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Phenomenology of the baryon resonance 70-plet at large Nc
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We examine the multiplet structure and decay channels of baryon resonances in the large Nc QCD
generalization of the Nc � 3 SU(6) spin-flavor 70. We show that this ‘‘70,’’ while a construct of large Nc
quark models, actually consists of five model-independent irreducible spin-flavor multiplets in the large
Nc limit. The preferred decay modes for these resonances fundamentally depend upon which of the five
multiplets to which the resonance belongs. For example, there exists an SU(3) ‘‘8’’ of resonances that is
�-philic and �-phobic, and an ‘‘8’’ that is the reverse. Moreover, resonances with a strong SU(3) ‘‘1’’
component prefer to decay via a K rather than via a �. Remarkably, available data appears to bear out
these conclusions.

DOI: 10.1103/PhysRevD.72.056001 PACS numbers: 11.15.Pg, 14.20.Gk, 14.20.Jn
I. INTRODUCTION

Numerous scattering experiments performed during the
past several decades have generated a plethora of data
revealing the excitation behavior of baryons. The most
striking feature of this data at lower energies is the exis-
tence of observable resonant states: the excited baryons.
Inasmuch as QCD is the underlying fundamental theory of
strong interactions, the entire data set including the reso-
nances should be obtainable directly from QCD. However,
despite considerable recent progress in the treatment of
excited states in lattice QCD [1], the extraction of resonant
state properties ab initio from QCD remains a very hard
problem. Indeed, first-principles QCD has so far yielded no
simple explanation for the mere existence of resonances
narrow enough to be resolved. Thus, to a very large extent
most of our insight into these resonant states is gleaned
from models, such as the constituent quark model, whose
connection to full QCD remains obscure. Given this un-
satisfactory situation, it is useful to ask whether there are
any known systematic approaches to QCD that can give
some qualitative or semiquantitative insight into aspects of
baryon resonances, independent of models. In a series of
papers [2–9] (see Ref. [10] for short reviews), we have
argued that large Nc QCD and the 1=Nc expansion about
this limit provide just such an approach. In this paper we
explore the formal and phenomenological implications of
this approach for the states which, in the conventional
quark model language, are collected into an SU(6) 70-plet.

An important caveat is necessary at the outset: In a
hypothetical world where Nc is truly large, the 1=Nc
expansion is clearly valid and provides very accurate pre-
dictions. However, in the real world Nc � 3, and 1=Nc
corrections can be substantial. While for some observables
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(e.g., masses of stable baryons) the leading-order large Nc
predictions give reasonable qualitative and often semi-
quantitative descriptions of the world, for others (e.g.,
scalar meson properties) the large Nc predictions are quite
poor. Thus the question of whether large Nc analysis is
merely an exercise in mathematical physics or a useful
phenomenological tool depends on which observables are
being studied. While a number of interesting phenomeno-
logical predictions of baryon resonance observables have
already been obtained from such analyses, the exact extent
to which the approach successfully describes this sector
remains an open question. In part, this paper addresses the
issue by showing how certain qualitative features observed
in the decays of 70-plet states can be understood in the
context of large Nc QCD.

Two principal ideas underlie the model-independent
large Nc approach to excited baryons developed in
Refs. [2–9]. First, one must focus from the outset directly
on the physical scattering observables from which
resonances are ultimately extracted (meson-nucleon, elec-
troproduction, or photoproduction scattering amplitudes)
rather than on the resonance positions themselves. Second,
such scattering amplitudes can be represented as operators
to be evaluated between asymptotic meson-baryon states,
and as such are subject to the contracted SU�2Nf� symme-
try (Nf being the number of light quark flavors) known to
emerge from a model-independent analysis based upon
large Nc consistency relations [11]. Combining these two
ideas allows one to derive expressions, true at large Nc, for
the scattering amplitude in any given channel to be ex-
pressed as a sum of terms consisting of group-theoretical
factors multiplied by reduced amplitudes. As there are
fewer reduced amplitudes than observable scattering am-
plitudes, the approach has predictive power: the scattering
amplitudes in different channels are related at largeNc, and
one predicts that various linear combinations of amplitudes
are equal at large Nc.
-1 © 2005 The American Physical Society
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It should be noted that this analysis does not by itself
predict the existence of any baryon resonances ab initio.
Generic large Nc counting gives excited baryon widths of
O�N0

c�, which is the same order as the spacing between
states. Whether at large Nc such states are sufficiently
narrow to resolve is a matter of dynamical detail and not
generic largeNc scaling. The spacing of baryon resonances
differs sharply from that of excited mesons, which have
widths of O�1=Nc� and hence are narrow at large Nc.
However, this analysis does make a definitive prediction
about resonances: Any resonances that do exist must fall
into multiplets that become degenerate in both mass and
width (or equivalently, coupling constant) at large Nc. The
reason is simple: Resonances are poles in the scattering
amplitudes, and at large Nc these amplitudes are entirely
determined by the reduced amplitudes. Hence, a resonance
in some channel implies a pole in a reduced amplitude.
However, each reduced amplitude contributes to multiple
physical amplitudes, each of which therefore has a reso-
nance at the same location [up to O�1=Nc� corrections].
The pattern of the degeneracy is fully fixed by the con-
tracted SU�2Nf� symmetry. For Nf � 2 these degenerate
multiplets are completely determined by a single quantum
number K that emerges from the analysis.

The scheme outlined above is fully model independent
and exact at large Nc. If one makes a further assumption
about resonances—namely, that decay channels near a
resonant energy are dominated by the resonance rather
than the continuum—then one can also use the contracted
SU�2Nf� symmetry to deduce selection rules for the decays
that hold at large Nc. This additional assumption is needed
since the extraction of resonance branching ratios (BR)
from scattering data is intrinsically model dependent.
However, to the extent that the amplitude is dominated
by the resonance (in a limited kinematical region), this
model dependence becomes small. As noted above, large
Nc analysis alone does not imply that baryon resonances
even exist and clearly gives no guidance on the question of
whether the resonances are sufficiently prominent for the
meaningful extraction of BR. In this work we rely on the
phenomenological fact that prominent resonances are
known to exist in the region of interest, 1.4–2.0 GeV.

Much of the early work based on this approach [2–7]
was limited to nonstrange particles. While the intellectual
underpinnings are the same regardless of Nf, the inclusion
of strange quarks complicates the analysis in important
technical ways, particularly in the limit of SU(3) flavor
symmetry. The large Nc analogues to the 2-flavor physical
states possess isospin quantum numbers identical to those
at Nc � 3. Additional representations also arise, but these
are dismissed as ‘‘large Nc artifacts.’’ However, in the case
of three degenerate flavors, none of the Nc � 3 SU(3)
flavor representations for baryons remain the same dimen-
sion as their Nc > 3 generalizations [11,12].

In fact, all of the large Nc baryon multiplets are infinite
dimensional as Nc ! 1 [see Eq. (1)]. This raises two
056001
issues when one attempts to relate large Nc predictions to
the real world. The first is how to associate a given largeNc
multiplet with an Nc � 3 multiplet. The second is that,
since large Nc multiplets are (infinitely) larger than their
Nc � 3 cousins, one needs to prescribe how to associate
states in the analogousNc � 3 representation with states in
the large Nc representation. The first issue is easily re-
solved: There is an obvious association between Nc � 3
representations with representations for any arbitrary Nc,
which is given explicitly in the following section. One then
computes quantities at arbitrary Nc and takes the large Nc
limit. To make manifest the connection between the large
Nc andNc � 3 representations, we adopt the convention of
denoting the large Nc analogue of the baryon 8 as ‘‘8,’’ the
analogue of the 10 as ‘‘10,’’ and so forth. The second issue
is also relatively straightforward to resolve: One considers
only those states within a multiplet with the same values of
isospin and strangeness as occur for Nc � 3.

