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Nambu–Jona-Lasinio-based study of the QCD critical line
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We employ a 3 flavor Nambu–Jona-Lasinio (NJL) model to stress some general remarks about the QCD
critical line. The dependence of the critical curve on �q � ��u ��d�=2 and �I � ��u ��d�=2 is
discussed. The quark masses are varied to confirm that, in agreement with universality arguments, the
order of transition depends on the number of active flavors Nf. The slope of the critical curve vs chemical
potential is studied as a function of Nf. We compare our results with those recently obtained in lattice
simulations to establish a comparison among different models.
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I. INTRODUCTION

In recent years, the study of the QCD phase diagram by
means of numerical lattice simulations has improved con-
siderably. In particular, the presence of a critical ending
point, first discovered within microscopical effective mod-
els [1–3], appears to be a solid feature [4,5], althought its
exact location along the critical curve is still controversial.
Moreover, the incoming realization of LHC enhances the
interest of the scientific community in this kind of problem.
The main problem regarding the lattice study of QCD
phase diagram is related to the so called sign problem;
the fermionic determinant is not positive definite at finite
baryon chemical potential, and therefore, to avoid this
unwelcome feature, some suitable tricks are needed. The
most commonly used between them are the study of QCD
at imaginary chemical potential [6–8], the reweighting
procedure [4] and Taylor expansion in �=T [9,10]. A
possible way of avoiding the sign problem is to consider
QCD at finite isospin chemical potential �I: in this case,
the fermion determinant is real and positive definite, and
standard Monte Carlo simulations are allowed [11,12].
Futhermore, the regime of finite �I can be also studied
within a class of effective models, and the results can be
compared with those obtained on the lattice in order to
check the consistency of different approaches. Two prop-
erties are remarkable and are of interest at �I � 0: pion
condensation and the splitting of critical curves related
with light flavors. The former has been the subject of
several studies within different models, starting from ef-
fective Lagrangians [13,14], random matrices [15],
Nambu–Jona-Lasinio (NJL) [16,17] and ladder-QCD
[18] and so apparently a model-independent phenomenon.
However, pion (and kaon [19]) condensation would not be
accessible from heavy ion experiments, but could regard
the physics of compact stars. The latter question is slightly
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more controversial: the role played by instantons seems to
be crucial to determine whether values of �I obtainable in
experiments can produce the separation of critical lines
[20]. The aim of this paper is to offer an overview of results
concerning the behavior of the critical line, obtained in the
NJL model and directly comparable with recent lattice
analyses. In its strong simplicity, the NJL model recovers
the basic structure of nonperturbative dynamics ruling the
problem. Therefore, it can be trusted as a good toy model
for the study of QCD phase diagram.

II. THE MODEL

Let us now consider the Lagrangian of the NJL model
with three flavors u; d; s, with current masses mu � md �
m and ms and chemical potentials �u;�d;�s respectively

L � L0 �Lm �L� �L4 �L6
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M is the current quark mass matrix which is taken
diagonal and A is the matrix of the quark chemical

potentials. As usual �0 �
��
2
3

q
I and �a, a � 1; . . . ; 8 are

the Gell-Mann matrices.
The ’t Hooft determinant term, for the three flavors case,

corresponds to a six fermion interaction. By working at the
mean-field level, the six fermion term can be recast into an
effective four-fermion one. In such a way the Lagrangian
-1 © 2005 The American Physical Society
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(1) reduces to the usual NJL Lagrangian, apart from a
redefinition of the four-fermion coupling constant G into
a new set of effective ones, taking into account the flavor
mixing arising from the ’t Hooft term [21,22]

Therefore, because we are dealing with four-fermion
interactions only, we can calculate the effective potential
by using the standard technique to introduce bosonic (col-
lective) variables through the Hubbard-Stratonovich trans-
formation and by integrating out the fermion fields in the
generating functional. If we limit ourselves to consider the
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three scalar condensates, and the pseudoscalar condensate
in the light quark sector only, the one-loop effective po-
tential we get is
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In Eq. (4) Tr means trace over Dirac, flavor and color
indices and !n � �2n� 1��=� are the Matsubara fre-
quencies. The dimensionless fields �f and �ud are con-
nected to the scalar and pseudoscalar condensates,
respectively, by the following relations

�f � �4G
h ��f�fi

�
; �ud � �2G

h �u�5d� �d�5ui
�

;

(5)

and are variationally determined at the absolute minimum
of the effective potential. The constituent quark masses are

Mi � mi ���i ��2 K

G2

�j�k
8
�i � j � k�: (6)

Since the model is nonrenormalizable, we have to in-
troduce the hard cutoff � on the three-momentum.

