-level cross sec-

tion, and

d��1�0 �s; t;m
2�

d�
�
�2

s

�
1

s2

�
s2

4

�
�

1

t2

�
t2

4

�

�
1

st

�
1

2
�s� t�2 �

1

2
st�m2�s� t�

��
;

(64)

d��2�0 �s; t;m
2�

d�
�
�2

s
1

st

�
�

1

4
st
�
: (65)

The contribution of the s- and t- channel diagrams, and of
their interference to ��1�0 �s; t; m

2� and ��2�0 �s; t;m
2�, is evi-

dent in Eqs. (64) and (65).
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There are two different kinds of soft-photon emission
diagrams contributing to the real corrections to the cross
section at order �4:
(i) t
-9
he tree-level diagrams with the emission of two soft
photons [some diagrams belonging to this class are
shown in Figs. 6(a)–6(d)] and
(ii) t
he diagrams which include a one-loop correction
and the emission of a soft photon from one of the
external legs [see the examples in Fig. 6(e)–6(h)].
Since the soft-photon corrections in QED exponentiate,
the contribution of the double emission diagrams to the
Bhabha scattering differential cross section is given by

�
�
�

�
2 d��S;double�

2 �s; t; m2�

d�
�

1

2

�
�
�

�
2 d�D0 �s; t;m

2�

d�
�SIR�

2:

(66)

The emission of a single photon from one-loop diagrams,
interfered with the tree-level single-photon emission
graphs, amounts to

�
�
�

�
2 d��S;single�

2 �s; t;m2�

d�
�

�
�
�

�
2 d��V;D�1 �s; t;m2�

d�
SIR;

(67)

where ��V;D�1 is the UV-renormalized virtual cross section
at order �3. The superscript D was introduced as a re-
minder that the Laurent expansion of��V;D�1 must be known
up to and including terms linear in �D� 4�; the reason for
this is that these linear terms give rise to a finite contribu-
tion when multiplied by the single pole present in SIR. The
real corrections of order �4 which originate from single-
photon emission diagrams and which include a fermionic
loop [as, for example, diagram 6(h)], were calculated in
Ref. [13]; they include single IR poles that cancel against
the virtual corrections of order �4 that also include a
photon self-energy insertion. This set does not play any
role to the present discussion and is thus systematically
ignored.

With the above in mind, the one-loop virtual cross
section appearing in Eq. (67) can be written as

d��V;D�1 �s; t;m2�

d�
�
d��V;D�1 �s; t; m2�

d�

���������1l;V�
�
d��V;D�1 �s; t;m2�

d�

���������1l;B�; (68)

where the subscript V indicates the contribution of the
interference between vertex graphs and tree-level ampli-
tude; B stands for the cross section generated by the
interference between one-loop boxes and tree-level dia-
grams. Furthermore, we split the terms on the right-hand
side of Eq. (68) as follows:



(a) (b) (c) (d) (e) (f) (g) (h)

FIG. 6. Examples of double-photon emission from tree-level diagrams and single-photon emission from one-loop diagrams.

R. BONCIANI AND A. FERROGLIA PHYSICAL REVIEW D 72, 056004 (2005)
d��V;D�1 �s; t; m2�

d�

���������1l;j� �
d�V1 �s; t; m

2�

d�

���������1l;j�
� �D� 4�

d��V;1�1 �s; t; m2�

d�

���������1l;j�
�O��D� 4�2�; (69)

with j � V;B. The singular and finite parts of the one-loop
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virtual cross section, corresponding to the first term in the
right-hand side of Eq. (68), are well known. Their expres-
sion in terms of Mandelstam invariants and HPLs can be
found in Eqs. (43) and (49) of Ref. [12]. The terms pro-
portional to �D� 4� which arise from box and vertex one-
loop corrections are given by
d��V;1�1 �s; t; m2�

d�

���������1l;B� �
�2

s

�
m2

s
�ReB�1l;1�1 �s; t� � ReB�1l;1�2 �t; s� � B�1l;1�3 �u; t� � ReB�1l;1�2 �u; s�� �

m2

t
�ReB�1l;1�2 �s; t�

� ReB�1l;1�1 �t; s� � B�1l;1�2 �u; t� � ReB�1l;1�3 �u; s��
�

(70)

and

d��V;1�1 �s; t;m2�

d�

���������1l;V�� 2
�2

s

�
1

s2 V
�1l;1�
2 �t; s� �

1

t2
V�1l;1�2 �s; t� �

1

st
�V�1l;1�1 �t; s� � V�1l;1�1 �s; t��

�
; (71)

respectively, with

V�1l;1�i �s; t� � ci1�s; t�ReF�1l;1�1 �t� � ci2�s; t�ReF�1l;0�1 �t� � ci4�s; t�ReF�1l;�1�
1 �t� � ci6�s; t�ReF�1l;0�2 �t�

� ci3�s; t�ReF�1l;1�2 �t�; �i � 1; 2�: (72)
4We remind the reader that the photon self-energy diagrams
are IR-finite (see [13]).
All of the functions appearing in the right-hand side of
Eqs. (70)–(72) were introduced in the previous sections,
and their expressions in terms of Mandelstam invariants
and HPLs have been collected in Ref. [26].

As is mentioned above, the calculation of the integrals
I1j which appears in Eq. (61) has been carried out in
Ref. [13], up to terms linear in �D� 4� excluded. At first
glance, it appears that the calculation of such terms is
needed, since they provide, in the limit D! 4, a non-
vanishing contribution to both Eqs. (66) and (67).
However, it is possible to prove that this is not the case.
In order to proceed with our proof, one needs to split the
one-loop UV-renormalized virtual corrections in an IR-
divergent part and a finite reminder, as is exemplified in
the following:

d�V1 �s; t; m
2�

d�

���������1l;j� �
1

�D� 4�

d��V;�1�
1 �s; t; m2�

d�

���������1l;j�
�
d��V;0�1 �s; t; m2�

d�

���������1l;j�: (73)
The Laurent expansion of SIR has the form

SIR �
S��1�

IR

�D� 4�
� S�0�IR � �D� 4�S�1�IR �O��D� 4�2�:

(74)

The cancellation of IR divergencies in the order �3 cross
section guarantees that4

d��V;�1�
1 �s; t;m2�

d�

���������1l;B� �
d��V;�1�

1 �s; t;m2�

d�

���������1l;V�
�
d�0�s; t;m2�

d�
S��1�

IR � 0: (75)

By employing Eqs. (66) and (67) in combination with
Eqs. (63), (73), and (74), one can prove that the nonvanish-
ing term proportional to S�1�IR appearing in the double emis-
sion cross section [Eq. (66)] is
-10



TWO-LOOP BHABHA SCATTERING IN QED: VERTEX . . . PHYSICAL REVIEW D 72, 056004 (2005)
d��S;double�
2 �s; t;m2�

d�
!
d�0�s; t; m2�

d�
S��1�

IR S�1�IR ; (76)

while the nonvanishing term proportional to S�1�IR appearing
in the single-photon emission cross sections at order �4 is

d��S;single�
2 �s; t;m2�

d�
!

�
d��V;�1�

1 �s; t;m2�

d�

���������1l;B�
�
d��V;�1�

1 �s; t; m2�

d�

���������1l;V�
�
S�1�IR :

(77)

Therefore, we can conclude that, due to Eq. (75), the non-
vanishing terms proportional to S�1�IR cancel out in the total
real emission cross section at order �4, given by the sum of
Eqs. (66) and (67).
IX. CANCELLATION OF THE IR SINGULARITIES

The IR divergencies in the real corrections at order �4

[Eqs. (66) and (67)] should cancel the IR singularities
present in the virtual corrections discussed in Secs. III,
IV, V, VI, and VII and the ones arising from the interfer-
× + (J11+J13)
2 ×

× + 4J2
13 ×

FIG. 7. Example of the cancellation of the IR divergencies in th
interference of the one-loop direct box in the s channel with itself (

× +(J11+J12)
2 × +

× +2 (J11+J12)
2 ×

× + (J11+J12)
2 ×

× +2 (J11+J12)
2 ×

FIG. 8. Residual IR poles proportional
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ence of the (yet unknown) two-loop photonic box graphs
with the tree-level amplitude.