Since the baryon representations increase in dimension
with Nc, the SU(3) Clebsch-Gordan coefficients (CGC)
needed for this analysis are not tabulated in standard
sources. Instead, one requires the Nc-dependent CGC com-
puted and tabulated in Ref. [8]. As discussed in this paper,
the CGC implicitly impose formally and phenomenologi-
cally interesting selection rules as Nc becomes large.

The basic analysis of Refs. [2–9] is fully model inde-
pendent. Another approach to excited baryons at large Nc
uses largeNc generalizations of the quark model, or at least
a quark ‘‘picture’’ in which the quantum numbers of the Nc
quarks are the important degrees of freedom [13–15]. The
large Nc quark model has the same emergent symmetries
as large Nc QCD. Thus, if one focuses entirely on those
properties that are related to the symmetry, the large Nc
quark model may be viewed as an efficient way to deduce
group-theoretical results. It was shown explicitly in the
case of the mixed-symmetry (MS) Nf � 2 ‘‘20’’-plet of
SU�2Nf� associated with ‘ � 1 orbital excitations that the
patterns of degeneracy from the large Nc quark model are
compatible with the degeneracy patterns among reso-
nances directly deduced from large Nc QCD [3]. One of
the purposes of the present paper is to show explicitly that
the same compatibility holds for the Nf � 3 MS ‘‘70’’-plet
states of the large Nc quark model: At leading (N0

c) order
the states fall into multiplets which are compatible with the
degeneracy patterns deduced from full large Nc QCD.

The technical advantages of the method based on the
large Nc quark model are quite apparent: It is elegant and
efficient to classify quark model operators in terms of their
Nc scaling behavior. Since many operators connecting
states are subleading in 1=Nc counting, the approach con-
strains the possible eigenstates, which in turn generates
degenerate multiplets at large Nc.

It is worth noting, however, that the large Nc quark
model builds in dynamics beyond the emergent symmetry.
All of this dynamics is model dependent and thus cannot be
-2



PHENOMENOLOGY OF THE BARYON RESONANCE . . . PHYSICAL REVIEW D 72, 056001 (2005)
taken as direct predictions of large Nc QCD. The model-
dependent aspects include: (i) the existence of the reso-
nances, (ii) the fact that the resonances have negligible
widths (i.e., are stable) in the model, with widths only
added in via an ad hoc prescription, and (iii) assumptions
about the detailed nature of the state. The third aspect is
particularly important: Models used typically assume that
the states fall into unmixed configurations of SU�2Nf� �
O�3�; the physical picture behind this symmetry is that
there is only a single orbitally excited quark [giving rise
to the O(3)] on top of a spherically symmetric core with an
SU�2Nf� spin-flavor symmetry. This assumption does not
follow from large Nc QCD. As noted in Ref. [4], configu-
ration mixing of states of this type can occur at leading
(N0

c) order. In large Nc QCD the only emergent symmetry
is SU�2Nf�, which refers to the entire state and is not a
symmetry of the spin and flavor of individual quarks, as is
the case for the excited states in the unmixed quark model.
Thus in large Nc QCD it is not meaningful to ask whether
the spin-flavor symmetry is in a pure MS state such as the
‘‘70’’-plet of the quark model.

Given these problems, one might simply avoid using
quark model language entirely and rely exclusively on the
symmetries of largeNc QCD. While we generally advocate
this view, it is useful nonetheless to make contact with the
quark model picture since this picture informs so much of
our intuition about excited baryons. Accordingly, in pre-
vious papers [2,3] we identified the states in the excited
SU(4) ‘‘20’’-plet in terms of complete multiplets labeled
by the K quantum number. In this paper we generalize
the analysis to three flavors and extend the analysis to the
SU(6) ‘‘70’’-plet. In particular, we find that the (“70”; 1�)
of SU�6� � O�3� is a reducible multiplet in large Nc, con-
sisting [in the SU(3) limit] of 5 complete multiplets labeled
by K.

This paper has four main purposes. The first is to flesh
out the 3-flavor version of the model-independent approach
that was briefly described in Ref. [9]; the second is to point
out the existence of SU(3)-flavor selection rules that
emerge at large Nc. The third is to tie the general scattering
approach to the quark model-based approach for the ‘‘70’’-
plet states; and the fourth is to apply these methods to
describe phenomenologically the decays of the 70-plet
states (or more precisely, the states that are typically as-
signed to the 70-plet in quark models).

This paper is organized as follows: In Sec. II we provide
essential group-theoretical background and establish nota-
tion. Section III presents a salient property of SU(3)
Clebsch-Gordan coefficients at large Nc that is useful in
obtaining information about processes involving strange
resonances. Section IV shows the explicit connection be-
tween 3-flavor and 2-flavor scattering amplitude expres-
sions. In Sec. V we show that the ‘‘70’’ consists of 5
multiplets labeled by K, and exhibit the connection to
quark-picture operators. Section VI provides a number of
056001
phenomenological consequences of our results, and
Sec. VII concludes.
II. GROUP THEORY PRELIMINARIES

Much of the content of this section appears in Ref. [8]
and is presented here for the reader’s convenience. An
irreducible representation (irrep) of SU(3) symmetry may
be denoted by its Dynkin weights �p; q�, which indicate a
Young tableau with p� q boxes in the top row and q boxes
in the bottom row. In terms of the maximal value of
hypercharge and the isospin of the singly degenerate states
of the top row in the SU(3) weight diagram, one finds
Ymax �

1
3 �p� 2q� and Itop �

1
2p.

Mesons at arbitrary Nc still carry the quantum numbers
of a single q �q pair, and hence their SU(3) flavor irreps are
unchanged whenNc is changed. The SU(3) irreps may also
be denoted as usual by their dimensions, if no ambiguity
arises: e.g., 8 � �1; 1�.

Baryons, on the other hand, carry the quantum numbers
ofNc quarks [in order to form an SU�Nc� color singlet from
color-fundamental irreps], and therefore the baryon SU(3)
flavor irreps grow in size with Nc. The baryon SU(3) irreps
R corresponding to large Nc generalizations of those oc-
curring at Nc � 3 are taken to be R � �2Itop;

Nc
2 �

3r
2 �

Itop�, which has Ymax �
Nc
3 � r. The quantity r � O�N0

c�

is an integer, as required by quantization of the Wess-
Zumino term for arbitrary Nc [16]. The dimension �R� �
1
2 �p� 1��q� 1��p� q� 2� of an arbitrary SU(3) irrep
assumes a useful limiting expression for the large Nc
baryon irreps:

�R� ���! N2
c

8
�Itop� as Nc ! 1; (1)

where �Itop� � 2Itop � 1 is the isomultiplet dimension. A
baryon irrep that generalizes a familiar Nc � 3 counterpart
may also be denoted by its Nc � 3 dimension within quote
marks; the ones useful to this work are

“ 1” 	 �0; �Nc � 3�=2�; “8” 	 �1; �Nc � 1�=2�;

“10” 	 �3; �Nc � 3�=2�; “10” 	 �0; �Nc � 3�=2�;

“27” 	 �2; �Nc � 1�=2�; “35” 	 �4; �Nc � 1�=2�:

(2)

Other irreps appear only for Nc > 3 and are denoted only
by their Dynkin weights. An exception that is useful to us
in the following is

“ S” 	 �2; �Nc � 5�=2�; (3)

so named because its Ymax �
Nc
3 � 1 isomultiplet has

I � 1, i.e., � quantum numbers.
-3
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SU(3) CGC are indicated by the notation

R1 R2

I1; I1z; Y1 I2; I2z; Y2

�������� R�
I; Iz; Y

� �

�
R1 R2

I1; Y1 I2; Y2

����� R�I; Y
 !

