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Self-annihilation of the neutralino dark matter into two photons or a Z and a photon in the
minimal supersymmetric standard model
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We revisit the one-loop calculation of the annihilation of a pair of the lightest neutralinos into a pair of
photons, a pair of gluons and also a Z photon final state. For the latter we have identified a new
contribution that may not always be negligible. For all three processes we have conducted a tuned
comparison with previous calculations for some characteristic scenarios. The approach to the very heavy
Higgsino and W-ino is studied and we argue how the full one-loop calculation should be matched into a
more complete treatment that was presented recently for these extreme regimes. We also give a short
description of the code that we exploited for the automatic calculation of one-loop cross sections in the
minimal supersymmetric model that could apply, both for observables at the colliders and for astrophysics
or relic density calculations. In particular, the automatic treatment of zero Gram determinants which
appear in the latter applications is outlined. We also point out how generalized nonlinear gauge-fixing

constraints can be exploited.
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I. INTRODUCTION

We now have overwhelming evidence that ordinary
matter accounts for a minute portion of what constitutes
the Universe at large. Most impressive is the confirmation
from the very recent WMAP data [1]. Very interestingly,
many extensions of the standard model whose primary aim
was related to the Higgs sector and the mechanism of
symmetry breaking do provide a good dark matter candi-
date. Very soon, with the energy frontier that will open up
at the LHC, intense searches for this new physics with its
associated dark matter candidate will be pursued in earnest.

Meanwhile, many astroparticle experiments are going
on, and will be improved by the time the LHC runs, to
detect dark matter particles. The problem, either for direct
or indirect detection of dark matter outside the colliders, is
that we do not control many astrophysical parameters. For
indirect detection which is the result of the annihilation of a
dark matter pair in, say, the galactic halo of our galaxy, the
photon signal is cleaner than that of the charged positron
and antiproton that are considered as sources of exotic
cosmic rays. The photon will point back to the source
while the antiproton flux suffers from uncertainties due
to the propagation. Of course, in both cases one still has to
rely on a modeling of the dark matter profile since one
needs to know the number density of the annihilating dark
matter particles. A very distinctive signal though would be
that of a ““direct” annihilation into a monochromatic pho-
ton. In this case the spectrum will reveal a peak at an
energy corresponding to the mass of the annihilating par-
ticles since the latter move at essentially zero relative
velocity v. In the galactic halo v/c ~ 1073, Therefore,
provided one has a detector with good energy resolution,
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the flux from the direct annihilation will clearly stand out
above the (astrophysical) background or the diffuse con-
tribution from the same dark matter. The latter is due
essentially to annihilation into quarks and W which sub-
sequently fragment and radiate/decay into photons. This
contribution has a continuous featureless energy distribu-
tion which is only cut off at a maximum energy corre-
sponding to the mass of the dark matter particle. There are,
and there will be, many powerful detectors to search for
such photon signals, covering a wide range in energy from
MeV to TeV. These are either ground based, such as the
atmospheric Cerenkov telescopes, ACT (CANGAROO
[2], HESS [3], MAGIC [4], VERITAS [5],...) or space
borne telescopes (EGRET [6], AMS [7], the upcoming
GLAST [8],...). Many see in some of the present data
an excess that might be a sign for new physics and dark
matter annihilation but we should probably be cautious and
await confirmation from other more precise detectors cov-
ering the same energy range. One should also improve on
the theoretical predictions and a better understanding of the
background and the astrophysical component that enter the
calculation of the photon yield.

Our aim in this paper is to revisit the calculation of the
direct self-annihilation into y7y, Zy and gg of the lightest
supersymmetric particle (LSP). This is a neutralino that we
will denote as %Y. There have been a few attempts of
calculating the one-loop induced 0¥ — y7y before two
complete calculations [9] settled the issue. These calcula-
tions have been made in the limit v = 0 as is appropriate
for dark matter annihilation in the halo. A very recent
calculation [10] has also been made for this mode. Their
results for v = 0 agree in their most important features
(Higgsino limit, for example) with those of Refs. [9], but as
far as we are aware no systematic comparison has been
performed. Much more important, however, is that there is,
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at the moment, only one calculation of ¥ ¥ — Zy [11]
(performed at v = 0) despite the fact that new features
appear in this computation. These features, as we will see,
cannot be a mere generalization of the 2+ final state. We
will in this paper calculate both ¥ — yy and {00 —
Zv for any velocity and make a tuned comparison with the
existing codes for v = 0, DARKSUSY [12] for 3" {¥ — yy
and ¥{ ¥} — Zy and pLATONDML [10] for ¥’ ¥) — yy. In
XX — Zy we have identified a new contribution not
taken into account in [11]. We will also show some results
for v = 0.5 for both processes. As a by-product we will
also compute the self-annihilation into gluons: %) — gg
[13]. This can be derived from i)} — vy by only keep-
ing the colored particles and dealing properly with the
color structure. This process could contribute to, for ex-
ample, the antiproton signal. We will see that our results for
X0 — gg completely agree with those of DARKSUSY [12]
and PLATONDMG [10] for v = 0 and with PLATONGREL [10]
for v =0.5.