As in the case of the cancellation of the IR divergencies
of the virtual cross section at order �4�NF � 1� discussed
in Ref. [13], it is possible to organize the contributions to
the cross section in IR-finite blocks by pairing the virtual
corrections originating from a certain set of diagrams with
an appropriate subset of the soft-photon emission correc-
tions. As an example, in the first line in Fig. 7 we illustrate
the cancellation of the IR poles present in the interference
of the graph in Fig. 2(a) with the t-channel tree-level
diagram; in all the terms in the left-hand side, the product
of two graphs represents the contribution of their interfer-
ence to the Bhabha scattering differential cross section.
Once again, the gray circle represents the sum of the UV-
renormalized two-loop photonic vertex corrections to the
electron current in the t-channel photon-exchange dia-
gram. In the second line in Fig. 7, we provide another
example of the cancellation of the IR divergencies in the
box-by-box sector. Similar relations can be found for all of
the contributions to the cross section at order �4.

A special case is represented by the virtual corrections in
which the coefficients of the IR poles, when calculated in
the nonphysical region s < 0, include HPLs with two or
more zeros in the rightmost positions in the weight list.
+ (J11+J13) × = IR finite

+ 2J13 × = IR finite

e two-loop irreducible vertex corrections (first line) and in the
second line).

(J11+J12) × =
double IR
pole ∝ ζ(2)

+2 (J11+J12) × =
double IR
pole ∝ ζ(2)

+ (J11+J12) × =
double IR
pole ∝ ζ(2)

+2 (J11+J12) × =
double IR
pole ∝ ζ(2)

to 	�2� in the s-channel cross section.
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× +
1

2
(J11+J12)

2 × + (J11+J12) × =
double IR
pole ∝ ζ(2)

× + (J11+J12)
2 × + 2 (J11+J12) × =

double IR
pole ∝ ζ(2)

× + 2
(
J11J12+J2

12

)
× + 2J12 ×

+ (J11+J12) × =
double IR
pole ∝ ζ(2)

FIG. 9. Residual IR poles proportional to 	�2� in the s-t-channel interference contribution to ��V;ph Vertices�
2 .

× + 4 (J11J13+J12J13) × + 2J13 ×

+ (J11+J12) × =
single IR
pole ∝ ζ(2)

× + 4 (J11J14+J12J14) × + 2J14 ×

+ (J11+J12) × =
single IR
pole ∝ ζ(2)

FIG. 10. Residual IR single poles proportional to 	�2� in the interference of one-loop vertex by one-loop box diagrams.
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When performing the analytic continuation to the physical
region s > 4m2, these HPLs generate real terms propor-
tional to 	�2�, where 	 is the Riemann Zeta function. For
example, by replacing the nonphysical dimensionless vari-
able x according to x! �x0 � i�, one finds that

H�0; 0; x� ! H�0; 0;�x0 � i��

� H�0; 0; x0� � 3	�2� � i�H�0; x0� (78)

or

H��1; 0; 0; x� ! H��1; 0; 0;�x0 � i��

� �H�1; 0; 0; x0� � 3	�2� � i�H�1; 0; x0�:

(79)

The part of the IR pole which is proportional to the 	�2�
factor arising from analytic continuation does not cancel in
the combination with the soft-radiation contributions that
eliminate the other IR singularities. This kind of behavior,
056004
already observed in Ref. [13] in the discussion of the
O��4�NF � 1�� cross section, is again encountered in the
cases illustrated in Figs. 8–11.

In the total differential cross section, the residual poles
of Fig. 8 cancel themselves out. Combining the various
contributions shown in Fig. 9, the residual IR poles do not
cancel. Residual single poles proportional to 	�2� also arise
in the combinations shown in Figs. 10 and 11. Clearly, such
residual poles cancel once the contribution of the two-loop
box graphs is included in the cross section at order �4. The
five two-loop photonic box topologies are shown in Fig. 12.