I1 I2

I1z I2z

�������� I
Iz

� �
; (4)

where the last factor is an ordinary SU(2) isospin CGC.
The quantities containing a double bar, which do not
depend upon the additive Iz quantum numbers, are called
SU(3) isoscalar factors and, like the full CGC, form or-
thogonal matrices. We may refer to the SU(3) isoscalar
factors themselves as CGC if no ambiguity arises. The
subscript � indicates possible distinct copies of a particular
irrep R within the product R1 
 R2.

The SU(3) products phenomenologically useful in
meson-baryon scattering are

“8” 
 8 � “27” � “10” � “10” � “81” � “82” � “1”

� “S”;

“10” 
 8 � “35” � “27” � “101” � “102” � “8” � “S”

� �5; �Nc � 5�=2� � �4; �Nc � 7�=2�: (5)

The final two irreps need not be considered further, not
only because they are absent for Nc � 3, but also (unlike
‘‘S’’) do not contain any isomultiplets with Nc � 3 quan-
tum numbers. In Ref. [8], 101 is defined as the unique
product 10 irrep whose “10” 
 8 CGC all vanish with
powers of Nc � 3 (which occurs because only one 10
056001
appears in the Nc � 3 product 10 
 8). The CGC for 101

and ‘‘S’’ are not needed for strict Nc � 3 phenomenology
and therefore were not compiled in Ref. [8], but are useful
for formal large Nc results requiring unitarity at arbitrary
Nc, as is employed in the following analysis.

A similar notation may also be extended to SU(6) spin-
flavor multiplets. As shown long ago, the requirement of
order-by-order unitarity in powers of 1=Nc in meson-
baryon scattering requires that the JP � 1

2
� ‘‘8’’ and the

JP � 3
2
� ‘‘10’’ belong to a single spin-flavor multiplet [11]

whose members differ in mass only atO�1=Nc� [17,18], the
completely symmetric SU(6) “56” 	 �Nc; 0; 0; 0; 0; 0�. For
Nc > 3 the ‘‘56’’ also contains JP � 5

2
�; . . . ; Nc2

� flavor
multiplets. Since the physical Nc � 3 8 baryons are stable
against strong decay, the same is true for the full ‘‘56’’
whenNc is sufficiently large; hence the ‘‘56’’ is labeled the
‘‘ground-state’’ band.

In the SU(6) quark model, the first excited multiplet
consists of states symmetric on all except one of the
quarks, the 70-plet. The exceptional quark is then com-
bined with the symmetric ‘‘core’’ as an ‘ � 1 orbital
excitation. We denote the analogue for arbitrary Nc as
“70” 	 �Nc � 2; 1; 0; 0; 0�. Its decomposition into
SU�3� � SU�2� [the total spin SU(2) factor including not
only quark spin but the orbital angular momentum as well]
gives numerous spin-flavor multiplets [3], but only those
multiplets containing states with N, �, �, �, �, and �
quantum numbers and spins possible with 3 quarks are
phenomenologically relevant. These multiplets are
2
�
“8”;

1

2

�
� 2

�
“8”;

3

2

�
�

�
“8”;

5

2

�
� 2�1�

�
“10”;

1

2

�
� 3�1�

�
“10”;

3

2

�
� 2�0�

�
“10”;

5

2

�
� 1�0�

�
“10”;

7

2

�
�

�
“1”;

1

2

�

�

�
“1”;

3

2

�
� 2�0�

�
“S”;

1

2

�
� 2�0�

�
“S”;

3

2

�
� 1�0�

�
“S”;

5

2

�
; (6)
where the coefficients indicate multiplicities for Nc large
(and for Nc � 3 in brackets, if different). For Nc > 3 the
“8” and “10” contain no additional states with Nc � 3
quantum numbers, but “1” gains a �, and “S” has �, �,
and � states. One of our results below is that in the absence
of SU(3) breaking the 20 [SU(3),SU(2)] multiplets have
only 5 distinct masses split at O�N0

c�, meaning that the
large Nc SU�6� � O�3��“70”; 1�� is actually reducible to 5
distinct multiplets.

III. A PROPERTY OF SU(3) CGC

Much of the power of the analysis rests on an observa-
tion that holds for all arbitrary-Nc SU(3) CGC thus far
computed, which includes every coupling relevant to Nc �
3 phenomenology. We do not prove this result exhaustively
as a theorem, but rather show below by direct mathematical
construction how it arises. But first, we state the property:
Let RB � �2SB;
Nc
2 � SB� denote an SU(3) irrep [corre-

sponding to baryons in the ground-state SU(6) ‘‘56’’ with
spin SB, for which the top (nonstrange) row in the weight
diagram has isospin IB;top � SB and YB;max �

Nc
3 ], let

R� � �p�; q�� be an SU(3) (meson) irrep with weights
p�, q� � O�N0

c�, and let Rs�s � RB 
 R�, where
Ys;max �

Nc
3 � r and Rs � �2Is;top;

Nc
2 �

3r
2 � Is;top�, r �

O�N0
c�. Then the SU(3) CGC satisfy

RB R�
IB;

Nc
3 �m I�; Y�

����� Rs�s
Is;

Nc
3 � Y� �m

 !

 O�N
�jY��rj=2
c �; (7)

for all allowed O�N0
c� values of m, saturation of the in-

equality occurring for almost all CGC. One may observe
this remarkable fact in the tables of Ref. [8].
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This interesting property indicates that baryon reso-
nances in various SU(3) irreps preferentially couple to
mesons with a unique value of hypercharge. In particular,
those with Ymax �

Nc
3 � 1 (“10”, “27”, and “35”) decay via

a K� or K0, those with Ymax �
Nc
3 (“8” and “10”) decay via

� or �, and those with Ymax �
Nc
3 � 1 (“1” and “S”) decay

via K0 or K�.
The property Eq. (7) results from a combination of

unitarity and completeness of the SU(3) CGC, in addition
to the U-spin and V-spin values of the states in question.
Unitarity and completeness require that, for every choice
of RB, IB, YB and R�, I�, Y� with total coupled isospin Is
056001
and hypercharge Ys, there must exist at least one product
irrep Rs�s whose corresponding CGC assumes the largest
allowed magnitude, O�N0

c�. One may therefore begin with
‘‘stretched’’ quantum numbers, for which precisely one Rs
is allowed and the corresponding CGC are therefore guar-
anteed to be O�N0

c�—indeed, unity in magnitude. For
example, the state in the product “8” 
 8 � “10” with Is �
0, Y � Nc

3 � 1 is the only one in the product of IB �
1
2 ,

YB �
Nc
3 and I� �

1
2 , Y� � 1, and therefore its CGC is

O�N0
c� (� 1, in fact).