As is known [9,11], the largest contributions to ¥ ¢! —
yy and %) — Zy, especially for large neutralino
masses, occur when the neutralino is a W-ino or a
Higgsino. As first pointed out in [9,11] the cross section
times the relative velocity, o v, for both modes, tends to an
asymptotic constant value that scales as 1/M3, for v = 0
and large LSP mass. This result which breaks unitarity is
due to the one-loop treatment of a “‘threshold” singularity
that is nonetheless regulated by My,. It has very recently
been, admirably, shown [14] how to include the higher
order corrections through a nonrelativistic nonperturbative
approach. The latter reveals the formation of bound states
with zero binding energy that show up as sharp resonances
that dramatically enhance the cross section for particular
masses. We have therefore thought it worthwhile to study
the one-loop derivation in these scenarios and see how one
can match the nonperturbative regime. The reason we do
this and the main reason we carry the calculation of
X) — vy and )0 — Zy is that one needs a reliable
code for the photon flux from self-annihilating neutralino
LSP’s. These cross sections have been missing from
MICROMEGAS [15] that we have been developing for a
very accurate derivation of the relic density in supersym-
metry and which is currently being adapted to direct and
indirect detection. The present paper deals with only the
cross section calculation, leaving aside the astrophysical
issues to the implementation and exploitation within
MICROMEGAS. See however Ref. [16] for a preliminary
use of MICROMEGAS to indirect detection using some of
the results of this paper.

The results presented in this paper constitute some of the
first applications of a code for the automatic computation
of one-loop processes in supersymmetry relevant both for
the colliders and astrophysics, such as the problem at hand.
Most crucial for the latter is a careful treatment of the loop
integrals since for these applications the use of general
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libraries is not appropriate leading to division by zero
because of the appearance of vanishing Gram determinants
in the reduction of the tensor integrals. We will show how
to easily circumvent this problem.

II. SETUP OF THE AUTOMATIC CALCULATION

Even in the standard model, one-loop calculations of
2 — 2 processes involve hundreds of diagrams and a hand
calculation is practically impracticable. Efficient auto-
matic codes for any generic 2 — 2 processes, that have
now been exploited for many 2 — 3 [17,18] and even some
2 — 4 [19,20] processes, are almost unavoidable for such
calculations. For the electroweak theory these are the
GRACE-LOOP [21] code and the package FORMCALC [22]
based on FEYNARTS [23] and LOOPTOOLS [24]. With its
much larger particle content, far greater number of parame-
ters and more complex structure, the need for an automatic
code at one-loop for the minimal supersymmetric standard
model is even more of a must. A few parts that are needed
for such a code have been developed based on the package
FEYNARTSUSY [25] but, as far as we know, no complete
code exists or is, at least publicly, available. GRACE-SUSY
[26] is now also being developed at one-loop and many
results exist [27]. One of the main difficulties that has to be
tackled is the implementation of the model file, since this
requires that one enters the thousands of vertices that
define the Feynman rules. On the theory side a proper
renormalization scheme needs to be set up, which then
means extending many of these rules to include counter-
terms. When this is done one can just use, or hope to use,
the machinery developed for the SM, in particular, the
symbolic manipulation part and most importantly the
loop integral routines and tensor reduction algorithms.
The calculations that we are reporting here are based on
a new automatic tool that uses and adapts modules, many
of which, but not all, are part of other codes. We will report
on this approach elsewhere. Here we will be brief. In this
application we combine LANHEP [28] (originally part of the
package COMPHEP [29]) with the FORMCALC package but
with an extended and adapted LOOPTOOLS. LANHEP is a
very powerful routine that automatically generates all the
sets of Feynman rules of a given model, the latter being
defined in a simple and compact format very similar to the
canonical coordinate representation. Use of multiplets and
the superpotential is built-in to minimize human error. The
ghost Lagrangian is derived directly from the BRST trans-
formations. The LANHEP module also allows to shift fields
and parameters and thus generates counterterms most effi-
ciently. Understandably the LANHEP output file must be in
the format of the model file of the code it is interfaced with.
In the case of FEYNARTS, both the generic (Lorentz struc-
ture) and classes (particle content) files had to be given.
Moreover because we use a nonlinear gauge-fixing condi-
tion [21], the FEYNARTS default generic file had to be
extended. This brings us to the issue of the gauge fixing.

055024-2



SELF-ANNIHILATION OF THE NEUTRALINO DARK ...

We use a generalized nonlinear gauge [30] adapted to the
minimal supersymmetric model. The gauge fixing writes

1
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h and H are the CP-even physical Higgses, with 4 denoting
the lightest. y is the photon field and the masses of the
charged and neutral weak bosons are related through
My, = Mycy. The y ’s are the Goldstone fields. The non-
linear gauge-fixing parameters are @, 3, 8, @, &, € and 7.
The ¢ are the usual Feynman parameters. In our imple-
mentation the latter are set to & = 1 not only to avoid very
large expressions due to the ““longitudinal” modes of the
gauge bosons but most importantly so that high rank
tensors for the loop integrals are not needed. Gauge pa-
rameter independence which is a nontrivial check on the
result of the calculation can be made through the nonlinear
gauge-fixing terms. In many instances a particular choice
of the nonlinear gauge parameter may prove much more
judicious than another. For the case at hand, @ = 1, pre-
serves U(1)., gauge invariance which explains the vanish-
ing of the W* y ™y vertex. This will prove crucial for the
calculation of §9% — Zy. This brings us to the imple-
mentation of the loop integrals and their use in the most
general application to radiative corrections in supersym-
metry (SUSY) for the colliders, for indirect detection and
for the improvement of the relic density calculation beyond
tree level. In LOOPTOOLS [24] for example, the tensor loop
integrals are reduced recursively to a set of scalar integrals
by essentially following the Passarino-Veltman procedure
[31]. The reduction involves solving a set of equations that
brings in the inverse Gram determinant.' Although for
applications to the colliders the latter only vanishes for
exceptional points in phase space, for the indirect detection
calculation of tensor integrals involving annihilating LSP’s
with small relative velocity v, the Gram determinant is of
order v2. Therefore it vanishes exactly for v = 0 or can get
extremely small slightly away from this value rendering
the calculation highly instable. In the appendix we show
how we dealt with this problem in an automatic implemen-
tation. In a nutshell, we have used a segmentation proce-
dure based on the fact that when some momenta are
dependent like what occurs with v = 0, a N-point function
writes as a sum of N — 1 point functions. This also applies
to the tensorial structures. This observation is not new (see
for example [9,11]) and has been used mostly in hand
calculations. Some aspects of it may be remotely related