Through this article we consider the physical case (with
realistic values of meson masses and decay consant), we
assume for the parameters the same values as in Ref. [22]

� � 631:4 MeV; G�2 � 3:67; K�5 � �9:29;

(7)

m̂ �
mu �md

2
� 5:5 MeV; ms � 135:7 MeV: (8)

To investigate regimes different than the real one, with a
varying number of Nf massless flavors, we will treat quark
masses as free parameters, by keeping coupling and cutoff
scale fixed as in Eq. (7).

In the following, it will turn out to be more convenient to
introduce the following linear combinations of chemical
potentials:

�q � ��u ��d�=2; �I � ��u ��d�=2: (9)
The quark chemical potential �q is just one third of the
baryon chemical potential �q � �B=3. Following the
analyses previously performed within the chiral
Lagrangian approach [13,14], and NJL [17,23] and
ladder-QCD [18] studies, we expect a superfluid phase
with condensed pions when the isospin chemical potential
�I exceeds a critical value �C

I (�C
I � m�=2 at �q � T �

0).

III. BEHAVIOR OF CRITICAL LINES

A. Critical temperature dependence on baryon/isospin
chemical potentials

The aim of this section is to shed some light on the
physics of QCD at finite baryon chemical potential (�q �

�B=3), by comparing the physics at �q � 0 and �I � 0
with that at �q � 0 and �I � 0. In fact, the latter case can
be studied on the lattice by means of standard importance
sampling techniques. The connection of these two regimes
could give a deeper understanding of the sign problem in
the fermion determinant, and provide us with some proce-
dure to check present simulations and possibly improve
numerical algorithms. Rigorous QCD inequalities at non-
zero chemical potential have been proposed to try to re-
solve this question in [24]; the enigma why, at T � 0, there
exists a critical value for chemical potentials below which
the system lies in its ground state has been called ‘‘silver
blaze problem.’’ A possible solution of this problem, by
using 1=Nc expansion, has been proposed in [25,26]. A
recent study of phase quenched QCD (a theory where the
absolute value of the fermion determinant is taken) has
been performed in [27]. We will consider here the depen-
dence of the critical temperatures Tc��q� � Tc��q;�I �

0� and Tc��I� � Tc��I;�q � 0�, for low chemical poten-
tials, obtained by a mean-field analysis of the NJL model.
Obviously, mesons and baryons (and diquarks) carry dif-
-2



FIG. 2. Phase diagram in the plane ��I; T�, for the physical
2� 1 case; �q and�s are set to zero. The dashed line indicates a
crossover transition for the scalar condensates, whereas the
dotted line stands for genuine second order transition for the
pion condensate. In the regions of a nonvanishing pion conden-
sate, the discontinuous behavior of the scalar condensate turns
into a continuous one, therefore the critical ending point is not
present in this case.
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ferent spin and charges, and their properties depend differ-
ently on�q and�I; for these reasons, one could expect the
two curves Tc��q� and Tc��I�, when starting by the same
value at �q � �I � 0, to be different, at least in the
regime where bound states heavily influence the thermo-
dynamics of the system. On the other hand, when the free-
energy is mainly ruled by the constituent quarks, there is no
reason to expect a dependence of the critical curve on the
signs of chemical potentials (which will fix the sign of the
total charges associated with the system). Here at the
mean-field level, the effect of bound states is considered
when we admit the formation of a pion condensate.
Actually, in agreement with chiral models analyses, in
the NJL model the pion effective mass dependence on
chemical potentials can be analitically computed [23];
the result is that the charged pions chemical potential is
exactly the double of the isospin chemical potential. For
this reason, as �I is higher than some critical value (m�=2
at T � 0), a pion condensate starts to form; a similar effect
happens when �q is higher than the critical value for
diquark condensation, which is expected to occur at values
�q > 300
 400 MeV (of course, before diquark conden-
sation, for �q �mN=3 and low temperatures there should
be the liquid-gas transition for the nucleons). Since in this
paper we are interested mainly in the regime of relatively
small chemical potentials (lower than�200 MeV) we will
neglect the latter possibility. In fact, when the pion con-
densate is zero, the mean-field effective potential is sym-
metric under �u ! ��u;�d ! ��d; this implies that
�q $ ��I is a symmetry of the problem. Therefore, for
zero �, the two curves Tc��q� and Tc��I� have the same
analytical dependence. In Fig. 1 and 2 the phase diagrams
in (�q; T), (�I; T) spaces are shown; starting from the
common value T0 � 201 MeV, corresponding to �q �

�I � 0, the crossover curves coincide up to the value of
about 150 MeV for both chemical potentials. For higher�I

(and temperatures lower than �200 MeV) we are in the
FIG. 1. Phase diagram in the plane ��q; T�, for the physical
2� 1 case; �I and �s are set to zero. Dashed/solid lines indicate
crossover/first order transitions; consequently, the dot in the
picture labels the critical ending point.
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condensed pions phase; in agreement with [23] this regime
will persist until �I � 860 MeV, before the saturation
regime takes place. On the other hand, if we follow the
crossover line Tc��q�, we will find, as expected, a critical
ending point for �q � 330 MeV, T � 42 MeV and a line
of first order transitions for higher �q. Summarizing, at
this level of calculation (mean field), until isospin chemical
potential is lower than the critical value for pion conden-
sation the curves Tc��q� and Tc��I� have the same ana-
lytical expression Tc��q� � Tc��I�. This could be
interesting in the attempt to extend lattice results from
�I � 0 and �q � 0 to �q � 0 and �I � 0 (at least in
the region of low chemical potentials). Our conclusions
appear to be in agreement with the authors of Ref. [28]
(both from the lattice and from a hadron resonances gas
model).

B. Order of the transition by varying ms
It is generally assumed from universality arguments [29]

and lattice analyses [30], that the order of the phase tran-
sition by increasing temperature at zero density can change
as the quark mass values are varied. If in the realistic case
(with physical quark masses) the zero density transition is
expected to be a crossover, lattice analyses seem to show a
first order transition when the three light quark masses are
small enough. In particular, by taking mu � md � 0, there
should be a critical value forms below which the transition
turns into a discontinuous one: different lattice approaches
findmC

s to be half of the physical value of the strange quark
mass [31] or mC

s � 5
 10mu;d�physical� [30]. To study
this aspect in the NJL model, we start from the parameters
fit of [22], and we take the quark masses as free parameters;
namely, we take the four and six fermion couplings fixed so
-3



FIG. 4. Phase diagram in the ��q;ms� space, at mu � md � 0
and �I � �s � 0. For every region in the diagram, the label I/II
means whether, by increasing temperature and starting from T �
0, the transition is of first or second order. Actually, the line in
the diagram separating the two different regions follows the
critical point by varying ms.
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as to reproduce the phenomenology of the realistical physi-
cal situation. This way of proceeding could seem as rather
arbitrary, but for any value of the masses considered here,
we have verified that the output parameters have reason-
able values (critical temperatures 130
 200 MeV, light
quark scalar condensates ��250
�240 MeV�3, constitu-
ent light quark masses 250
 350 MeV). Of course our
results will be strongly model dependent, both for the
choice of a specific set of parameters and of a particular
model in itself. For instance, the NJL model provides an
estimate of the position of the critical point at lower
temperatures and higher chemical potentials with respect
to those obtained in ladder-QCD and the ones from recent
lattice simulation [5]. In Fig. 3 we show the behavior of the
light quark scalar condensates vs temperature, in the mu �
md � 0 limit, and for vanishing chemical potentials too. In
the upper picture, ms is taken to be zero, and for a tem-
perature of about 130 MeV there is a sharp first order
transition. As we increasems the discontinuity of the scalar
condensates reduces (in the lower picture the case ms �
8 MeV is shown), and when ms exceeds the critical value
mC
s � 10 MeV, the zero temperature transition turns into a

genuine second order transition. The value we get formC
s is

in any case smaller than the one from lattice predictions. In
Fig. 4 we plot the phase diagram in the (�q;ms) space, by
takingmu � md fixed to zero, and�I � �s � 0. The label
I=II indicates, for every couple ��q;ms�, whether, by
FIG. 3. Behavior of the light quark scalar condensates as a
function of temperature at zero chemical potentials and mu �
md � 0 (upper picture) and ms � 8 MeV (lower picture). In the
upper picture, � � �u � �d � �s, in the lower � � �u � �d.
When the strange quark mass exceeds the critical value mC

s �
10 MeV, the discontinuous behavior turns into a genuine phase
transition.
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increasing the temperature starting from zero, the transi-
tion is a first or a second order one. Actually, up to ms <
mC
s � 10 MeV, we have first order transition for every

value of �q, and consequently there is no critical point;
for ms slight above the critical value, the critical point
locates at a value of �q � 200 MeV. The critical value
for �q grows together with ms until the strange quark
decouples from the two light quarks and the critical point
�q coordinate is independent on ms, and lies at �q �

300 MeV. Finally we have studied whether, in agreement
with lattice analyses, a first order transition persists when
we consider a nonzero but small mu � md: this does not
happen in the NJL model with our choice of parameters,
for any value of ms. A recent work based on the linear
sigma model had found the critical value for mu � md �
ms to be mcrit � 40� 20 MeV [32].

C. Critical lines as a function of Nf
Even though lattice analyses at finite density still present

ambiguities in their different approaches, some general
features about the critical line appear to be rather solid.
In particular, if T0 is the critical temperature for zero
chemical potentials, the dependence of �T=T0� as a func-
tion of ��=T0� should be parabolic, (at least in the regime
��=T0�< 1), i.e. of the form �T=T0� � 1� ���=T0�

2.
Secondly, the � coefficient should depend on the number
of flavors Nf, increasing with Nf; in fact, the curves
relative to Nf � 2; 2� 1; 3 should be very close to each
other and the one relative to Nf � 4 should be steeper. It is
clear that a dependence of the � coefficient on Nf must be
related in any case with a coupling between the flavors;
otherwise, the effective potential would become a sum of
single flavors contributions, and the critical temperature
would not depend on Nf. This fact can give us an idea
-4
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about the strength of the coupling between the flavors at the
phase transition, and of its possible reduction with tem-
perature. We will check the issue relative to the cases
2; 2� 1; 3 in the framework of the NJL model. In this
context, the aforementioned situations labeled by 2, 3 are
those with 2, 3 massless flavors (in the case 2, ms is set to
5 GeV to decouple the strange quark); 2� 1 is the physical
case with realistic values of quark masses. In the following,
� will indicate a common value for the chemical potential
equal for all the active flavors.

In Fig. 5 we show the phase diagrams relative to the
cases 2� 1; 2; 3. Obviously, in case 2, we are in the situ-
ation where ms <mC

s and we have only first order transi-
tions. As we are varying the quark masses to consider
different situations, T0 has a large range of variation
(from 130 to 200 MeV); it is impressive that, as we plot
the phase diagrams in dimensionless units, those large
differences cancel out almost completely. This is the
most striking evidence that our approach, in its simplicity,
has some validity.
FIG. 5. Plot of the three cases 2; 2� 1; 3 in dimensionless
units ��=T0; T=T0�, �=T0  1. The curves relative to 2 and 2�
1 (the dashed one) almost overlap. In disagreement with lattice
simulations, the curve relative to 3 stands slight above the others.
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When showing the three cases on the same diagram, we
can clearly observe the surprising overlap of the results.
The agreement between 2 and 2� 1 cases (apart from
numerical instabilities related with 2� 1 case) is remark-
able, and good between 2 and 3 cases; the slope of case 3,
with respect to the lattice previsions, is smaller than that of
2, but the difference is slight.

The results we get for � are the following:

2 � � 0:1995� 0:025;

2� 1 � � 0:2496� 0:0623;

3 � � 0:1614� 0:011:

(10)

The worse precision we obtain for the 2� 1 case de-
pends on the larger error in the determination of the cross-
over curve.

For completeness, we quote the results for � from lattice
analyses:
2 � � 0:0507� 0:0034; �u � �d � � �6�

2 � � 0:0504� 0:0036; �u � �d � � �8�

2 � � 0:07� 0:03; �u � �d � � �10�

2� 1 � � 0:0288� 0:0009; �u � �d � �s � � � �B=3 �4�

3 � � 0:0610� 0:0009; �u � �d � �s � � � �B=3 �8�

3 � � 0:114� 0:046; �s � 0 �10�

4 � � 0:099; �f � � � �B=3 �6�:

(11)
We find that our predictions for � are bigger than those
obtained by lattice approaches, apart from [10] forNf � 3;
in that case, the results are comparable. A recent study
based on a hadron resonance gas model [28] give the result
� � 0:17� 0:01 and this value is in a good agreement
with our results. A study within a chiral quark model give
for � a value of about 0.1, extracted from Fig. 2 of [33].

