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Phase effects from the general neutrino Yukawa matrix on lepton flavor violation
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We examine contributions from Majorana phases to lepton flavor violating processes in the framework
of the minimal supersymmetric standard model with heavy right-handed neutrinos. All phases in the
complex neutrino Yukawa matrix are taken into account in our study. We find that in the scenario with
universal soft-breaking terms sizable phase effects can appear on the lepton flavor violating processes such
as �! e�, �! e�, and �! ��. In particular, the branching ratio of �! e� can be considerably
enhanced due to the Majorana phases, so that it can be much greater than that of �! ��.
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I. INTRODUCTION

In the standard model lepton flavor violation (LFV) is
negligible, while it can be sizable in new physics models
such as those based on supersymmetry (SUSY). Therefore
search for LFV can be a good probe of new physics.
Observed tiny neutrino masses may be explained by the
seesaw mechanism [1], assuming heavy right-handed
Majorana neutrinos, which are compatible with the sce-
nario of grand unified theories (GUTs). In the framework
of SUSY models, LFV is induced through one-loop dia-
grams with slepton mixing [2]. In the SUSY model with
right-handed neutrinos, the slepton mixing can be induced
from the renormalization group effect of the neutrino
Yukawa interaction between the scale of right-handed
neutrino masses and the GUT scale, even when soft-
SUSY-breaking terms are universal at the GUT scale.

The neutrino mass matrix obtained via the seesaw
mechanism generally includes two Majorana phases [3].
They can be directly searched through neutrinoless double
beta decays [4]. The existence of these Majorana phases
can play an important role in various phenomena such as
leptogenesis [5], lepton number violating processes and so
on. Searches for these phenomena could provide a hint for
the neutrino Majorana mass matrix. Furthermore, as we
shall show below, the prediction on LFV can be drastically
changed by the Majorana phases.

In the present paper, we explore LFV processes such as
�! e� in the framework of the minimal supersymmetric
standard model with right-handed Majorana neutrinos
(MSSMRN) under the assumption of universal soft-
SUSY-breaking terms at the GUT scale MGUT. Neutrino
mass matrix m� is given by m� � YT�D�1

R Y�h�0
ui

2, where
Y� is the neutrino Yukawa matrix, DR is the right-handed
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neutrino mass matrix which is diagonal, and �0
u is the

neutral component of the Higgs doublet with hypercharge
�1=2. In the basis where the charged lepton mass matrix is
diagonal, the neutrino Dirac mass matrix mD � Y�h�0

ui
can be parametrized by [6,7]

mD �
�������
DR

p
R

�������
D�

p
Uy; (1)

where D� is the eigenmatrix of neutrino masses, R is a
complex orthogonal matrix (RTR � RRT � 1), and U is
the neutrino mixing matrix. In Refs. [7,8], the decay rates
of ‘i ! ‘j� �i � j� are evaluated by assuming that R is a
real orthogonal matrix and that the right-handed neutrino
masses are degenerate; i.e., DR � M� 1 where M is the
heavy Majorana mass scale. Under this assumption, the
effect of Majorana phases on the low energy phenomena is
screened. The relation among the branching ratios is given
by

Br ��! e�� ’
Br��! e��

Br��! ��e��e�
� Br��! ���; (2)

where current neutrino data have been used. The hierarch-
icalDR case with a real R has been analyzed in Ref. [6]. On
the other hand, the importance of the treatment of R as a
complex matrix has been pointed out in Ref. [7], by show-
ing that phases in R can give a substantial effect on low
energy phenomena.

In this paper, we discuss the role of the imaginary part of
R, and study the combined effect with Majorana phases in
neutrino mixing matrix on the branching ratios of the LFV
processes. We assume that DR � M� 1. We obtain ana-
lytic expressions of the branching ratios in two limiting
cases: i.e., one is the case with R being approximately a
real orthogonal matrix, and the other is with R being a
typical complex matrix. We find that

Br ��! e�� ’
Br��! e��

Br��! ��e��e�
� Br��! ���; (3)

in the wide range of the parameter space for a typical
complex matrix R. The branching ratio of �! e� can
be enhanced in comparison with that of �! ��. This is a
-1 © 2005 The American Physical Society
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novel feature with a complex R. We also give numerical
calculations in order to see how these two limiting cases
are extrapolated.