Lap = =510, — ieay, — igewBZIWH" + &y

"For a recent overview of the problem with the Gram deter-
minant, see [32]. We will however present, for the 2 — 2
processes, a simple solution.
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to [33]. The scheme also allows an expansion away from
exactly vanishing Gram determinants.

A selection of diagrams that contribute to both ¥ ¢ —
yy and ¥°¥" — Zy is shown in Fig. 1 (see also [9,11]).
Diagrams of type (a) in Fig. 1 are particularly important in
the large W-ino and Higgsino limit. In this limit the LSP
and the internal chargino are of almost equal mass. If the W
mass can be neglected this leads to a threshold singularity.

Moving from ¥ ) — yy to %% — Zy brings mixing
effects in the loops. Examples of these mixing effects, due
to the nondiagonal couplings of the Z to charginos and
charged sfermions, are shown in Figs. 1(a) and 1(d). Most
diagrams can, therefore, be derived from %" — yy.
There is, however, an important class that is only present
for ¥ ¥ — Zv, as shown in Fig. 2. This class of diagrams
is missing in [11]. It corresponds to the insertion of the
0=y transition.” In a general gauge, the virtual tran-
sition would be gauge dependent and not ultraviolet finite.
To remedy both these problems requires the ¥V ¥y coun-
terterm which is generated starting from the (tree-level)
X XVZ vertex through a Z — y one-loop transition. It is
well known that the latter is gauge dependent, see for
example [21]. The counterterm requires the field normal-

ization cSZIZ/y2 [21]. This field renormalization constant in

fact also induces, as in the standard model, (H, h)Zy
vertices not present at tree level. These induced vertices
are also needed for the class of diagrams shown in Fig. 1, in
particular, those with (H, h) exchange. The full set of
counterterms for ¥4 — Zy is in fact obtained from the
tree-level ¥} — ZZ, replacing a Z by a photon and
inserting the 5212/72 renormalization constant. However, it
is known that this renormalization constant vanishes for
& = 1 [21]. We have checked this property explicitly with
our code. After this check has been made, & = 1 was set,
since it considerably reduces the number of diagrams and
most importantly allows one to discard all the counterterm
contributions. Further gauge parameter independence of
the result for %) — Zy was checked by varying the other
nonlinear gauge parameters that enter the calculation,
namely 3, 6 and @&. When discussing our results for
X0 — Zy we will weight the effect of the new class of
diagrams shown in Fig. 2 against that of the full contribu-
tion, in doing so we will specialize to @ = 1. As we will
see these diagrams give a non-negligible contribution es-
pecially for the Higgsino case. The application to % —
gg is rather straightforward. This process confirms that our
code handles the color summation correctly. Keeping only
one flavor of quark with charge Qf, ¥} ¥} — gg can be
derived from %%} — yy through (N.Q;a)* — 2a}
(N. = 3 is the number of colors, « is the electromagnetic
fine structure constant and «,; the QCD equivalent).

*The radiative neutralino decay f((j) — /\7?3/ is calculated in
[34].
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f)

FIG. 1. Typical classes of diagrams common to both ¥ %" — yy and %) — Zy. For the former, the same “flavor” circulates in
the loops and we do not have any mixing as in (a) and (d). Diagrams with Goldstone bosons are not shown. In the heavy W-ino and
Higgsino limit, (a) is the dominant diagram. Diagrams (d) and (f) with H, & exchange do not contribute for v = 0.

0
Xi

FIG. 2 (color online). An additional class of diagrams describing the X/? — X/(l)'y transition that only appear in the case of X/? ,{/‘1) —
Zvy. A representative of the blob (represented by the first graph) is the virtual correction shown in the second diagram. The last graph

shows the counterterm contribution.

III. RESULTS AND COMPARISONS

We first check that our results are ultraviolet finite by
changing the numerical value of the parameter 1/€ that
controls a possible ultraviolet divergence. € =4 — n,
where n is the dimensionality of space. We also check
for gauge parameter dependence by varying the nonlinear
gauge parameters, namely &, & and @ for ¥ — yvy and
B, 8 and @ with @ = 1 for ¥ %% — Zy. These checks are
carried in double precision and show that, for all points we
have studied, the results are consistent up to 13 digits. It is
important to maintain the relation My, = cy M. If these
parameters are taken as independent the gauge parameter
independence is lost. We first discuss our results for 6
representative scenarios that we think are good checks on
different parts of the calculations and also because they
reveal the most important characteristics of these cross
sections. Moreover these scenarios also serve to perform
tuned comparisons against codes that are publicly avail-
able. To achieve this, it is best to feed the codes the same
parameters. Comparisons that use as input high-scale val-
ues for some SUSY parameters that are run down through
some renormalization group equation (RGE) package
often need to specify an interface. Moreover most often
the RGE codes are updated and one does not always have
access to the same version to perform a tuned comparison.
For all these scenarios the input parameters are defined at
the electroweak scale and are: M, the U(1) gaugino mass,
M, the SU(2) counterpart, u the Higgsino “mass,” M, the

