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We study the Abelian projected SU�2� lattice gauge theory after gauge fixing to the maximally Abelian
gauge (MAG). In order to check the universality of the Abelian dominance we employ the tadpole
improved (TI) tree level action. We show that the density of monopoles in the largest cluster (the IR
component) is finite in the continuum limit which is approximated already at relatively large lattice
spacing. The value itself is smaller than in the case of Wilson action. We present results for the ratio of the
Abelian to non-Abelian string tension for both Wilson and TI actions for a number of lattice spacings in
the range 0:06 fm< a< 0:35 fm. These results show that the ratio is between 0.90 and 0.95 for all
considered values of lattice couplings and both actions. We compare the properties of the monopole
clusters in two gauges—in MAG and in the Laplacian Abelian gauge (LAG). Whereas in MAG the
infrared component of the monopole density shows a good convergence to the continuum limit, we find
that in LAG it is even not clear whether a finite limit exists.
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I. INTRODUCTION

The dual superconductor scenario of confinement has
received support from many observations made as well in
gluodynamics [1,2] as in full lattice QCD [3]. The most
intensively investigated case was SU�2� gluodynamics.
The scaling properties of many gauge dependent observ-
ables such as the Abelian string tension, the effective
monopole action, the monopole density, etc. have been
checked. It has been shown that some properties of the
monopoles in maximally Abelian gauge (MAG) can be
explained by percolation theory or by free particle field
theory [4]. Despite this progress there is lack of universal-
ity checks, i.e. the independence of the choice of action has
not been confirmed. Apart from papers [5,6], always the
Wilson action for the gauge field has been employed. In
comparison with Ref. [5], where the same tadpole im-
proved (TI) action was used, we have much better statistics
and better gauge fixing, i.e. lower effects of gauge fixing
ambiguities. In [6], where a different improved action was
considered, the study was made for one value of lattice
spacing only and thus no scaling studies were attempted. In
the present paper we are aiming to make a contribution to
closing this gap. The other, perhaps even more important
problem is the dependence on the gauge condition used for
Abelian projection. There are various opinions on this
problem. Some authors believe that the occurrence of
monopole condensation itself and, correspondingly, the
dual superconductor properties of the vacuum have to exist
and do exist in any Abelian gauge [7]. On the other hand
recent results [8] obtained with the Fröhlich-Marchetti
monopole creation operator show that the monopole con-
densate depends on the choice of the Abelian gauge. In [9]
it was argued that in the Abelian gauge defined by diago-
nalization of the Polyakov loop operator the condensation
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of monopoles does not necessarily lead to formation of the
Abelian flux tube between static quarks. We share the
opinion, that any Abelian projection is made with the
goal of separating degrees of freedom responsible for
infrared physics, which thus should carry all low momenta
of the original non-Abelian gauge field, from ultraviolet
degrees of freedom which are responsible for short dis-
tance physics (if they have a sensible continuum limit) or
might even be mere lattice artefacts. Such separation does
not need to be accomplished in any conceivable Abelian
gauge. Rather we expect that there might exist a class of
gauges which indeed have this property. The MAG is a
very likely candidate to belong to this class, and the
Laplacian Abelian gauge (LAG) [10] is widely considered
as another good candidate. Since the analytical study of
these gauges in the nonperturbative regime is very difficult
and has not been accomplished so far despite many recent
attempts (for MAG studies see, e.g. [11] and references
therein), the numerical study is the only way to approach
this problem in practice. Therefore, in this study we also
compare some of the properties of these two gauges. From
the above point of view, the issue of universality, it turns
out that MAG is really unique to allow the separation of
scales attempted by Abelian projection.