II. EVALUATION OF LFV BRANCHING RATIOS

In this section, we briefly review LFV in the MSSMRN
and discuss the Majorana phase effects on LFV processes.

In the model based on SUSY, LFV processes can occur
at the low energy scale through the slepton mixing. In the
MSSMRN, sizable off-diagonal elements of the slepton
mass matrix can be induced by renormalization group
effects due to the neutrino Yukawa interaction between
MGUT and M, even when universal soft-breaking masses
are assumed at MGUT. The induced off-diagonal elements
are approximately expressed as [2]

�m2
~L
�ij ’

6m2
0 	 jA0j

2

16�2 ln
MGUT

M
�Yy�Y��ij �i � j�; (4)

where m0 and A0 are universal soft-SUSY-breaking pa-
rameters. The decay rates for LFV processes ‘i ! ‘j�
�i � j� are given by

��‘i ! ‘j�� ’
�3

EMm
5
‘i

192�3

j�m2
~L
�ijj

2

m8
SUSY

tan2�; (5)

where �EM is the fine structure constant, mSUSY represents
the typical mass scale of SUSY particles, and tan� is the
ratio of vacuum expectation values of the two Higgs dou-
blets. The branching ratios are related to each other as

Br��! e��
Br��! ���

’
1

Br��! ��e��e�
j�myDmD�12j

2

j�myDmD�23j
2

 5:6

�
j�myDmD�12j

2

j�myDmD�23j
2
;

Br��! e��
Br��! ���

’
j�myDmD�13j

2

j�myDmD�23j
2
;

(6)

where experimental result Br��! ��e��e� � 0:1784 is
used. These ratios are determined only by the neutrino
Yukawa matrix.
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We work on the basis that the right-handed neutrino
mass matrix is diagonal, and assume that the matrix is
approximately proportional to the identity matrix; i.e.
DR ’ M� 1. By using Eq. (1) we obtain

myDmD ’ MU
�������
D�

p
RyR

�������
D�

p
Uy � MU

�������
D�

p
QyQ

�������
D�

p
Uy:

(7)

Here we have introduced a real orthogonal matrix O by
R � OQ, where Q is a product of Qa�a � 1–3� with

Q1 �

coshy1 i sinhy1 0
�i sinhy1 coshy1 0

0 0 1

0
@

1
A;

Q2 �

1 0 0
0 coshy2 i sinhy2

0 �i sinhy2 coshy2

0
@

1
A;

Q3 �

coshy3 0 i sinhy3

0 1 0
�i sinhy3 0 coshy3

0
@

1
A:

(8)

The matrices Qa satisfy that Qya � Qa and Q2
a�ya� �

Qa�2ya�. The matrix Q plays a role not only to introduce
the complex phases but also to change the size of Yukawa
couplings.1

The neutrino mixing matrix U is separated into two
parts, U � UMNSP, where UMNS is the Maki-Nakagawa-
Sakata matrix [9] in the phase convention of Ref. [10] and
P is the Majorana phase matrix given by P �
diag�1; ei�0 ; ei�0� with �0 and �0 being Majorana CP
violation phases [3]. In order to see qualitative features,
we here take the bimaximal mixing solution [11]

Ubimax
MNS �

1��
2
p 1��

2
p 0

� 1
2

1
2

1��
2
p

1
2 � 1

2
1��
2
p

0
BB@

1
CCA; (9)

for analytic calculations. In particular, we consider the
following three cases for D�: the normal hierarchical
(NH) case (m1 � m2 � m3), the inverse hierarchical
(IH) case (m3 � m1 
m2), and the quasidegenerate
(QD) case (m1 ’ m2 
m3);
NH: m1 ’ 0; m2 ’
�����������
�m2

�

q
; m3 ’

��������������
�m2

atm

q
; (10)

IH: m1 ’
��������������
�m2

atm

q �
1�

1

2

�m2
�

�m2
atm

�
; m2 ’

��������������
�m2

atm

q
; m3 ’ 0; (11)