pseudoscalar mass and mjy the common sfermion mass.
tanf3 is set to 10. The sfermion trilinear parameter A is set
to zero for all sfermions but the stop, depending on the
mass of the latter. Our Higgs masses here are tree-level
Higgs masses, so we avoided points too close to any Higgs
resonance and the issue of the implementation of the width.
When our code for ¥ — yy, YI¥) — Zy and ) —
gg will be fully incorporated within MICROMEGAS, cor-
rected Higgs masses and mixing angles will be properly
implemented in a gauge invariant manner following [35].
This improved implementation is of relevance only for v #
0 since the CP-even Higgses do not contribute when the
neutralinos are at rest. When we refer to cross sections this
would in fact refer to the cross section times the relative
velocity v, ov expressed in cm?/s. In terms of v, the total
invariant mass of the neutralinos is s = 4m§~(0/ (1 — v?/4).
1

The six scenarios have been chosen so as to represent
different properties, like the gaugino/Higgsino content
for different masses of the neutralino. We made no attempt
whatsoever to pick up points that lead to a good relic
abundance in accord with WMAP [1]. This said, for each
point, we give the corresponding values of the relic density,
extracted from MICROMEGAS. One should however keep in
mind that different unconventional histories of the
Universe® could alter the usual thermal prediction.

3A few possibilities are described in [36].
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(i) Scenario 1: “Sugra.” This reproduces a typical
output from so-called mSUGRA scenarios,
although the latter would not produce a common
sfermion mass. The neutralino is mostly b-ino with
mass around 200 GeV. The lightest chargino is a
W-ino.

(i) Scenario 2: “nSugra.” The neutralino is quite light,
about 100 GeV and it is essentially b-ino. Here the
mSugra relation does not hold, rather M, = 4M,.

(ii1) Scenario 3: “Higgsino 1.” The neutralino is a light
Higgsino of about 200 GeV. The lightest chargino
has a mass about 6 GeV away.

(iv) Scenario 4: ‘“Higgsino 2.” The neutralino is a
heavy Higgsino of about 4 TeV. It is quite degen-
erate with the lightest Higgsino-like chargino. The
mass difference is about 0.1 GeV.

(v) Scenario 5: “W-ino 1.” The neutralino and lightest
chargino are light, about 200 GeV. The mass dif-
ference on the other hand is extremely small
0.01 GeV.

PHYSICAL REVIEW D 72, 055024 (2005)

(vi) Scenario 6: “W-ino 2. This is like the previous
example but for TeV masses. The LSP is a W-ino of
mass 4 TeV completely degenerate with the
chargino.

Table I shows that the nature of the LSP and its mass
critically determine its self-annihilation cross section to yy
and Zvy. The results for the different scenarios vary by 6
orders of magnitude, especially for v = 0. The b-ino—like
LSP gives far too small cross sections that are unlikely to
be observed as a y-ray line. The largest cross sections
O — vy and Y){) — Zy for a LSP mass up to
4 TeV are found for the W-ino-like LSP. Moreover in
this case the signal is almost an order of magnitude
stronger in Zvy than in vy, however the two lines even
for M i 200 GeV are only 10 GeV away, even before

any smearing is taken into account. For the W-ino case the
contribution of the ¥? — ¥y transition to ¥ ¢! — Zvy is
negligible for the two scenarios we display in Table I. This
is not the case of the Higgsino scenarios (nor the b-ino—
like for that matter) where this contribution could amount

TABLE 1. Results of our calculation both at v = 0 and v = 0.5 for ¥'¥! — vy, ¥I%) — Zy and {0 — Z7y and comparison with
the codes of PLATON and DARKSUSY. For ¥ ¥} — Zy, “full” refers to the compete set of diagrams. “Part” refers to excluding the
j/? )}?'y insertion. Inputs are at the electroweak scale and are expressed in TeV. tan8 = 10. Ay = 0 apart from A, = —300 GeV for
my, = 0.8 TeV and A, = O for my = 10 TeV. We have taken the DARKSUSY inputs, with M, = 91.187 GeV and s2, = 0.2319 (but
My = Mzcy). The quark masses are m, = 175 GeV, m;, =5 GeV, m, = 56 MeV, m,; = 99 MeV, m; = 199 MeV, m_. =
1.35 GeV. a,,] = 127.942 and «, = 0.117. The relic abundance Qh?, extracted from MICROMEGAS, is also given for completeness.

Sugra nSugra Higgsino-1 Higgsino-2 Wino-1 Wino-2

M, 0.2 0.1 0.5 20.0 0.5 20.0
M, 0.4 0.4 1.0 40.0 0.2 4.0

m 1.0 1.0 0.2 4.0 1.0 40.0
M, 1.0 1.0 1.0 10.0 1.0 10.0
mj 0.8 0.8 0.8 10.0 0.8 10.0
Qh? 5.31 18.8 6.41 X 1073 1.59 1.16 X 1073 0.46
ov,, X 10?7

v=0 5.82 X 107 1.58 X 1073 7.01 X 1072 4.71 X 1072 1.99 1.52
PLATONDML 5.82 X 1073 1.58 X 107 7.01 X 1072 4,72 X 1072 1.99 1.53
DARKSUSY 5.81 X107 1.58 X 1073 7.02 X 1072 4.71 X 1072 1.99 1.52
v=205 5.94 X 107> 1.60 X 1073 1.30 X 107! 5.42 X 1073 2.36 8.69 X 1072
OUge X 1030