The paper is organized as follows. In Section II we
specify the technical tools, in particular, the improved
action used here in contrast to the Wilson action and the
method of gauge fixing. Then, in Section III, we briefly
report on the evaluation of the string tension for the pur-
pose of calibrating the lattice scale corresponding to the
improved action. Section IVA contains our observations
concerning the scaling properties of the monopole den-
sities and their IR and UV components for both actions in
the maximally Abelian gauges. In section IV B we show
that similarly to MAG the monopole clusters obtained in
-1 © 2005 The American Physical Society
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BORNYAKOV, ILGENFRITZ, AND MÜLLER-PREUSSKER PHYSICAL REVIEW D 72, 054511 (2005)
the Laplacian Abelian gauge might be splitted into IR and
UV components but their scaling properties are quite dif-
ferent from those observed in MAG. Section V is devoted
to the Abelian dominance study. Our results indicate uni-
versality of the Abelian dominance in the continuum limit.
Finally we summarize our findings in Section VI.
TABLE I. Details of the simulations with improved action.

�imp L Nconf u0 hPi1=4
���������
�a2
p

2.7 12 60 0.87164 0.87165(2) 0.60(5)
3.0 12 200 0.89485 0.89478(2) 0.366(8)
3.1 12 200 0.90069 0.90069(1) 0.309(6)
3.2 16 200 0.90578 0.905765(3) 0.258(5)
3.3 16 100 0.91015 0.910152(4) 0.219(3)
3.3 20 50 0.91015 0.910153(3) 0.215(3)
3.4 20 100 0.91402 0.914020(2) 0.180(3)
3.5 20 100 0.91747 0.917481(1) 0.151(3)
3.5 24 50 0.917475 0.917484(2) 0.152(2)
II. SIMULATION DETAILS

To address again the question of universality, we employ
here the tree level improved action of the form [12]

S � �imp

X
pl

Spl �
�imp

20u2
0

X
rt

Srt; (1)

where Spl and Srt denote plaquette and 1� 2 rectangular
loop terms in the action

Spl;rt �
1

2
Tr�1�Upl;rt�; (2)

the parameter u0 is the input tadpole improvement factor
taken here equal to the fourth root of the average plaquette
P � h12 trUpli.

In our simulations we have not included one-loop cor-
rections to the coefficients, for the sake of simplicity and
also to be able to compare with the results of Ref. [5] after
making a few improvements in comparison with this work
in other directions. First, we improved substantially the
gauge fixing as will be explained later. Second, we have
now better statistics and worked on larger physical vol-
umes. This has allowed to determine more reliably various
Abelian observables and their infrared part. Third, we have
used a new smearing technique which enabled us to make
more precise measurements of the non-Abelian string ten-
sion. This was necessary to assess the nonperturbative
scaling of various monopole densities.

We also make a comparison of these Abelian observ-
ables obtained in MAG and LAG, respectively. The MAG
is fixed by the maximization of the lattice functional

F�U� �
1

8V

X
n;�

Tr��3Un;��3U
y
n;��; (3)

with respect to local gauge transformations

Un;� ! Ug
n;� � gnUn;�g

y
n��: (4)

For MAG we applied the simulated annealing algorithm.
The details of the gauge fixing procedure can be found in
[13]. We have applied the algorithm to 10 randomly repli-
cated gauge copies of each Monte Carlo configuration in
the hope to find among the 10 local maxima one closest to
the global maximum. This procedure proved to be the best
so far to fix MAG as well as to fix center gauges [14].
Although there is no proof we hope that our results for
gauge noninvariant observables are numerically close to
those we would obtain evaluating it at the gauge equivalent
054511
representant carrying the global maximum of (3) for every
configuration of the gauge field.

Fixing the LAG amounts to finding the eigenvector with
the lowest eigenvalue of the covariant Laplacian operator
in the adjoint representation,

��ab
nm �

X
�

�2�nm�
ab � Rabn;��m;n��̂ � R

ba
n��̂;��m;n��̂�

(5)

with the adjoint link variable

Rabn;� � Tr��aUn;��bU
y
n;��: (6)

The gauge transformation gn is then determined by the
requirement to rotate this eigenvector �a

n to the 3rd color
axis at every site n:

�n�3 �
X3

a�1

�a
ngn�ag

y
n ; �n �

�������
~�2
n

q
: (7)