QD:m1�m; m2’m	
�m2

�

2m
; m3’m	

�m2
atm

2m
: (12)
1We note that fine-tuning of order O�eya � is necessary to obtain
the light neutrino mass scale in the case of ya > 1.
Here, �m2
� � m2

2 �m
2
1�� 8:0� 10�5 eV2� [12] is the

squared mass difference for the solar neutrino mixing,
and �m2

atm � jm
2
3 �m

2
2j�� 2:5� 10�3 eV2� [13] is that

for the atmospheric neutrino mixing.
To evaluate myDmD, we consider the following two limit-

ing cases.
(a) The small ya limit (R is real):
We have Q � 1, and thus myDmD � MUbimax
MNS D�U

bimaxy
MNS ,

where the elements of myDmD are determined by neutrino
masses and the mixing matrix as
-2
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�myDmD�12 � �m
y
DmD�13 � �

M

2
���
2
p �m2 �m1�;

�myDmD�23 �
M
4
�m1 	m2 � 2m3�:

(13)

We then obtain from Eq. (6) that

Br��! e��
Br��! ���

’

8>>>><
>>>>:

5:6� 1
2 �

�m2
�

�m2
atm
� ’ 0:23; for NH;

5:6� 1
8 �

�m2
�

�m2
atm
�2 ’ 7:7� 10�4; for IH;

5:6� 1
2 �

�m2
�

�m2
atm
�2 ’ 3:1� 10�3; for QD:

(14)

For all the cases, it turns out that Br��! e�� ’
5:6� Br��! e�� � Br��! ���, as pointed out in
Refs. [7,8]. In this limit, the Majorana phases do not affect
the LFV processes.

(b) The large ya case:
The matrix Q has a simple form. First, the matrices Qa
behave as

Qa ’
eya���

2
p Qa; (15)

where

Q1 �
1���
2
p

1 i 0

�i 1 0

0 0 0

0
BB@

1
CCA; Q2 �

1���
2
p

0 0 0

0 1 i

0 �i 1

0
BB@

1
CCA;

Q3 �
1���
2
p

1 0 i

0 0 0

�i 0 1

0
BB@

1
CCA: (16)

They satisfy Qy
a �Qa and Q2

a �
���
2
p

Qa. As for the prod-
055012
uct of Qa such as Q 2 fQa;QbQa;QcQbQag, we find
an interesting relation as

Q yQ �
���
2
p

Qa: (17)

By using Eq. (17) QyQ is expressed by

QyQ ’
e2�y1	y2	y3�

4
���
2
p Qa: (18)

This means thatQyQ is characterized by three independent
matrices Qa (a � 1–3) for large ya. Thus, we examine the
following three cases, taking R � OQa ’ eyaOQa=

���
2
p

.
(b-1) R � OQ1:

We have

�myDmD�12 � ��m
y
DmD�13 �

�
Me2y1

2

�

�
m2 �m1 	 i2

������������
m1m2
p

cos�0

2
���
2
p ;

�myDmD�23 � �

�
Me2y1

2

�

�
m1 	m2 � 2

������������
m1m2
p

sin�0

4
:

(19)

Thus the LFV branching ratios are related as
Br��! e�� ’ 5:6� Br��! e�� for all cases.
For the NH case, we obtain Br��! e�� ’ 11:2�
Br��! ���. For the IH and the QD cases, one
finds

Br��! e��
Br��! ���

’ 11:2�
cos2�0

�1	 sin�0�
2 : (20)

This ratio is a function of �0. It is 11.2 for �0 � 0
or �, and 0 for �0 � �=2.

(b-2) R � OQ2:
The difference of the Majorana phases �0 � �0

enters into myDmD,
�myDmD�12 �

�
Me2y2

2

�m2 	 i
���
2
p ������������

m2m3
p

ei��0��0�

2
���
2
p ;

�myDmD�13 �

�
Me2y2

2

�
�m2 	 i

���
2
p ������������

m2m3
p

ei��0��0�

2
���
2
p ;

�myDmD�23 �

�
Me2y2

2

�
�m2 	 2m3 	 2

���
2
p
i
������������
m2m3
p

cos��0 � �0�

4
:

(21)
For the NH case and the IH case, the branch-
ing ratios of ‘i ! ‘j� are related to each
other as Br��! e�� ’ 5:6� Br��! e��,
and

Br��! e��
Br��! ���

’

8<
: 5:6�

����������
�m2

�

�m2
atm

r
’ 1:0; for NH;

11:2; for IH:

(22)
For the QD case, we obtain

Br��! e��
Br��! ���

’ 11:2�
3	 2

���
2
p

sin��0 � �0�

1	 8 cos2��0 � �0�
;

Br��! e��
Br��! ���

’
2�3� 2

���
2
p

sin��0 � �0��

1	 8 cos2��0 � �0�
: (23)

We have Br��! e�� ’ 5:6� Br��! e�� ’
3:7� Br��! ��� for �0 � �0 � 0 or �. The
-3



TABLE I. Summary of the ratios of the LFV processes.

Small ya Large ya
Q � 1 Q1 Q2 Q3

NH 0.23 11.2 1.0 � 1
Br��!e��
Br��!��� IH 7:7� 10�4 11:2� cos2�0

�1	sin�0�
2 11.2 11.2

QD 3:1� 10�3 11:2� cos2�0

�1	sin�0�
2 11:2� 3�2

��
2
p

sin��0��0�

1	8 cos2��0��0�
11:2� 3	2

��
2
p

sin�0

1	8 cos2�0

NH 5.6 5.6 5.6 5.6
Br��!e��
Br��!e�� IH 5.6 5.6 5.6 5.6

QD 5.6 5.6 5:6� 3�2
��
2
p

sin��0��0�

3	2
��
2
p

sin��0��0�
5:6� 3	2

��
2
p

sin�0

3�2
��
2
p

sin�0
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ratio Br��! e��=Br��! ��� takes its mini-
mum value 1.9 at �0 � �0 ’ ��=2.

(b-3) R � OQ3:
The Majorana phase �0 enters into myDmD. We
obtain

�myDmD�12�

�
Me2y3

2

�
�m1	 i

���
2
p ������������

m1m3
p

e�i�0

2
���
2
p ;

�myDmD�13�

�
Me2y3

2

�m1	 i
���
2
p ������������

m1m3
p

e�i�0

2
���
2
p ;

�myDmD�23�

�
Me2y3

2

�

�
�m1	2m3� i2

���
2
p ������������

m1m3
p

cos�0

4
:

(24)

In this case j�myDmD�ijj
2 can be obtained from

case (b-2) by replacing m2 with m1 and �0 � �0

with �� �0. The branching ratio Br��! e��
is suppressed in the NH case because of Br��!
e�� ’ 5:6� Br��! e�� ’ 5:6� �m2

1=�m2
atm� �

Br��! ��� � Br��! ���. For the IH case, the
branching ratios are related to each other as
Br��!e��’5:6�Br��!e��’11:2�Br��!
���. For the QD case, relation among the ratios of
branching ratios is obtained from Eq. (23) by
changing �0 � �0 to �� �0.

The results are summarized in Table I.
For the ratio Br��! e��=Br��! e��, Q does not con-

tribute except for the QD case with Q � Q2 or Q3 where
the Majorana phases give a significant effect. The drastic
effect occurs for Br��! e��=Br��! ��� by Q or by the
interplay between Q and the Majorana phases. The sub-
stantial enhancement arises in Br��! e��, which is a
quite different feature from the case with Q � 1. By the
introduction ofQ�� 1�, the Majorana phases can affect the
LFV processes. In the present situation, this fact is quite
interesting because the observation of the LFV processes
would give useful information of the Majorana phases.
III. NUMERICAL RESULTS

In the previous section, we consider the two limiting
cases for the parameter ya. When ya take the intermediate
055012
values, we may guess the result by extrapolating from the
two limits, but some nontrivial structure might appear.
Therefore, we perform the numerical evaluation of the
LFV branching ratios for three typical cases, R �
OQa�a � 1–3�. Neutrino mixing parameters are taken to
be tan2	� � 0:45 [12], sin2	atm � 1 [13], and sin	13 � 0.
The values for M and MGUT are taken as M � 1010 GeV
and MGUT � 2� 1016 GeV. The SUSY parameters are
taken to be m0 � A0 � mSUSY � 100 GeV and tan� �
10. For standard model parameters �EM � 1=137 and v �
246 GeV are used. It will be shown that the ratios of the
branching ratios are not sensitive to SUSY parameters,
right-handed neutrino mass scale, and the GUT scale.