v=0 2.05 0.60 5.74 0.33 19.6 0.42
PLATONDMG 2.05 0.60 5.75 0.33 19.6 0.42
DARKSUSY 2.05 0.60 5.77 0.33 19.5 0.42

v =05 221 0.60 8.23 0.33 20.2 0.42
PLATONGREL 221 0.60 8.23 0.33 20.2 0.42
ovz, X 1077

v =0, full 2.03 X 1073 2.61 X 107° 2.19 X 107! 2.20 X 1072 11.7 10.1

v = 0, part 1.94 X 1073 2.50 X 1076 2.61 X 107! 3.29 X 1072 11.7 10.1
DARKSUSY 1.42 X 107 1.79 X 107° 2,61 X 107! 3.29 X 1072 11.7 10.1

v = 0.5, full 2.45 X 1073 3.67 X 107° 2.99 X 107! 1.66 X 1072 14.2 5.76 X 107!
v = 0.5, part 2.34 X 107 3.53 X 107° 3.58 X 107! 2.47 X 107! 14.2 5.76 X 107!
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to a correction of more than 30%. It is also interesting to
note, see later, that for the very heavy W-ino scenario the
cross section drops very quickly as we increase the veloc-
ity. We will study the W-ino and Higgsino case in more
detail below. For ¥ ¥} — gg, the LSP composition does
not show dramatic differences in the cross sections. The
largest are however found for a light W-ino and a light
Higgsino of 200 GeV.

Let us now turn to the comparisons, essentially for v =
0, with the codes PLATON and DARKSUSY. For this fine-
tuned comparison we have taken the same masses for the
quarks and M, as in DARKSUSY [12] as well as for the
electromagnetic and strong coupling. On the other hand we
imposed My = My,cy. Taking, for example, My =
80.33 GeV, with all other parameters as in Table I not
only gives gauge parameter dependent results, but in the
W-ino case the LSP would turn out to be the chargino.
Table I shows that our results (for v = 0) agree perfectly
with those of PLATONDML as concerns )Y — yy as well
as with PLATONDMG as concerns ¥ ¥} — gg. PLATONGREL
also perfectly confirms our results for {0 — gg for v =
0.5. Excellent agreement with DARKSUSY is also observed
(at v = 0) for ¥ ¥} — yy and ¥ ¥ — gg. To compare
with the results of DARKSUSY for {4 — Zy we do not
consider the contribution from the y; — ¥}y “insertion.”
With this restriction we find exactly the same results as
DARKSUSY in the case of the W-ino and Higgsino but not in
the case of the b-ino, where our results are about 30%
higher. However as pointed out earlier, the cross sections in
the b-ino case are tiny. The effect of the new contribution
from j; — gy for both v = 0 and v = 0.5 is not notice-
able when the neutralino is a pure W-ino, but it can be
important in the Higgsino case where the total contribution
is also large. The new contribution brings in a relatively
small correction in the b-ino case, where the cross sections
are tiny anyhow. Results for {9 — yy and ¥{ {0 — Zy
for v = 0.5 have been computed here for the first time and
can be relevant for the computation of the relic density in
some regions of the parameter space.

IV. THE W-INO AND HIGGSINO LIMITS

The results of Table I make it clear that most interesting
scenarios for the monochromatic 7y ray line signals are of a
W-ino and Higgsino type even when the LSP has a mass of
about 2M . Figure 3 shows the dependence of the ¥ ) —
yy and Y% — Zy cross sections at v = 0 as a function
of the LSP mass in the case of a W-ino and a Higgsino LSP.
The mass of the LSP is in the range 70 GeV to 100 TeV. In
fact masses below 100 GeV may be excluded by LEP2 but
it is interesting to see how the cross sections grow past the
100 GeV mass to stabilize around a plateau. The masses of
the other supersymmetric particles are taken extremely
heavy here. Note that in the Higgsino case 3! — Zy
shows much more structure. The peak cross section is
much more pronounced before the cross section decreases
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FIG. 3 (color online). Dependence of the yy and Zy cross
sections as a function of the LSP neutralino mass M o For the
Higgsino case we take M, = 2M, = 4 X 10° TeV and for the
W-ino u =M, =2X10>TeV. In both cases tang8 = 10,
M, = 100 TeV and all sfermions 4 X 10° TeV. We use My, =
Mycy, with sy, = 0.473, M, = 91.1884 GeV, o~ ! = 127.9.

and reaches a plateau of the same order as %) — yy.
The W-ino cross section for ! 5((1’ — Zv is the largest of all
and is almost an order of magnitude larger than {9% —
vy and 2 orders of magnitude larger than in the Higgsino
case.

It is also interesting to see how the plateau is reached for
a fixed mass of the W-ino and Higgsino LSP, or rather a
fixed value of M, and u, depending on the composition of
the LSP. We therefore fix these two values and vary the
other supersymmetric parameters of the neutralino sector.
The behavior of the cross section as we vary these parame-
ters is shown in Fig. 4. For the W-ino case one can see that
once M, u > M,, and therefore the LSP is mostly W-ino,
the asymptotic values are reached abruptly especially for
the case of a W-ino of 10 TeV and large tanS. Below this
transition, the cross sections have a smooth behavior. In the
Higgsino limit, a fast transition occurs once M, M, > u
but past this threshold there is still a smooth and slow
increase of the cross sections before the asymptotic values
are reached.