Now note that the U� and V� SU(3) ladder operators
assume a very useful form [19]. For example,
V�j�p; q�IIzYi � �g��p; q�; I; Iz; Y�j�p; q�; I � 1=2; Iz � 1=2; Y � 1i

� g��p; q�;��I � 1�; Iz; Y�j�p; q�; I � 1=2; Iz � 1=2; Y � 1i; (8)

where the function g is given by [8]

g��p; q�IIzY� �
�
�I � Iz � 1��13 �p� q� � I �

Y
2 � 1��13 �p� 2q� � I � Y

2 � 2��13 �2p� q� � I �
Y
2�

�2I � 1��2I � 2�

�
1=2
; (9)
and is the analogue to the familiar SU(2) functions ��I �
Iz��I � Iz � 1��1=2 that appear with the operators I�. SU(3)
CGC are then derived by the same coupling approach as for
SU(2) (e.g., Vs;� � VB;� � V�;�). As seen from Eq. (8),
these ladder operators generally produce two states, and
therefore the SU(3) recursion relations generally involve
six CGC [8,19]. We decline to present these cumbersome
expressions here [e.g., Eq. (2.5) in [8] ], but merely indicate
features important to the current analysis.

Since the meson irrep R� does not scale with Nc, the
functions g appearing from U�;� or V�;�, which have
j�Y�j � 1, do not induce any Nc factors. However, for
the baryon irreps RB and Rs, the quantities q and Y appear-
ing in UB;�, VB;�, Us;�, and Vs;� (all of which have
�Y� � 0) both scale as Nc. Interestingly, two of the three
factors in g containing q and Y appear in the combination
q
3�

Y
2 , whose O�Nc� term cancels, while the O�Nc� term in

the third (in the combination 2q
3 �

Y
2 ) does not, making the

corresponding g factors O�N1=2
c �. This factor can also be

seen from the fact that the given states, lying near Ymax, are
linear combinations of eigenstates carrying large values of
U- and V-spin and near-maximal values of U3 and V3.
Since the g-factors are simply ��U�U3��U�U3 � 1��1=2

and ��V � V3��V � V3 � 1��1=2 in disguise, each one has
but a single O�N1=2

c � factor. Dividing through by this N1=2
c ,

the U�, V� CGC recursion relations assume the form

�4 CGC with �Y� � 0� �
1������
Nc
p �2 CGC with j�Y�j � 1�

� 0: (10)

This result indicates that all CGC with �Y� � 0 tend to
appear at the same order in Nc, barring a fortuitous can-
cellation. However, since the 6-CGC recursion relations
also include ordinary SU(2) isospin CGC [again, see
Eq. (2.5) in [8] for an example], and the same SU(3)
CGC appear for several independent charge states, such
cancellations are comparatively rare.

In practice, one begins with the stretched states for all
Rs�s � RB 
 R� that have the largest allowed Ys;max

value, which therefore have O�N0
c� CGC, and uses the

U�, V� recursion relations to obtain all other O�N0
c�

CGC for the given Rs�s, all of which [by Eq. (10)] have
the same value of Y� � Ys;max � YB;max, where YB;max �
Nc
3 . For example, in “8” 
 8 the largest Ys;max value Nc

3 � 1

is obtained for Rs � “27” and “10”, and the O�N0
c� CGC

for these two product irreps all have Y� � 1. Order-by-
order unitarity in Nc and the completeness of SU(3) CGC
with a given fixed value of Y� then imply that the O�N0

c�

CGC thus obtained are the only ones carrying the given Y�
value. But then, Eq. (10) and unitarity imply that changing
the value of Y� by one unit (call it Y�0) for the same Rs�s
produces CGC that are generically a factor N�1=2

c smaller.
By completeness, other irreps Rs0�s0 must step in to pro-
vide the O�N0

c� CGC for the new value Y�0 , and by noting
again that the stretched cases (those carrying Ys0;max) must
have O�N0

c� CGC, we see from Y�0 � Ys0;max � YB;max that
the value of Ys0;max must also change by one unit. In the
“8” 
 8 example, the Y� � 0 CGC with Rs � “27” and

“10” are at most O�N�1=2
c �, meaning that the remaining

Rs�s with Ys;max �
Nc
3 states (“8�” and 10) must provide

the O�N0
c� CGC. Continuing the construction in this fash-

ion establishes Eq. (7).
-5
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IV. REDUCING THE 3-FLAVOR CASE TO THE
2-FLAVOR CASE

The master amplitude expression for a 3-flavor meson-
baryon scattering process��S�;R�;I�;Y���B�SB;RB;IB;
YB�!�0�S�0 ;R�0 ;I�0 ;Y�0 ��B

0�SB0 ;RB0 ;IB0 ;YB0 �, where S
056001
is particle spin, was originally obtained in Ref. [20], and
generalized to includeO�Nc� quantum numbers in Ref. [9].
The master expression for such scattering amplitudes in the
large Nc limit then reads
SLL0SS0JsRs�s�0sIsYs � ��1�SB�SB0 ��RB��RB0 ��S��S
0��1=2=�Rs�

X
I2R�;I

02R
�0
;

I002Rs;Y2R�\R�0

��1�I�I
0�Y�I00�

RB R�

SB
Nc
3 IY

����� Rs�s

I00Y � Nc
3

 !

�
RB R�
IBYB I�Y�

�����Rs�sIsYs

 !
RB0 R�0

SB0
Nc
3 I0Y

����� Rs�0s

I00Y � Nc
3

 !
RB0 R�0

IB0YB0 I�0Y�0

�����Rs�
0
s

IsYs

 !

�
X

K; ~K; ~K0
�K��� ~K�� ~K0��1=2

8>><>>:
L I ~K

S SB S�

Js I00 K

9>>=>>;
8>><>>:
L0 I0 ~K0

S0 SB0 S�0

Js I00 K

9>>=>>;�fII
0Yg

K ~K ~K0LL0
: (11)
S and S0 indicate the total hadron spin angular momentum
(i.e., not including orbital angular momentum). The quan-
tities in braces are ordinary SU(2) 9j symbols. The key
quantum number describing the dynamics of the reduced
scattering amplitudes � isK, which in chiral soliton models
represents the grand spin K � I� J.

In light of the results Eqs. (1) and (7), Eq. (11) may be
simplified considerably. In particular, Eq. (7) requires that
the leading [O�N0

c�] SU(3) CGC in Eq. (11) have Y �
Y� � Y�0 � r, where Ys;max �

Nc
3 � r. We immediately

see that the leading-order processes in 1=Nc require YB �
YB0 , i.e., no strangeness change in the scattered baryon, a
fact that was used in Ref. [7]. Also, Eq. (1) eliminates the
SU(3) multiplet dimensions:

��RB��RB0 ��1=2=�Rs� ! ��SB��SB0 ��1=2=�Is;top�: (12)

Moreover, the product degeneracy factors �s;s0 cannot be
discerned in any physical process and therefore must also
be summed over coherently in the full physical amplitude.

Specializing now to the case of nonstrange scattered
baryons (IB;B0 � SB;B0 , YB;B0 �

Nc
3 ), one first notes that

only intermediate states with Ys � Ys;max appear at
O�N0

c�. In order to recover the 2-flavor result, one must
also note that implicit in Eq. (11) is a factor �RsR0s , and that
the Rs factor in the last two SU(3) CGC actually start as R0s.
Then one sums over the intermediate SU(3) irreps Rs and
R0s. Employing the well-known SU(3) CGC completeness
relation [21]

X
R�Y

R1 R2

I1Y1 I2Y2

�����R�IY
 !

R1 R2

I01Y
0
1 I02Y

0
2

�����R�IY
 !

� �I1I01�I2I02�Y1Y01
�Y2Y02

; (13)
in the current case removes all SU(3) CGC and imposes
�II��I0I�0�I00Is . Noting that I� � Y�=2 and I�0 � Y�0=2 are

integers for mesons, one is left with the 2-flavor result
[3,22],

SLL0SS0IsJs �
X

K; ~K; ~K0
�K���SB��SB0 ��S��S

0�� ~K�� ~K0��1=2

�

8><>:
L I� ~K
S SB S�
Js Is K

9>=>;
�

8><>:
L0 I�0 ~K0

S0 SB0 S�0
Js Is K

9>=>;�K ~K ~K0LL0 ; (14)

where �K ~K ~K0LL0 	 ��1�IB�IB0�I��I�0�
fI�I�0Y�g

K ~K ~K0LL0
.