X. LOGARITHMIC EXPANSIONS

In order to check our calculations against the results
available in the literature, the contributions to the cross
section at order �4 described in the previous sections
are expanded in the limit in which the mass of the electron
is small with respect to all of the Mandelstam
-12



× + 4J2
12 × + 2J12 × =

double IR
pole ∝ ζ(2)

× + 4J12 J13 × + 2J13 ×

+2J12 × =
single IR
pole ∝ ζ(2)

× + 4J12 J14 × + 2J14 ×

+2J12 × =
single IR
pole ∝ ζ(2)

FIG. 11. Residual IR poles proportional to 	�2� in the interference amongst one-loop box diagrams.

(a) (b) (c) (d) (e)

FIG. 12. Two-loop photonic box topologies.

TWO-LOOP BHABHA SCATTERING IN QED: VERTEX . . . PHYSICAL REVIEW D 72, 056004 (2005)
invariants5 s, t, and u. In this limit, it is customary to write
the two-loop photonic cross section as follows (see [6,10]):

d��ph�
2

d�0
�
X
i

d��V;i�2 �d��S;i�2

d�0

�
�2�2 ln2

�
s

m2

�
�
�1�2 ln

�
s

m2

�
�
�0�2 �O

�
m2

s

�
: (80)

In the equation above, i � ph Vertices; ph Boxes.
Following the notation adopted in the previous sections,

d��V;ph Vertices�
2

d�
�
d��V;ph Vertices�

2

d�

���������ph Irr:Ver:�

�
d��V;ph Vertices�

2

d�

���������ph Red:Ver:�

�
d��V;ph Vertices�

2

d�

���������ph Ver:Ver:�

�
d��V;ph Vertices�

2

d�

���������ph Ver:Box�
; (81)
5Note that this expansion is not valid for very small scattering
angles, corresponding to jtj<m2, and for almost-backward
scattering, corresponding to juj<m2.
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while ��V;ph Boxes�
2 was introduced in Sec. VII. The

corresponding ��S;i�2 cross sections were obtained by pair-
ing virtual and soft-photon emission contributions as de-
scribed in Sec. IX. In several points of our discussion, we
stressed the fact that a nonapproximated calculation of the
contribution of the two-loop photonic box diagrams to the
cross section is still missing. However, all of the coeffi-
cients 
�i�2 (i � 2; 1; 0) in the expansion in Eq. (80) are
completely known; the first two can be found in Ref. [6],
while 
�0�2 was recently obtained in Ref. [10]. Therefore,
by employing the m2=s! 0 limit of the results presented
here in combination with Refs. [6,10], it is possible to
indirectly obtain the m2=s! 0 limit of the contribution
of the yet unknown two-loop photonic boxes (and corre-
sponding soft-photon emission corrections). In
Appendix B, we report the expression of such a contribu-
tion, both before and after adding the corresponding soft-
photon corrections. Moreover, the expansions in the
m2=s! 0 limit of all the contributions to the Bhabha
scattering cross section discussed in the present paper
can be found in Ref. [26].

It is known that the small-angle Bhabha scattering cross
section is completely determined by the Dirac vertex form
factor [4]. In particular, one finds that for the virtual cross
section
-13
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d��V;ph�
2

d�0

�
�!0

6�F�1l�1 �t��
2 � 4F�2l;ph�

1 �t�; (82)

where F�1l�1 and F�2l;ph�
1 are the UV-renormalized vertex

form factors already employed in this paper. The IR poles
present in the form factors are easily removed by adding
the soft emission contributions. By introducing the IR-
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finite form factors

~F�1l�1 �t� � F�1l�1 �t� � J11 � J13;