We analyze the ya dependences of Br��! e��=Br��!
���. The result for the NH case is shown in Fig. 1. We find
the smooth extrapolation in Br��! e��=Br��! ��� be-
tween O�0:1� and O�1� for R � OQ2 with �0 � �0 � 0
and between O�0:1� to O�10�6� � 1 for R � OQ3. For
R � OQ1, some structure is observed between O�0:1� and
O�10�. The ratio blows up around y
 1:3 due to the
vanishing Br��! ���. There is no �0 dependence.

The IH case is shown in Fig. 2. The dotted (dashed)
curve represents Br��! e��=Br��! ��� for R � OQ2

(OQ3) where the smooth extrapolation is found between a
very small value to about 50 (2), where there is no �0

dependence. The case R � OQ1 is shown for solid curves,
which has the Majorana phase �0 dependence. For all
cases, we find the smooth extrapolations between two
limiting values, the small ya and the large ya.

For the QD case with R � OQ2, the ratio of the branch-
ing ratios depends on �0 � �0, and is roughly obtained by
replacing �0 to �� ��0 � �0� in the formula for R �
OQ3. The results for R � OQ1 are similar to those for
the IH case with R � OQ1. In Fig. 3, we show the y3

dependence for the case with R � OQ3 for �0 � �0 � 0,
3�=4, 3�=2. The enhancement occurs for �0 � �0 �
3�=4 because Br��! ��� is suppressed.

In Fig. 4, Br��! e�� with R � OQ1 is shown as a
function of y1. As y1 grows, the neutrino Yukawa couplings
become large for all the neutrino mass spectrum. Thus, the
smooth extrapolation is obtained, so that the two limiting
cases give the general trend of the ya dependence. In many
cases, the Majorana phases play an important role on the
-4
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FIG. 4. The LFV branching ratios Br��! e�� are shown in
the NH case, the IH case with �0 � 3�=4 and the QD case with
�0 � 3�=4 for R � OQ1.
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case for Q1 (solid curve), for Q2 with �0 � �0 � 0 (dotted
curve), and for Q3 (dashed curve).
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prediction of the LFV processes. Therefore, we can obtain
useful information of the Majorana phases from the ex-
perimental data of the LFV processes.
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FIG. 3. The ratio of the branching ratios is shown in the QD
case for Q3 with �0 � 0, 3�=4, 3�=2.
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FIG. 2. The ratio of the branching ratios is shown in the IH
case for Q1 with �0 � 0, 3�=4, 3�=2 (solid curves), for Q2

(dotted curve), and for Q3 (dashed curve).
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IV. CONCLUSION

In this paper, we have shown the importance of the
complex nature of the neutrino Yukawa matrix. In the
MSSMRN with universal soft-breaking masses at the
GUT scale, we have demonstrated that the LFV process
will play an important role to obtain information of the
Majorana phases where right-handed neutrino masses are
all degenerate. With the complex R, the Majorana phases
play an important role for the prediction of the LFV
processes. In order to see the effect analytically, we have
taken the parametrization, R � OQ. We have considered
the two limiting cases: the small ya case with Q � 1 and
the large ya case with complex matrixQ. We have obtained
the analytic expressions for ratios of the branching ratios of
�! e�, �! ��, and �! e�, which are shown in
Table I. The effect of Q is sizable and gives enhancement
of Br��! e��=Br��! ��� in many cases. In particular,
the Majorana phases contribute to some cases. This would
give a possibility to obtain useful information of Majorana
phases by observing the LFV processes. This is quite
interesting and important because extracting the informa-
tion for the Majorana phases can be used to examine the
nature of neutrinos.

It may also be interesting to discuss the possibility to
determine the neutrino Yukawa matrix by analyzing the
double beta decay, the �� ! e	 [4,14] and �� ! �	

conversion [15], the LFV processes which occur through
SUSY contributions, and the leptogenesis.
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