The phenomenologically most useful special case of
Eq. (11) occurs for mesons in the 0� octet, S� � S�0 �
0. Then the 9j symbols collapse to 6j symbols:

8><>:
L I ~K

S SB 0

Js I00 K

9>=>; � ��1�L�I
00�K�SB��S�� ~K���1=2

� �SSB� ~KK

� K I00 Js
SB L I

�
; (15)

and similarly for the other 9j symbol. Then Eq. (11) sim-
plifies by losing the sums on ~K and ~K0 and the ��S��S0� �
� ~K�� ~K0��1=2 factors, as well as the phase ��1�SB�SB0 [These
phases in Eqs. (2) and (6) of Ref. [9] are incorrect]. For
reference, the spinless meson expression reads
-6
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SLL0SBSB0JsRs�s�0sIsYs � ��1�L�L
0
��RB��R

0
B��

1=2=�Rs�
X

I;I0 ;Y28;
I002Rs

��1�I�I
0�Y�I00�

RB 8

SB
Nc
3 IY

����� Rs�s

I00Y � Nc
3

 !
RB 8

IBYB I�Y�

�����Rs�sIsYs

 !

�
RB0 8

SB0
Nc
3 I0Y

����� Rs�0s

I00Y � Nc
3

 !
RB0 8

IB0YB0 I�0Y�0

�����Rs�
0
s

IsYs

 !X
K

�K�

(
K I00 Js
SB L I

)(
K I00 Js
SB0 L0 I0

)
�fII

0Yg
KKKLL0 :

(16)
TABLE I. Partial-wave amplitudes containing resonances with
quantum numbers corresponding to states in the large Nc quark-
picture SU�6� � O�3� (“70”; 1�). Expansions are given in terms
of K-amplitudes, according to Eq. (16).

State ‘‘70’’ pole masses Partial wave, K-amplitudes

�1=2�“8”� m0, m1 S��
01 � �f110g

11100

S��
01 � �f000g

00000

�3=2�“8”� m1, m2 D��
03 �

1
2 ��

f110g
11122 � �

f110g
22222�

D��
03 � �f000g

22222

�5=2�“8”� m2 D��
05 �

1
9 �2�

f110g
22222 � 7�f110g

33322�

D��
05 � �f000g

22222

�1=2�“1”� m1
2

SKN01 � �
f12

1
2�1g

1
2

1
2

1
200

�3=2�“1”� m3
2

DKN
03 � �

f12
1
2�1g

3
2

3
2

3
222

�1=2�“8”� m0, m1 S��
11 �

1
3 �
f110g
11100

S��
11 �

2
3 �
f110g
11100

S��
11 � �f000g

00000

�3=2�“8”� m1, m2 D��
13 �

1
6 ��

f110g
11122 � �

f110g
22222�

D��
13 �

1
3 ��

f110g
11122 � �

f110g
22222�

D��
13 � �f000g

22222

�5=2�“8”� m2 D��
15 �

1
27 �2�

f110g
22222 � 7�f110g

33322�

D��
15 �

2
27 �2�

f110g
22222 � 7�f110g

33322�

D��
15 � �f000g

22222

�1=2�“S”� m1
2
, m3

2
SKN11 � �

f12
1
2�1g

1
2

1
2

1
200

DK�
11 � �

f12
1
2�1g

3
2

3
2

3
222

�3=2�“S”� m1
2
, m3

2
DKN

13 �
1
5 ��

f12
1
2�1g

3
2

3
2
3
222
� 4�

f12
1
2�1g

5
2

5
2

5
222
�

SK�
13 � �

f12
1
2�1g

1
2

1
2
1
200

DK�
13 �

1
5 �4�

f12
1
2�1g

3
2

3
2

3
222
� �

f12
1
2�1g

5
2

5
2

5
222
�

�5=2�“S”� m3
2

DKN
15 �

1
15 �8�

f12
1
2�1g

3
2
3
2

3
222
� 7�

f12
1
2�1g

5
2

5
2

5
222
�

DK�
15 �

1
15 �7�

f12
1
2�1g

3
2
3
2

3
222
� 8�

f12
1
2�1g

5
2

5
2
5
222
�

GK�
15 � �

f12
1
2�1g

7
2

7
2

7
244
Note that, although we restrict to spinless mesons in this
special case, they are not necessarily pseudo-Goldstone
bosons. Chiral symmetry is not imposed in any way and
would provide additional constraints.

The reduction of Eq. (16) to its nonstrange equivalent
works in precisely the same way as the reduction of
Eq. (11) to Eq. (14). One finds [2,23]

S��
0

LL0SBSB0 IsJs
� ��1�SB0�SB��SB��SB0 ��

1=2
X
K

�K�

�

�
K Is Js
SB0 L0 I�0

��
K Is Js
SB L I�

�
s��

0

KL0L;

(17)

where s��
0

KL0L 	 ��1�L�L
0
�KKKLL0 �

��1�L�L
0�IB�IB0�I��I�0�

fI�I�0Y�g

KKKLL0 ; for example, s�KL0L in
Ref. [2] means � � �0 � �.

The notation for the full amplitudes is admittedly cum-
bersome due to the numerous indices required for their
unambiguous characterization. The standard notation in
the literature uses L2Is2Js for resonances with half-integer
isospin, LIs2Js otherwise. Of course, in reality almost all
experiments scatter 0� initial mesons (�’s and K’s) on
nucleons (JP � 1

2
�), which combined with parity conser-

vation forces L � L0 to be an even integer. In the following
we are more interested in uncovering the full pole structure
than in presenting only expressions for Nc � 3 physical
amplitudes; we allow amplitudes with, for example, an
��� initial state. Nevertheless, as discussed below we
restrict to B � B0, � � �0, L � L0. A sufficient notation
for the amplitudes we present, compatible with that used in
Refs. [2–7], is therefore L�B

�2�Is2Js
. The SU(3) labels Rs�s

can also be made explicit if one is discussing a particular
resonant channel, but of course in real data these channels
are summed coherently.

V. THE FIVE MULTIPLETS

In Ref. [9] we explained how Eq. (16) can be used to
uncover degenerate SU(3) multiplets of resonances. In
short, one begins with a single established resonance
with given Is; Js quantum numbers, finds which reduced
amplitude �fII

0Yg
KKKLL0 contains the pole, notes that the quan-

tum numbers LL0 and II0Y refer only to the details of the
056001
formation of the resonance and not the resonance itself,
and concludes that resonance poles are labeled solely by K
[in the SU(3) limit].
-7
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We now show that the collection of resonance states with
the quantum numbers of the SU�6� � O�3� (“70”; 1�) mul-
tiplet (the parity entering through allowed values of L;L0)
is accommodated by 5 poles, one in each of 5 reduced
amplitudes with K � 0; 1

2 ; 1;
3
2 ; and 2.