~F�2l;ph�
1 �t� � F�2l;ph�

1 �t� � 1
2�J11 � J13�

2;
(83)

where J1j are defined in Eq. (61), one finds that
d��ph�
2

d�0
�
�!0

6� ~F�1l�1 �t��
2 � 4 ~F�2l;ph�

1 �t�

�
1

�1� �� �2�2

�
ln2

�
s

m2

��
9

2
� 2 ln2

�
4!2

s

�
� 6 ln

�
4!2

s

��

� ln
�
s

m2

��
6	�3� � 3	�2� �

93

8
� 9 ln��� � 4 ln2

�
4!2

s

�
	1� ln���
 � 2 ln

�
4!2

s

�
	7� 6 ln���


�

� 9	�3� �
51

4
	�2� � 12	�2� ln�2� �

32

5
	2�2� �

27

2
� 6	�3� ln��� � 3	�2� ln��� �

93

8
ln��� �

9

2
ln���2

� ln2

�
4!2

s

�
	2� 4 ln��� � 2 ln2���
 � ln

�
4!2

s

�
	8� 14 ln��� � 6 ln2���
 �O���

�
: (84)
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FIG. 13. Order �4 Bhabha scattering differential cross section
divided by the cross section in Born approximation, as a function
of the scattering angle �. The continuous line represents the
result of Ref. [10], while the dashed line represents the correc-
tions involving at least a vertex graph. The beam energy is
chosen equal to 0.5 GeV, and the soft-photon energy cutoff !
is set equal to E.
The variable � is defined as

� �
1� cos�

2
; (85)

with � the scattering angle in the c.m. frame. By expanding
the exact photonic corrections involving vertex diagrams in
the �! 0 limit and by neglecting terms proportional to the
electron mass, we recover the expression in Eq. (84), which
agrees with Ref. [10] and the theorem in Ref. [4].
Consequently, this represents a nontrivial test of our cal-
culation. As expected, we observe that the interference
between one-loop box diagrams and one-loop vertex cor-
rections does not contribute to the small-angle cross sec-
tion. The interference of one-loop box diagrams amongst
themselves has a nonzero small-angle limit, and all of the
residual terms are proportional to 	�2�. These residual
terms cancel out once the contribution of the two-loop
photonic boxes is added; for this reason they are excluded
from the present discussion. The agreement with the results
of Ref. [10] is clarified in Fig. 13, where we plot as a
function of the scattering angle � the result of Ref. [10] and
the corrections of order �4 originating from vertex graphs
(Secs. III, IV, V, and VI, plus corresponding soft emission
contributions). It is easily seen that, at small angles, the
vertex corrections completely determine the cross section.

In addition, the expansion of the interference of one-
loop boxes provides another strong test of both our calcu-
lation and the one discussed in Ref. [10]. The interference
of some pairs of the diagrams in Fig. 5 gives origin, in the
ratio d�2=d�0, to terms proportional to

lnn�
�1� ��m

; n � 1; 
 
 
 ; 4; m � 1; 2: (86)
It is possible to observe that, in the sum of all the one-loop
box interferences, such terms cancel out and that they do
not appear in the complete photonic cross section at order
�4 [10].

The photonic corrections to the Bhabha scattering cross
section are now known up to terms of O�m2=s� excluded; it
is possible to use the corrections calculated exactly in this
work to estimate the relevance of the O�m2=s� terms. We
define
-14
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FIG. 16. Comparison of the vertex corrections with the com-
plete photonic cross section at order �4. E and ! as in Fig. 13.
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FIG. 14. DVertices as a function of the beam energy, for � � 10�

(solid line) and � � 90� (dashed line). The soft-photon energy
cutoff is set equal to E.
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d��ph i�
2

d�
�
d��V;i�2 � d��S;i�2

d�

�
d��ph i�

2

d�

��������L
�O

�
m2

s
;
m2

t
;
m2

u

�
; (87)

where the index i � Vertices;BoxBox represents the con-
tributions discussed in Secs. III, IV, V, and VI, and VII,
respectively. In Figs. 14 and 15, we plot, as a function of
the beam energy, the quantities

Di �

�
�
�

�
2
��������
�
d��ph i�

2

d�
�
d��ph i�

2

d�

��������L

���������
�

�
d�0

d�
�

�
�
�

�
d�1

d�

�
�1
: (88)

It can be seen from these plots that the terms proportional
to the electron mass become negligible for values of the
beam energy that are very small with respect to the ones
encountered in practically all of the e�e� experiments. It is
0

0.04 0.06 0.08 0.1 0.12 0.14

E (GeV)

DBox Box (θ, E )

10°

90°

4×10-6

3×10-6

2×10-6

1×10-6

−1×10-6

FIG. 15. DBoxBox as a function of the energy, for � � 10�

(solid line) and � � 90� (dashed line). The soft-photon energy
cutoff is set equal to E.
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also reasonable to expect that the terms proportional to the
electron mass are negligible in the corrections due to the
two-loop photonic boxes. In this sense, the approximated
cross section obtained in Refs. [6,10,12,13] should be
sufficient for all phenomenological studies.