The simulations with the action (1) have been performed
with parameters given in Table I. The parameter u0 has
been iterated over a series of Monte Carlo runs in order to
match the fourth root of the average plaquette P. The
corresponding entries give an impression of the accuracy
of matching. For two values of �imp we simulated lattices
of two sizes. The value of the parameter u0 fixed on smaller
lattice was used as an input for larger lattice simulations.
The string tensions obtained on these lattices are in agree-
ment within error bars. The smaller (larger) lattices were
used to study LAG (MAG).
III. THE NON-ABELIAN STRING TENSION

In order to fix the physical lattice scale we need to
compute one physical dimensionful observable the value
of which is known. For this purpose we choose the string
tension �. The string tension for action (1) was computed
long ago in [5] but we will improve this measurement
according to present standards. We use the hypercubic
blocking (HYP) invented by the authors of Ref. [15] to
reduce the statistical errors. This method has been success-
fully applied to static potential calculations in SU�3� gluo-
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FIG. 1. Non-Abelian potentials for the TI action obtained
without (circles, SM only) and after (squares, with HYP) hyper-
cubic blocking (both with spatial smearing) vs R=a for T=a � 5
at �imp � 3:4.
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dynamics [15–17] and in full lattice QCD at finite tem-
perature [18]. After one step of HYP, about 20 sweeps of
APE smearing [19] were applied to the spacelike links. The
spatial smearing (SM) is made, as usually, in order to
variationally improve the overlap with a mesonic flux
tube state. In Fig. 1 we compare potentials obtained with
and without HYP procedure. As was observed in the cited
above papers the HYP potential differs essentially by a
constant shift corresponding to reducing the static source
self-energy. One can see from the figure that HYP de-
creases both statistical errors and effects of rotational
invariance breaking. Since HYP changes the potential at
small distances we included only distances R=a > 2 into
our fits of the static potential. The resulting values for���������
�a2
p

are also included in Table I. The string tension was
also calculated with Wilson action. In this case APE
smearing for space links and the additional trick of link
integration [20] for time links were used in the evaluation
of Wilson loops. The results for

���������
�a2
p

and details of
simulations with Wilson action are presented in Table II.
TABLE II. Details of the simulations with Wilson action.

� L Nconf

���������
�a2
p

2.40 32 35 0.264(7)
2.45 24 100 0.226(3)
2.50 24 100 0.185(2)
2.55 28 100 0.159(2)
2.60 28 100 0.1319(15)
2.65 32 40 0.114(2)
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IV. THE MONOPOLE DENSITY

A. MAG

After fixing the Abelian gauge the Abelian projection
can be made:

Un;� � Cn;�un;�; (8)

where the Abelian field is contained in un;� �
diag�ei�n;� ; e�i�n;��, �n;� 2 ���;��, and Cn;� is the coset
field describing charged gluons. The Abelian plaquette
angle

�n;�	 � @��n;	 � @	�n;� (9)

is decomposed into regular and singular parts:

�n;�	 � �n;�	 � 2�mn;�	; �n;�	 2 ���;��: (10)

�n;�	 is a physical Abelian flux through the lattice pla-
quette {n, �	g, and mn;�	 counts the number of Dirac
strings through this plaquette. The magnetic currents are
then defined as follows:

kn;� �
1

2

�	��@	�n;�� � �

1

2

�	��@	mn;��: (11)

We will measure the monopole density in lattice units
�lat defined as

�lat �
X
n;�

jkn;�j

4L4 : (12)

Since monopoles are three-dimensional objects their
physical density is related to the lattice density by a3� �
�lat. With Wilson action, the first measurement of the
monopole density in MAG gauge has been made in [21]
with participation of the authors of the present paper. That
result was interpreted in the sense of asymptotic scaling. In
fact, the observation of asymptotic scaling at � values in
the range from 2.4 to 2.6 would seem rather strange today.
It is known that the string tension does not follow the two-
loop renormalization group formula over this range in �,
such that the result obtained in [21] actually implies the
divergence of the monopole density with �!1. The
situation has been partially clarified by Hart and Teper
[22,23]. These authors found that on large enough lattices
the network of magnetic currents in each configuration
consists of one large cluster and many other clusters with
much smaller size. The spectrum of cluster sizes falls into
two very distinctive parts, disconnected by a gap. The
density of currents forming the largest (percolating) cluster
�IR has been measured in units of the string tension and a
first indication of scaling of the ratio �IR=�3=2 has been
found. More accurate measurements [24] have corrobo-
rated this kind of scaling behavior. The continuum limit for
this ratio was determined as �IR=�3=2 � 0:65�2�.