An exhaustive demonstration of this point would require
the tabulation of a huge set of amplitudes, including scat-
tering with not only the “8” and “10”, but also the stable
baryons in the “56” with JP � 5

2
�; . . . ; Nc2

�, as well as with
members of the “8” and “10” carrying quantum numbers
not appearing for Nc � 3 (such as an isospin- 3

2 �), or
between states with B � B0, � � �0, or L � L0. (Note
however, that parity conservation in “8” 1

2
� ! 1

2
� scatter-

ing with 0� mesons dictates L � L0.) While many of these
processes are physically interesting (e.g., �N ! �N), for
TABLE II. First cont

State ‘‘70’’ pole masses

�1=2�“10”� m1, m2

�3=2�“10”� m0, m1, m2

�5=2�“10”� m1, m2

�7=2�“10”� m2

�1=2�“8”� m0, m1

�3=2�“8”� m1, m2

�5=2�“8”� m2

�1=2�“1”� m1
2

�3=2�“1”� m3
2

056001
our purposes it is equally convincing to demonstrate the
pole structure by restricting the tabulation to a much
smaller set: All quantum numbers are chosen diagonal
(B � B0,� � �0, L � L0), and only “8”! “8” transitions
allowed for Nc � 3 are exhibited, except in the few cir-
cumstances where “8” scattering does not access all the
poles, in which case “10”! “10” scattering is also
exhibited.

The results of this analysis appear in Tables I, II, III, and
IV. Note that the sign for the ���“8”� ! ��“82”� CGC in
Ref. [8] (relevant to Table II) is incorrect; it should begin
with ��3Nc � 19�. Also, the symbol �0 (Table IV) indi-
cates the I � 1 partner to the � for “10” with Nc > 3,
introduced to show that all expected resonance poles in-
deed occur.
inuation of Table I.

Partial wave, K-amplitudes

S��
11 �

2
3 �
f110g
11100

S��
11 �

1
3 �
f110g
11100

D���

11 � �f000g
22222

D��
13 �

1
30 ��

f110g
11122 � 5�f110g

22222 � 14�f110g
33322�

D��
13 �

1
60 ��

f110g
11122 � 5�f110g

22222 � 14�f110g
33322�

S���

13 � �f000g
00000

D���

13 � �f000g
22222

D��
15 �

1
135 �27�f110g

11122 � 35�f110g
22222 � 28�f110g

33322�

D��
15 �

1
270 �27�f110g

11122 � 35�f110g
22222 � 28�f110g

33322�

D���

15 � �f000g
22222

G���

15 � �f000g
44444

G��
17 �

1
108 �7�

f110g
33344 � 21�f110g

44444 � 44�f110g
55544�

G��
17 �

1
216 �7�

f110g
33344 � 21�f110g

44444 � 44�f110g
55544�

D���

17 � �f000g
22222

G���

17 � �f000g
44444

S��
11 �

1
9 �
f110g
11100

S��
11 � �f000g

00000

D��
13 �

1
18 ��

f110g
11122 � �

f110g
22222�

D��
13 � �f000g

22222

D��
15 �

1
81 �2�

f110g
22222 � 7�f110g

33322�

D��
15 � �f000g

22222

SK�
11 �

1
4 �
f12

1
2�1g

1
2

1
2

1
200

SK�
11 �

3
4 �
f12

1
2�1g

1
2

1
2

1
200

DK�
13 �

1
4 �
f12

1
2�1g

3
2
3
2

3
222

DK�
13 �

3
4 �
f12

1
2�1g

3
2
3
2

3
222

-8



TABLE III. Second continuation of Table I.

State ‘‘70’’ pole masses Partial wave, K-amplitudes

�1=2�“10”� m1, m2 S��
11 �

8
9 �
f110g
11100

D���

11 � �f000g
22222

�3=2�“10”� m0, m1, m2 D��
13 �

2
45 ��

f110g
11122 � 5�f110g

22222 � 14�f110g
33322�

S���

13 � �f000g
00000

D���

13 � �f000g
22222

�5=2�“10”� m1, m2 D��
15 �

4
405 �27�f110g

11122 � 35�f110g
22222 � 28�f110g

33322�

D���

15 � �f000g
22222

G���

15 � �f000g
44444

�7=2�“10”� m2 G��
17 �

1
81 �7�

f110g
33344 � 21�f110g

44444 � 44�f110g
55544�

D���

17 � �f000g
22222

G���

17 � �f000g
44444

�1=2�“S”� m1
2
, m3

2
SK�

11 �
3
4 �
f12

1
2�1g

1
2

1
2

1
200

SK�
11 �

1
4 �
f12

1
2�1g

1
2

1
2

1
200

DK��

11 � �
f12

1
2�1g

3
2

3
2
3
222

�3=2�“S”� m1
2
, m3

2
DK�

13 �
3
20 ��

f12
1
2�1g

3
2

3
2
3
222
� 4�

f12
1
2�1g

5
2

5
2

5
222
�

DK�
13 �

1
20 ��

f12
1
2�1g

3
2

3
2

3
222
� 4�

f12
1
2�1g

5
2
5
2

5
222
�

SK��

13 � �
f12

1
2�1g

1
2
1
2

1
200

DK��

13 � 1
5 �4�

f12
1
2�1g

3
2
3
2

3
222
� �

f12
1
2�1g

5
2
5
2

5
222
�

�5=2�“S”� m3
2

DK�
15 �

1
20 �8�

f12
1
2�1g

3
2
3
2

3
222
� 7�

f12
1
2�1g

5
2

5
2

5
222
�

DK�
15 �

1
60 �8�

f12
1
2�1g

3
2

3
2
3
222
� 7�

f12
1
2�1g

5
2

5
2

5
222
�

DK��

15 � 1
15 �7�

f12
1
2�1g

3
2

3
2

3
222
� 8�

f12
1
2�1g

5
2
5
2

5
222
�

GK��

15 � �
f12

1
2�1g

7
2

7
2
7
244
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In light of the fact that Eq. (17) is a special case of the
full result Eq. (11), the results appearing in Table I of
Ref. [2] still hold, demonstrating that all nonstrange reso-
nances in the ‘‘70’’ reduce to 3 poles with K � 0; 1; and 2.
Then, since Eq. (11) is an SU(3)-symmetric expression, the
same pole that produces a given nonstrange resonance
must also produce all its SU(3)-multiplet partners. For
056001
example, the N1=2 state corresponding to the K � 0 pole
is but the nonstrange member of an “8” corresponding to
the same pole. This point is also apparent in the tables.

One concludes from studying Tables I, II, III, and IV that
the 20 SU(3) multiplets of the (“70”; 1�) listed in Eq. (6)
actually collect into 5 irreps labeled by K:
K � 0:
�
“8”;

1

2

�
�

�
“10”;

3

2

�
; K �

1

2
:
�
“1”;

1

2

�
�

�
“S”;

1

2

�
�

�
“S”;

3

2

�
;

K � 1:
�
“8”;

1

2

�
�

�
“8”;

3

2

�
�

�
“10”;

1

2

�
�

�
“10”;

3

2

�
�

�
“10”;

5

2

�
; K �

3

2
:
�
“1”;

3

2

�
�

�
“S”;

1

2

�
�

�
“S”;

3

2

�
�

�
“S”;

5

2

�
;

K � 2:
�
“8”;

3

2

�
�

�
“8”;

5

2

�
�

�
“10”;

1

2

�
�

�
“10”;

3

2

�
�

�
“10”;

5

2

�
�

�
“10”;

7

2

�
: (18)

That the largeNc quark model SU�6� � O�3� (“70”; 1�) multiplet actually contains 5 independent mass eigenvalues split
by O�N0

c� can also be seen by referring to the Hamiltonian operator basis used in Refs. [14,15]. This analysis extends that
-9
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performed in Ref. [2] for the nonstrange case, in which one
finds 3 operators with linearly independent matrix ele-
ments up to O�N0

c�, and only 3 distinct mass eigenvalues.
By direct construction, one finds a single operator,O1 � 1,
whose matrix elements on all baryons is precisely Nc, and
4 operators with O�N0

c� matrix elements:

O2 � ‘s; O3 �
1

Nc
‘�2�gGc;

O4 � ‘s�
4

Nc � 1
‘tGc; O5 �

1

Nc

�
tTc �

1

12
1

�
:

(19)

Here, ‘ is the orbital excitation operator, while ‘�2� is the
�‘ � 2 tensor operator �‘i‘j � 1

3�
ij‘2�. Lowercase indi-

cates operators acting upon the excited quark, and upper-
case (with subscript c) indicates operators acting upon the
core. S, T, and G denote operators with spin, flavor, and
both spin and flavor indices, respectively, summed over all
relevant quarks, and all spin and flavor indices implied by
the component operators in Eq. (19) are summed in the
unique nontrivial manner and then suppressed (e.g.,
‘tGc 	 ‘itaGia

c ). The operators are equivalent to those at
TABLE IV. Third continuation of Table I. �0 is

State ‘‘70’’ pole masses

�1=2�“10”� m1, m2

�3=2�“10”� m0, m1, m2

�5=2�“10”� m1, m2

�7=2�“10”� m2

�1=2�“S”� m1
2
, m3

2

�3=2�“S”� m1
2
, m3

2

�5=2�“S”� m3
2

056001
O�N0
c� in Ref. [15], except for the addition of O5, which

was omitted in that work [24]. O4 and O5 appear in more
complicated forms whose matrix elements vanish for all
states in multiplets with Ymax �

Nc
3 (which includes all

nonstrange states in the “70”); in Ref. [14] they were
termed ‘‘demotable,’’ For the Ymax �

Nc
3 � 1 multiplets

(“1” and “S”), the matrix elements of O5 at O�N0
c� are

found to be � 1
4 .

Using this notation, one finds that each mass eigenstate
in the “70” assumes one of only 5 distinct eigenvalues.
Those in the SU(3) multiplets with Y � Nc

3 assume the
values

m0 	 c1Nc �
�
c2 �

5

24
c3

�
;

m1 	 c1Nc �
1

2

�
c2 �

5

24
c3

�
;

m2 	 c1Nc �
1

2

�
c2 �

1

24
c3

�
;

(20)

which are the same expressions as in Ref. [2]. For the
Ymax �

Nc
3 � 1 multiplets, one additionally finds only the

eigenvalues
the I � 1 partner of the � in “10” for Nc > 3.

Partial wave, K-amplitudes

S��0
01 � �f110g

11100

D��
01 � �f000g

22222

D��0
03 � 1

20 ��
f110g
11122 � 5�f110g

22222 � 14�f110g
33322�

S��
03 � �f000g

00000

D��
03 � �f000g

22222

D��0
05 � 1

90 �27�f110g
11122 � 35�f110g

22222 � 28�f110g
33322�

D��
05 � �f000g

22222

G��
05 � �f000g

44444

G��0
07 � 1

72 �7�
f110g
33344 � 21�f110g

44444 � 44�f110g
55544�

D��
07 � �f000g

22222

G��
07 � �f000g

44444

SK�
01 � �

f12
1
2�1g

1
2

1
2
1
200

DK��

01 � �
f12

1
2�1g

3
2
3
2

3
222

DK�
03 �

1
5 ��

f12
1
2�1g

3
2
3
2

3
222
� 4�

f12
1
2�1g

5
2

5
2

5
222
�

SK��

03 � �
f12

1
2�1g

1
2

1
2

1
200

DK��

03 � 1
5 �4�

f12
1
2�1g

3
2

3
2

3
222
� �

f12
1
2�1g

5
2

5
2

5
222
�

DK�
05 �

1
15 �8�

f12
1
2�1g

3
2
3
2

3
222
� 7�

f12
1
2�1g

5
2

5
2
5
222
�

DK��

05 � 1
15 �7�

f12
1
2�1g

3
2

3
2
3
222
� 8�

f12
1
2�1g

5
2

5
2

5
222
�

GK��

05 � �
f12

1
2�1g

7
2
7
2

7
244
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m1=2 	 c1Nc � �c2 � c4� �
1

4
c5;

m3=2 	 c1Nc �
1

2
�c2 � c4� �

1

4
c5:

(21)

Again, one sees that the (“70”; 1�) is actually a reducible
collection of 5 multiplets. The mass eigenvalues, labeled
by mK, are listed in Tables I, II, III, and IV. While the old
SU(6) symmetry does not hold at O�N0

c�, the remaining
level of degeneracy remains remarkable; for example, the
multiplets listed in Eq. (18) mean that 5 eigenvalues [in the
SU(3) limit] span 71 distinct isomultiplets, 30 for Nc � 3.
And even when SU(3) symmetry is arbitrarily broken (i.e.,
reduced amplitudes � with the same K but different Y are
taken to be distinct), isomultiplets with the same value of Y
and K but in different SU(3) irreps in Eq. (18) remain
degenerate.
VI. PHENOMENOLOGICAL RESULTS

In this section we combine our qualitative results with
experimental extractions of BR to determine phenomeno-
logically the SU(3) and K irreducible representations (ir-
reps) of various excited baryons. This is useful for two
reasons. First, it gives insight into the nature of these
resonant states in a framework independent of the quark
model. Second, the extent to which the decays fall into
patterns consistent with large Nc predictions provides a
check on the applicability of the large Nc approach to
excited states for the real world of Nc � 3.

Before discussing individual states in detail a few com-
ments are in order. As noted in the introduction, the ex-
traction of BR necessarily involves some modeling. In
some cases the model dependence is small, and robust
extractions of BR are possible. However, in many cases
either the model dependence is large or the experimental
data is insufficient, and the BR are not known well. Often
the ranges for BR quoted by the Particle Data Group are
quite broad [25]. Indeed, they are often so large that it is
impossible to make even qualitative assessments of the
dominant mode of decay. Accordingly, we focus our atten-
tion on those cases where the BR are relatively well
established.

Another issue that should be kept in mind in this dis-
cussion is that the analysis presented so far is based on
exact SU(3) flavor symmetry. Of course, in the real world
SU(3) flavor is broken. The analysis is useful provided that
SU(3) flavor violations are relatively modest (which they
usually are). Similarly, the analysis is based on large Nc
and implicitly assumes that 1=Nc corrections are small.
However, in one obvious case both SU(3) violations and
1=Nc corrections can be expected to be greatly enhanced:
resonant states not far above thresholds. In such regions the
phase space is a very sensitive function of the masses, and a
relatively small mass change can lead to dramatic shifts in
056001
the phase space. This near-threshold behavior is particu-
larly critical in high L partial waves, where the partial
decay rate scales as p2L�1, p being the 3-momentum of
either outgoing particle in the center-of-momentum frame.
Accordingly, we focus on large Nc predictions for the
coupling in various decays rather than on the partial widths
or BR, since the couplings are far less sensitive to threshold
effects.

The most striking result of this work has already been
described in Sec. III and particularly by the constraint
Eq. (7): In the large Nc limit, baryon resonances couple
only to mesons with a hypercharge equal to the amount by
which the hypercharge of the top row of its SU(3) multiplet
exceeds that of the stable baryons (Ymax �

Nc
3 ). This result

provides a means by which the singlet and octet � may be
distinguished: The former prefers KN to �� decays with a
couplingO�Nc� larger than predicted by phase space alone,
and vice versa.