Most of this behavior can, in fact, be recovered through
simple analytical expressions that serve also as a further
check on our results and the accuracy of the calculation in
these extreme scenarios. It had been observed [9,11] that
when the LSP is heavy, much heavier that the W boson, the
cross sections (times velocity) for %" — yy and
X0 — Zy tend to an asymptotic value that can be com-
puted from the dominant contribution, that of diagram (a)
of Fig. 1. The limiting behavior can be easily understood
from the fact that in the heavy mass limit, the annihilating
LSP neutralino and the chargino are degenerate with a
mass much larger than the weak boson mass. This develops
a threshold singularity like what one finds in QED,
although here My, acts as a regulator. Another important
factor that measures how the asymptotic values are reached
is the deviation from exact degeneracy between the LSP
neutralino and the lightest chargino given by their mass

difference, 6m, ém = m T My [14]. This scenario has
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been revisited in a series of excellent papers [14] where it
has been shown how the one-loop calculation in these cases
need to be improved through a nonrelativistic treatment.
Our aim here, in the rest of this section, is to see how our
one-loop results can be made to match with the nonpertur-
bative treatment. This paves the way to an implementation
in a code for indirect detection that can be used in all
generality like what we have started to do in MICROMEGAS.

First, we will show how our one-loop results effectively
capture the behavior of the cross sections in these scenarios
and how the asymptotic value in the case of a W-ino is
reached dramatically fast.

In the Higgsino limit, u << M, M,. We will also take
M, = 2M, = 2Mg and consider also the large tanfB (in
fact tan8 > 2 suffices). p will be taken positive.

In the W-ino limit, M, << u, M. We will also take u =
M, = Mg and large tanB. The (tree-level) mass difference

in the Higgsino, dm", and W-ino limit, 8m"”, write

2 2

Smh = Zm—AZC%V(l — sin28) + z’%s%vu + sin28)
2
2 Mz )
16 M;
) 4 MEME, 1
Sm" =z 5 53 Cysin?2B ~ Z . W —.
Mu Mg tang

We see that in the W-ino case the mass difference scales
like 1/M3 [14]* compared to the 1/Mg in the Higgsino
case. In these configurations the cross sections are well
approximated [14] by ¢V”"v in the Higgsino case and
""" v in the W-ino case (V = Z, y) which are the results

of the dominant diagrams of Fig. 1(a),

~V%hv

I X
o a'},/oy’v1+ —

V=2Zy 2
where the asymptotic values (6m = 0) are given by
wh a'm 1072 cm3/s
o= —— ~ 3
4M%Vsﬁ, 3)

o = 160%""v ~ 1.6 X 107 cm?/s,

It is important to note that it is essential to have My =
M cy, otherwise we could get a mass difference o 1/Mj.
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- 1/2 — 23\2 -
a2ty = 2(/27;“/) oy ~ 0.8 X 10728 cm3 /s,
Swlw
4
Zyw ciy YW —26 i3
0" v =2—F0"v~107% cm’/s. 5)
s

w

We have verified that our code including the complete
contributions agrees extremely well with these approxima-
tion for the cross sections, Eq. (2), and that moreover in the
W-ino case the asymptotic values, Eq. (3), are reached very
fast due to very small 6m. This is also exemplified in Fig. 4.

As demonstrated in [14] the one-loop treatment of the
threshold singularity that is responsible for the behavior of
these cross sections in the Higgsino and W-ino regime at
high LSP mass is not adequate an breaks unitarity. The
nonperturbative nonrelativistic approach of Ref. [14] not
only improves on the calculation but it also unravels the
formation of bound states that drastically enhance the
annihilation cross sections for specific combinations of
masses. Figure 5 shows the effect of such resonances and
the departure of the cross section ¥ ¥{ — yy from a full
one-loop treatment as the mass of the Higgsino LSP in-
creases. The “‘resonance” curve is based on the use of a

Z v (wino)
7y (wino)
7y (higgsino) s
10° 10° 4 10°
M,(TeV)
Z v (wino)
v v (wino)
yyhiggsino) .|
-30
10
i) '
10 Lol i Ll L Ll J
1 10 107 10° 10 10°
M,(TeV)

FIG. 4 (color online). The first figure shows the dependence on
M, for w(M,) fixed in the Higgsino (W-ino) limit for yvy and
Zvy. The values for the SUSY parameters are: tanf = 10, m; =
4% 108 GeV,A =0,M, = 100 TeV. u = 50 TeV, M, = 2M,
in the Higgsino case. M, = 10 TeV and u = M, in the W-ino
case. In the figure at the bottom, the only parameters that are
changed are p = 10 TeV in the Higgsino case and tan8 = 2,
M, = 500 GeV in the W-ino case. The SM parameters are as in
Fig. 3.
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FIG. 5 (color online). Comparison, for /\7? X/(l) — 7 as a func-
tion M 0> between our prediction for the full one-loop calcula-
tion (continuous line, black), analytical one-loop expressions
based on the approximation of Eq. (2) (dotted, blue) and the
nonperturbative prediction based on the fitting functions includ-
ing resonances [14] (dashed, red). The input SUSY parameters
are M, =2M; =50TeV, tanf =10, A=0, mp =M, =
100 TeV. The SM parameters are as in Fig. 3. The inset is a
close-up for small M i

fitting function as given in [14]. All other particles are
taken heavy apart from the Higgsino mass parameter u
and M, = Mg = M,/2 = 25 TeV. For the whole range of
My ~ p we have 6m = 0.1 GeV. The figure also shows

the value of the approximate one-loop result as given for
the Higgsino limit in Eq. (2), together with the full one-
loop treatment based on our calculation. The resonance
formation, here around 6 TeV, brings an enhancement
factor of more than 4 orders of magnitude. On the other
hand departure from the full one-loop calculation is of
relevance only for M 7 masses around 1 TeV. The insert

in Fig. 5 shows in more detail the comparison of the full
calculation compared to the approximate result for the
smaller Higgsino LSP masses, well before the resonance
effects settle in. For M 7 = 600 GeV the approximation is

very good, only around M P 200 GeV, the full calcula-

tion captures the effect of other contributions like those of
Figs. 1(b) and 1(e). For this particular case it looks like a
good matching between the full one-loop result and the
nonperturbative one should be made at around M =