Finally, in Figs. 16 and 17, it is possible to compare the
various contributions to the Bhabha scattering differential
cross section known at present with the complete photonic
cross section in them2=s! 0 limit [10]. The dashed line in
Fig. 16 corresponds to the contribution to the cross section
defined in Eq. (87) for i � Vertices, plotted as a function of
the scattering angle. The local minimum at �� 80� and
the maximum in the backward direction are due to spurious
terms proportional to the monomials

	�2�ln2

�
s

m2

�
; 	�2� ln

�
s

m2

�
ln�; and

	�2� ln
�
s

m2

�
ln�1� ��:

(89)

These terms are not present in the complete cross section
(they cancel out against analogous contributions deriving
from the interferences of two-loop box diagrams with the
-500
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FIG. 17. Comparison of the box corrections with the complete
photonic cross section at order �4. E and ! as in Fig. 13.
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FIG. 18. Photonic, NF � 1, and total contributions to the cross
section at order �4. E and ! as in Fig. 13. The pair production
cutoff is set equal to !.

6The pair production, calculated in Ref. [5] up to terms
enhanced by lnn�s=m2� included, depends upon a cutoff on the
energy of the soft electron-positron pair. In the numerical evalu-
ation of Fig. 18 we set

ln�D� �
1

2
ln
�
4�2

s

�
; (91)

with ln�D� defined in Ref. [5] and � numerically equal to the
soft-photon cutoff: � � !.
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tree-level amplitude and from the interference of one-loop
box diagrams amongst themselves). Removing them from
the vertex corrections, one obtains the dashed-dotted curve
in Fig. 16, which is smoother than the dashed one. The
solid curve represents the complete photonic cross section.
As is already observed above, the vertex contribution
reproduces the full result in the small-angle region.

The dashed line in Fig. 17 represents the quantity

d��ph Boxes�
2

d�0

�
d��ph�

2

d�0
�
d��ph Vertices�

2

d�0

�
d��ph BoxBox�

2

d�0
�
d��ph 2L Box�

2

d�0
: (90)

In the equation above, ��ph BoxBox�
2 was introduced in

Eq. (87), while ��ph 2L Box�
2 is the contribution to the cross

section of the two-loop photonic boxes interfered with the
tree-level amplitude. The expression of the latter is given in
Appendix B. Also in this case, the behavior at �� 80� and
at �� 180� is dominated by the spurious terms of the kind
of Eq. (89); by removing them, we obtain the dashed-
dotted curve.

For completeness, in Fig. 18 we plot the photonic [10]
and NF � 1 [13] contributions to the Bhabha scattering
cross section at order �4. The dotted line represents the
photonic corrections. The corrections of O��4�NF � 1��
(dashed line) have, for this choice of ! (! � E), an
opposite sign with respect to the photonic corrections.
However, it is necessary to say that the O��4�NF � 1��
of Ref. [13] include large contributions proportional to
ln3�s=m2� that cancel out once the contribution of the
soft-pair production is included. Of the latter, only the
terms proportional to lnn�s=m2� (n � 1; 2; 3) are known
(see [5]); we checked that they cancel the ln3�s=m2� term
of the O��4�NF � 1�� cross section. The dashed-dotted
line represents the sum of the O��4�NF � 1�� cross section
056004
with the known terms of the pair production corrections.6

The solid line is the complete order �4 QED Bhabha
scattering cross section, including photonic, NF � 1, and
pair production contributions.
XI. CONCLUSIONS

In the present paper, we obtained analytic nonapproxi-
mated expressions for all of the photonic corrections to the
QED Bhabha scattering differential cross section at second
order [O��4�], except for the ones deriving from the inter-
ference of two-loop photonic box diagrams with the tree-
level amplitude; at present, the integrals necessary to the
calculation of the latter are not known. The calculations
were carried out by retaining the full dependence on the
electron mass m. The results are valid for arbitrary values
of the c.m. energy s and momentum transfer t.