One sees this effect clearly in some of the � resonances.
The first state for which it is apparent [25] is the
��1520�D03 [note that the ��1405�S01 lies below the KN
threshold]. This state is traditionally assigned to be an
SU(3) singlet. The phase space ( / p1) for decay into
KN is only about 3=4 of that for ��, but the BR for the
former is actually slightly larger than for the latter. Note
however that the decay is a dwave, so that the partial width
goes as the p to the fifth power. Thus the KN decay is
kinematically suppressed by a factor of�4–5 compared to
the ��, so that the coupling is �4–5 times larger. The
dominance of theKN coupling as what one expects at large
Nc if the state is a singlet.

Virtually all of the low-lying � resonances have sub-
stantial KN BR, again suggesting a sizable 1 component in
most � resonances. However, for most of these states the
BR are not determined with sufficient certainty to make
definitive statements. Many of these states appear to have
substantial BR to bothKN and��. To the extent that these
results are reliable, one has evidence for important effects
of SU(3) breaking, indicating the mixing of SU(3) irreps.
The ��1830�D05 is a notable exception: Its BR to KN is
less than 10%, strongly suggesting that it is predominantly
octet.

The situation with � resonances is intriguing. Since the
only SU(3) irreps available at Nc � 3 are 8 and 10, the
largeNc selection rule suggests smallKN BR. While this is
true for most of these resonances, a few [notably the
��1775�D15] have substantial KN couplings.
Nevertheless, such effects may well be 1=Nc corrections
of a type relatively easy to understand. For anyNc � 5, the
“S” irrep would contain � resonances with large KN
couplings; in the final step of setting Nc � 3, by unitarity
some part of these couplings must spill over into the SU(3)
8 and 10 irreps. It is very tempting to study these 1=Nc
effects simply by retaining the full arbitrary-Nc CGC in
Eq. (11), but this is only one source of 1=Nc corrections;
-11
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Eq. (11) in its current form only includes amplitudes that
survive the large Nc limit.

Unfortunately, too little is known about � and � reso-
nances [25] to perform an interesting analysis of this sort.

The next result of phenomenological interest to the
Nc � 3 universe is that the K � 0 multiplet, �“8”; 1=2� �
�“10”; 3=2�, couples to � but not �, while the other
(“8”; 1=2) has K � 1 and couples to � but not �. More
generally, theK � 1 pole appears only in channels coupled
to �. These results are exact in the large Nc limit. In the
spin-3=2 case large Nc provides “10”s, with K � 0, 1, and
2; however, for Nc � 3 only one remains, and so in that
case it is not obvious how to identify physical states with
the large Nc multiplets. Nevertheless, both Nc � 3 and
larger Nc provide exactly 2 (“8”; 1=2) multiplets, making
the coupling prediction testable. Indeed, the fact that one of
these physical resonances, N�1535�, is �-philic and
�-phobic, while the other, N�1650�, is the reverse, was
the original phenomenological evidence [2] offered in
support of this type of analysis.

This effect appears in the state ��1670�S01, which lies a
mere 5 MeVabove the�� threshold (a phase space about 6
times smaller than that for ��), and yet has a BR to this
channel of 10%–25%. This suggests that the state is pre-
dominantly an �-philic K � 0 state. Likewise, the
��1750�S11 lies only a few MeV above the �� threshold
but has a substantial (15%–55%) BR to that channel, and
therefore is also predominantly K � 0. On the other hand,
��1800�S01 has no detected �� coupling, and therefore
appears to be the K � 1 state.

One more interesting result of this analysis is a method
of distinguishing 8 and 10 resonances based upon their
decay modes. One such category arises from SU(3) CGC
that are smaller than the saturation of the bound given in
Eq. (7); in the cases considered here, this occurs for ��!
��“10”�, for ��! ��“10”�, for ��� ! ��“8”�, and for
��� ! ��“8”�, all of which are O�1=Nc� smaller than
naively expected. One then concludes, for example, that
a � resonance with a large ��� coupling (none such yet
observed) is mostly 10. Another category arises from the
interesting property that Eq. (11) applied to �� and ��
external states differs only by the isospin quantum number
in the external-state CGC. In particular, using the CGC in
Ref. [8] one finds the amplitude ratios

r8 	
A���! ��“8”��
A���! ��“8”��

�
Nc�Nc � 7�

Nc � 6

������������������������������������
2

�Nc � 3��Nc � 1�

s
;

r10 	
A���! ��“10”��
A���! ��“10”��

� �
Nc � 1���������������������������������������

2�Nc � 3��Nc � 1�
p :

(22)

The calculation of r8 requires one to sum coherently over
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the “8�” irreps. One finds r8�1� � �
���
2
p

and r10�1� �

�1=
���
2
p

, which explains why (as seen in Tables I and II)
scattering amplitudes for ��“8”� prefer �� to �� cou-
plings by a 2:1 ratio, and those for ��“10”� are the reverse.
The function r8�Nc�=r8�1� equals 5=�3

���
3
p
� � 0:96 for

Nc � 3 and rises monotonically to 1 (for odd integers
Nc) as Nc increases, while r10�Nc�=r10�1� equals 2=

���
3
p
�

1:15 for Nc � 3 and drops monotonically to 1 as Nc
increases. While elucidating but one source of 1=Nc break-
ing in the full amplitudes, this exercise gives an indication
of how well one might expect the large Nc predictions to
work.
VII. CONCLUSIONS

The 1=Nc expansion applied to the baryon resonance
sector continues to provide surprises, both in terms of the
organization of states into multiplets and the implications
for couplings to asymptotic meson-baryon states, which
enter into production and decay processes. We have shown
that a remnant of the old quark-picture (“70”; 1�) of
SU�6� � O�3� survives as a consequence of the fundamen-
tal emergent SU(6) contracted spin-flavor symmetry at
large Nc: The (“70”; 1�) is a reducible multiplet whose
remaining undetermined index, K, is the same one that
distinguishes the nonstrange multiplets. In the 3-flavor
case, K assumes the 5 values 0; 1

2 ; 1;
3
2 ; 2, and distinct

SU(3) multiplets with the same K value are degenerate in
mass and width up to O�1=Nc� corrections.

We showed furthermore that both the SU(3) group the-
ory and the spin-flavor symmetry produce phenomenolog-
ically interesting predictions that appear to be borne out
where data is available. The former predicts that reso-
nances in the 8 and 10 representations of SU(3) prefer to
decay via nonstrange mesons, while those in the 1 prefer to
decay via K’s. The latter predicts that, of the two spin- 1

2 8’s
in (“70”; 1�), one decays via � and one via �.

Thus far, this analysis remains descriptive and explor-
atory. Improvements require advances in both data mea-
surement and partial-wave analysis, as well as the
theoretical method. Anyone who has examined the hy-
peron resonance section of the Review of Particle Physics
[25] will agree that improvements on published data and
methods of analysis will prove extremely useful in under-
standing the physical baryon resonance sector. From the
theoretical point of view, the most significant improve-
ments required both fall into the category of 1=Nc correc-
tions. For the 2-flavor system, it is known how to
incorporate 1=Nc-suppressed amplitudes [5]. The
leading-order 2-flavor amplitudes in 1=Nc all assume an
extremely simple behavior when expressed in the t chan-
nel: It � Jt, while amplitudes with jIt � Jtj � n are sup-
pressed by O�1=Nn

c �. The generalization of this rule to
three flavors is one of the next problems to tackle. The
other 1=Nc effect that must be mastered is the nature
-12
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of decoupling of the spurious states that only occur for
Nc > 3, such as isospin- 3

2 �’s. Once these effects are fully
understood, the 1=Nc expansion will be fully available to
the 3-flavor baryon resonance sector in the same way that
chiral perturbation theory describes soft mesons.
056001
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