400 GeV. A possible strategy for choosing this matching
point would have to rely on the knowledge of both the full
one-loop result, the approximate one-loop result as given
Eq. (2) and the nonperturbative results based on the fitting
functions of Ref. [14]. This would, of course, only be
carried out in the limit of almost pure Higgsino or
W-ino. We would then have to compare the three results.
To revert to the nonperturbative regime means that the full
one-loop and the approximate one-loop agree fairly well
and are quite different from the nonperturbative regime. If,
on the other hand, these two one-loop results differ sen-
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sibly this means that one is not quite in the asymptotic
region and that we might be missing some one-loop con-
tributions. If this is the case one should also expect the
higher order effects computed for the threshold region to
be small so that the nonperturbative result and the approxi-
mate one-loop are very similar. Of course, as shown in the
example of Fig. 5 these differences in the Higgsino region,
compared to taking the perturbative parameterization, are
rather small compared to the uncertainty that is inherent in
the astrophysics part of the prediction of the gamma ray
line. For the W-ino, as we saw, the transition to the asymp-
totic value is rather drastic especially for TeV LSP’s, there-
fore one should quickly capture the nonperturbative
regime. Especially in this case one should also revert to a
one-loop use of the chargino-LSP mass difference.

V. CONCLUSIONS

There has been a flurry of activity in the last few years in
the search of dark matter with, among other strategies,
many experiments dedicated to the indirect searches of
dark matter, in particular, the gamma ray signal. The
monoenergetic gamma ray line signal constitutes a clean
signature. The improvement in coverage and accuracy of
the measurements should be matched by precise theoretical
calculations that should be publicly available through gen-
eral purpose codes. In this paper we have provided a new
calculation for ¥ ¥} — yy and ¥ ¥} — Zy for the anni-
hilation of the supersymmetric dark matter candidate and
rederived as a bonus the {){? — gg rate. These calcula-
tions have been made both for small (zero) relative velocity
of the neutralinos as adequate for annihilation in the halo of
our galaxy, for example, but also for velocities that would
be needed for the contribution of these channels in a
precise derivation of the relic density. For ¥ — yy
and 0% — Zy at v # 0 as would be needed for an
improved relic density prediction, these results are new.
For )¢ — yy three [9,10] full one-loop calculations
performed for v = 0 have already been performed. We
have performed a tuned comparison with the results of
DARKSUSY [12] and PLATON [10] and have found perfect
agreement. The calculation of 0¥} — Zy is trickier and
cannot just be deduced from ¥0 ) — 7. Until now there
has been only one calculation [11] of this process. The
latter has, however, missed some important contributions.
Comparisons of our results with the previous ones without
these contributions are quite good for scenarios where the
cross section is not small. In this paper we have not made
an attempt to fold in with the astrophysics part that in-
volves, for example, the halo profile but concentrated on
the particle physics part which must be an unambiguous
prediction. To pave the way for an implementation in
MICROMEGAS [15] we felt it was important to critically
review the large mass Higgsino and W-ino LSP scenarios
especially that the latter give large cross sections. As
shown in [14] one needs to go beyond the one-loop treat-
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ment in this regime. We have argued how one could match
the full one-loop treatment with the nonperturbative result.

Another important aspect of this paper is the way all
these calculations have been performed in a unified manner
and the techniques that we used. These processes are the
first application of a code for the calculation of one-loop
processes in supersymmetry both at the colliders and for
astrophysics/relic density calculations that require also a
new way of dealing with the reduction of the tensor inte-
grals. The calculations are performed with the help of an
automatized code that allows gauge parameter dependence
checks to be performed. The use of a generalized nonlinear
gauge is crucial.
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APPENDIX: SEGMENTATION OF LOOP
INTEGRALS

The tensor integral of rank M corresponding to a
N-point graph, {M, N}, that we encounter in the general
nonlinear gauge but with Feynman parameters £ = 1 are
such that M = N. For the evaluation of 2 — 2 processes
N = 4 is the maximum value and corresponds to the box.
The general tensor integral writes as

d’l L, -1
T(N) . — MV P , M <N,
gy (2m)" DoD; - - Dy,
M
(A1)
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where
i
D; = (I +5;)*> — M3, §; = ij, so = 0.
j=1

(A2)

M, are the internal masses, p; the incoming momenta and /
the loop momentum.