We have also studied the behavior of the critical curve in
ladder-QCD [34] (in its version [18]); in this model there is
no coupling between flavors, therefore it is independent on
Nf. We have found that the critical curve is flatter than that
of NJL model, namely, the coefficient � is much smaller,
and hence closer to lattice predictions: � � 0:0797�
0:0056. We have attributed this feature to the lack of
coupling between flavors in the model. On the other
hand, since the value for the � coefficient we find in the
NJL model is slightly higher than the value found in
Ref. [28] and sensibly higher than the values obtained
from other lattice analyses, we can argue that introducing
an effective reduction of the K coupling with temperature,
as considered in Ref. [22,35], � would decrease at the
meantime. Therefore, by considering the following tem-
perature dependence of the ’t Hooft term

K�T� � K0 exp��T=T1�
2; (12)

we have verified that reducing T1 the critical temperature
at � � 0 is also reduced; in this way, the curve gets
-5
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flatter. By taking two different values for T1, and consid-
ering for simplicity the case 2, we find the value
� � 0:1186� 0:0061 in the case T1 � 160 MeV, and
� � 0:1084� 0:0035 in the case T1 � 100 MeV. In this
way, the agreement with lattice is considerably improved;
this can be considered an indirect proof of U�1�A effective
restoration with temperature.

For the sake of completeness, we have also studied the
two flavor NJL model with the ‘t Hooft determinant. The
model is not completely equivalent to the three flavor
model in the limit of infinite ms, since in the latter case a
strange quark loop gives a contribution, proportional to the
strange quark condensate, to the light quark constituent
mass. In any case we do not expect a dramatic change in
our results, with respect to previous expectations, for the
behavior of the critical curve. We consider in this case the
following expression for the interaction part of the
Lagrangian (the U�1�A breaking determinant term can be
rewritten as a four-fermion interaction):

L int � G1�� �qq�2 � � �q ~	 q�2 � � �qi�5q�2 � � �qi�5 ~	q�2�

�G2�� �qq�2 � � �q ~	 q�2 � � �qi�5q�2 � � �qi�5 ~	q�2�

(13)

with

G1 � �1� ��G0; G2 � �G0: (14)

The � coefficient tells us how hard the flavor mixing is;
it is maximal for G1 � 0, namely, for � � 1.

For the choice of the parameters G1 and G2 we follow
the approach proposed in Ref. [20,22]. In Ref. [22] the
authors study the original two flavor Lagrangian, proposed
by Nambu and Jona-Lasinio, with G1 � G2 and therefore
� � 0:5. The value we find in this case for� is very similar
with the result we obtained in the SU(3) case in the limit
ms ! 1:

� � 0:2107� 0:0214: (15)

The authors of Ref. [20] take � as a free parameter
instead. Here we furthermore consider the possible depen-
dence of G2 coefficient on the temperature, G2 � G2�T �
0� exp���T=T1�

2�.
If we take G2 independent on the temperature (namely

with T1 � 1), the value we find for the � coefficient does
056002
not change by varying �:

� � 0:2142� 0:0259 (16)

again in agreement with previous analyses. On the other
hand, if we admit a restoration of U�1�A symmetry with
temperature, we find a dependence on the � coefficient.
For � � 0:2 we have

� � 0:1484� 0:009 for T1 � 160 MeV (17)

and

� � 0:1196� 0:0161 for T1 � 100 MeV: (18)

For � � 0:3 we have

� � 0:1024� 0:0042 for T1 � 160 MeV (19)

and

� � 0:08101� 0:007 for T1 � 100 MeV: (21)

However, according to Shuryak [36] it is very unlikely
that restoration of U�1�A can occur before chiral symmetry
restoration; therefore, the value T1 � 100 MeV should not
be taken too seriously. In any case, it appears clear that
restoration of U�1�A symmetry can strongly influence the
behavior of the critical curve.
IV. CONCLUSIONS

In this paper we have studied some general features of
the QCD critical line in the framework of a NJL model. In
section one, we have compared the physics at �q � 0 with
that at �I � 0. In section two, we have varied quark
masses to show that the order of finite temperature tran-
sition changes if we consider small enough masses. In
section three, we have studied the dependence of the slope
of the critical curve Tc vs � on Nf. In recent times these
questions have received much attention from the lattice
community, due to the great improvement of finite chemi-
cal potential algorithms of simulation.
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