We included a discussion of the soft-photon emission at
order �4, employing dimensional regularization to handle
the IR-divergent terms. We proved that the term propor-
tional to �D� 4� in the Laurent expansion of the photon
phase-space integral I1j in Eq. (62) does not contribute to
the Bhabha scattering cross section.

After subtracting the IR singularities by adding the
contribution of the soft-photon emission graphs, we ex-
panded the contributions to the cross section discussed in
Secs. III, IV, V, VI, and VII in the m2=s! 0 limit. In this
way, it was possible to cross-check large parts of the result
of Ref. [10], as well as to efficiently test our calculations.
By subtracting the contributions to the cross section ob-
tained in this paper from the cross section of Ref. [10], it
was also possible to indirectly obtain the contribution due
to the interference of the two-loop photonic diagrams with
the tree-level amplitude, up to terms suppressed by positive
powers of the electron mass.

By comparing the nonapproximated results with the
corresponding m2=s! 0 limit, we explicitly checked
that the contribution to the cross section of the terms
proportional to positive powers of the ratio m2=s is negli-
gible at high- and intermediate-energy e�e� colliders. It is
reasonable that the same conclusion applies to the contri-
bution to the order �4 cross section involving the two-loop
photonic box diagrams. For what concerns phenomeno-
logical studies, the results of Refs. [6,10,12,13], therefore,
provide a complete expression of the virtual and soft-
photon emission corrections to the Bhabha scattering cross
-16
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section at order �4. To complete the study of the second
order radiative corrections, it is still necessary to calculate
the contribution of the soft-pair production up to terms not
suppressed by m2=s; at the moment, this class of correc-
tions is known up to logarithmic terms [5]. Even if terms
suppressed by positive powers of the electron mass are not
phenomenologically relevant, a future calculation of the
two-loop photonic box graphs form � 0 would represent a
very interesting result in the field of multiloop calculations.
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APPENDIX A: Cij FUNCTIONS

In this appendix, we collect the explicit expressions of
the cij functions employed in the main text:

c11�s; t� � �s� t�
2 � 4m2; (A1)
c12�s; t� � 1
2	�s� t�

2 � st� 2m2�s� t�
; (A2)
c13�s; t� � 2�st� 3
2tm

2 � 3
4t

2�; (A3)
c14�s; t� � �1
4st; (A4)
c15�s; t� � st�
st2

4m2 � 2tm2 �
3

4
t2 �

t3

8m2 ; (A5)
c16�s; t� � 1
4�st� 4tm2 � 2t2�; (A6)
c17�s; t� �
1

4
st
�
1�

t

m2 �
s

m2

�
; (A7)
c21�s; t� � 2
�
�s� 2m2�2 � st�

t2

2

�
; (A8)
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c22�s; t� �
t2

2
; (A9)
c23�s; t� � t�t� 2m2�; (A10)
c24�s; t� � 0; (A11)
c25�s; t� �
3t2

2
; (A12)
c26�s; t� �
t2

2
; (A13)
c27�s; t� � st�
st2

4m2 �
s2t

4m2 �
3

4
t2: (A14)
APPENDIX B: TWO-LOOP PHOTONIC BOXES

We provide here the expansion of the interference of the
two-loop photonic boxes with the tree-level amplitude in
the limit m2=s! 0. Below one can find the contribution of
the two-loop photonic boxes to the virtual cross section as
well as the same contribution after the subtraction of the
corresponding soft-photon corrections.

1. Two-loop photonic boxes before the inclusion of the
soft radiation

d��V;ph 2L Box�
2

d�0
� 
�V;2L Box;3�
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2. Two-loop photonic boxes after the inclusion of the soft radiation
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