The N-point scalar integrals correspond to M = 0. All
higher rank tensors for a N-point function, M = 1, can be
deduced recursively from the knowledge of the N-point
(and lower) scalar integrals. In LOOPTOOLS [24] this is
based on the Passarino-Veltman algorithm ([31]. In
GRACE-LOOP the implementation is outlined in Ref. [21].
The tensor reduction involves solving, recursively, a sys-
tem of equations which explicitly requires the evaluation of
the Gram determinant: DetG(p;, p,, p3) = DetG o =
Detp;p;. For special kinematics the latter vanishes or can
get very small, leading to severe numerical instability. This
special kinematics for the general 2 — 2 process one en-
counters in high energy occurs for exceptional points in
phase space, for instance in extremely forward regions and
most generally the weight of this contribution may be
dismissed. For the case at hand, when the two neutralinos
are at rest, or with extremely low relative velocity, the
Gram determinant vanishes for all points because the in-
coming neutralinos have the same momentum and cannot
be considered independent. This is exactly what occurs in
our case. Indeed here, the box diagrams for ¥ — Zy
have the Gram determinant

. 26
DetG = M;O‘Uz(l_snlw(l - Zz),
, (A3)
=2 (1—v%/4),

v is the relative velocity and 6 is the scattering angle. For
X0 — vy, z = 0. In our application the subdeterminant
with the incoming LSP neutralinos is responsible for the
vanishing of the box Gram determinant for all angles:

1
Det G(py, py) = —Miv?

o1 =0 /4)* (A4

This also means that the reduction of the tensor integrals
for triangles with the two LSP as external legs, needs
special treatment. Such triangles are of the type Fig. 1(e)
[but not Fig. 1(d)].

We therefore need to implement a routine for cases when
the determinant vanishes due to the fact that the momenta
s;, 1 # 0 are not independent. There are a few ways of
dealing with the tensor integrals when the Gram determi-
nant is exactly zero [32,33]. Sometimes, the problem is
even avoided by the grouping of terms so that this spurious
inverse determinant cancels out. Our aim was to find, at
least for 2 — 2 process, an efficient method that can, not
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only be easily automated, but also calls most of the existing
routines that are present for a general purpose algorithm
designed for nonzero Gram determinants. Take the box for
example. Observe that (in any n dimension), in most gen-
erality, we may write for any given pair of constants «, 8

1 1 1 1
DyD,D,D; <D0D1D2 aDoD2D3 BD0D1D3
1

ta+p—1)—

la+ B )DlDzbg)

1 (AS)

>< y

A+ 21.(s3 — as; — Bsy)

A= (s% - M%) - a(s% — M%) — ﬁ(s% - M%)

—(a+ B — 1M}

Obviously if s; = as; + Bs, and hence the momenta
are linearly dependent, the box splits into a sum of tri-
angles. We will refer to this as segmentation. This segmen-
tation is independent of the tensor structure. This means
that the reduction of the tensor box with zero Gram deter-
minant amounts to a tensor reduction for triangle with a
nonzero Gram determinant for which one uses the usual
procedure and hence uses the general library. Observe that
if & = 0 or B = 0, there are three segments instead of four.
The missing segment, triangle integral, does in fact have a
zero Gram determinant. Therefore when one approaches
the zero of the Gram determinant of the box in these
specific cases, @ ~ 0 for example, a will be numerically
very small but nonzero. A numerical instability could still
develop due now to the Gram determinant of the associated
triangle. These ‘“‘algebraic” zeros could be missed at the
numerical level. This can again lead to (less severe) nu-
merical instabilities due to the reduction of the associated
tensor. In this case, these triangles are segmented even
further into two-point functions, following the same recipe.
In this way their contribution is negligible even at the
numerical, automatic, level. In any case, since we also
encounter (tensor) triangle diagrams [Fig. 1(e)] that have
a vanishing Gram determinant, we have also included a
segmentation that also applies to the tensor triangles using
the same trick as for the boxes.

There is an important observation to make. The segmen-
tation of a tensor of rank M for the N-point function,
{M, N}, amounts to applying the tensor reduction on
{M,N —1}. If M = N, after segmentation one would
need a library for {N, N — 1}. These are not supplied by
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default in the general libraries. These libraries would then
need to be extended. Reduction of N — 1-point function
tensor integrals are much more compact and easier than for
N-point functions. This said for the case at hand, and for
that matter any relic density calculation where the LSP is a
neutralino, these highest rank tensors are not needed. It is
easy to show that the highest rank tensors for 2 — 2 only
occurs when all the external particles are bosons. In our
case, for the box, one has M, = 3. For Y% — ff,
M max 2.

The choice of the momenta circulating in the loop, sy,
85, 83, 1s not unique and depends on the particular graph. If
DetG(sy, 54, 53) = 0 we first form all three subdetermi-
nants DetG(s;, s;) and take the couple s;, s; that corre-
sponds to Max|Det(s;, s;)|. Then the third s, is
distributed in the basis s;, 5; and the corresponding @ and
B are read. In fact, suppose DetG(s;, s,) # 0, then it is
revealing to always write

s3 = as, + Bs, +er with s1.e7 = s,.67 =0
(A6)
meaning ey, = €,,,55"s5 1
T.u naBé 1928 -

g7 is a vector that is orthogonal to both s and s, that is
easily reconstructed once « and 3 are

2 —
_ S2S3.S1 851.82872.53

, = — 55). (A7
DetG sy, 5,) B = als s2). (A7)
This construction makes it clear that

Det G(S], S, S3) = S%DetG(S], Sz). (A8)

This shows, in a most transparent manner, that the
determinant vanishes when 7 = 0. This can occur when
the components of this vector vanish, s’T‘ — (0, and there-
fore s5 is not an independent vector as the case of this paper
for v = 0. It also occurs, a point which is often overlooked,
when g7 is lightlike. However the orthogonality constraint
means that the other vectors s, s, are spacelike. Therefore
this case does not occur for real particles that are timelike,
and hence does not occur for our 2 — 2 process. It will be
shown, in a separate publication, that when e is lightlike a
segmentation is still possible. The algorithm can also be
improved by expanding around DetG(sy, 55, s3) = 0. We
will come back to the details of this issue in a future
publication. Note that for v = 0.5 and for all three pro-
cesses studied in this paper the standard reduction formal-
ism, without segmentation, was used.
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