Another important result obtained in Refs. [22,23] was
the observation that the largest cluster alone produces al-
-3
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most the full monopole string tension. This fact has al-
lowed the authors of Ref. [25] to call the monopoles
belonging to this cluster ‘‘infrared monopoles’’ (IR) while
the monopoles from the remaining clusters were called
ultraviolet (UV) monopoles, implying that these mono-
poles are not relevant for IR physics. We should mention
that, despite the fact that they are not relevant for the
confining properties of the vacuum as supported by nu-
merical observation, their relevance for the topology and
therefore for the chiral properties of the vacuum has not yet
been explored. We will keep (and have already used) the
above notation, quoting IR and UV monopoles in the
following. In Ref. [24] it has been demonstrated that the
density of UV monopoles, hence the total density, diverges
in the continuum limit.

It should be noticed that in [22,23] a single, supposedly
percolating, cluster with a size much larger than all other
clusters in the given configuration was only found on large
enough lattices. For decreasing lattice size L and fixed
lattice spacing this gap disappears, i.e. the largest and the
second-largest cluster are of similar size. Consequently, the
important property that the largest cluster alone produces
almost the full monopole-related string tension, is lost.
This implies ‘‘splitting’’ of the largest cluster when the
lattice volume decreases. It was also found in [22,23] that
the critical value of the lattice size Lcrit, below which the
largest cluster splits, is in the range of lattice sizes, where
physical quantities do not show large finite volume effects,
and, moreover, Lcrit, measured in physical units, increases
with decreasing lattice spacing. Such behavior implies that
in the continuum limit the gap in the spectrum of cluster
sizes might disappear and a clear separation of IR and UV
monopoles may become impossible.

The solution of this problem was suggested in [24]. It
was found empirically that the splitting of the largest
cluster leads to formation of clusters (rare for large enough
lattices) with nonzero winding

w� �
1

L�

X
kx;�2cluster

kx;�: (13)

Such clusters might be very large on given configurations
or be of moderate size. In both cases they extend through
the whole lattice at least in one direction and thus should be
considered as relevant for the infrared physics.
Furthermore, two or more of such clusters (forming to-
gether a combination of clusters with zero total winding
w�) might form boundaries of the same Dirac sheet, which
is closed in one or more directions due to periodic bound-
ary conditions. Let us note that in case of two wrapping
clusters present in one configuration they unambiguously
form the boundary of the same Dirac sheet. When three
wrapping clusters are present they also form the boundary
of one Dirac sheet or boundaries of two Dirac sheets. In the
latter case one of the clusters forms part of the boundaries
of both Dirac sheets while two others form part of the
054511
boundary of one of those Dirac sheets. It is natural to
consider such clusters as one cluster when it concerns the
determination of clusters relevant for IR physics. It is also
clear that the splitting phenomena can be, at least partially,
ascribed to the annihilation of parts of the percolating
cluster through boundary conditions leading to formation
of two disconnected clusters which still form a boundary of
one Dirac sheet.

Based on these observations, it was suggested in [24] to
define, for each configuration, a single IR cluster as the
union of the largest cluster (which might have trivial or
nontrivial winding) and all clusters with nonzero winding.
Numerical evidence was further presented in [24] that
under such definition the size of the largest cluster changes
smoothly with the lattice size for physically large lattices.
There are preliminary results of ours to be published else-
where, showing that with this definition the IR cluster
alone reproduces almost the full monopole-related string
tension. We will use this definition in what follows.

As for lattice fields generated with TI action (1), the
monopole density has been measured by Poulis [5]. He
concluded that the total density has correct scaling in the
continuum limit. In the light of the discussion above this
would mean that the TI action would take an exclusive
role. However, as we show below, this conclusion was
wrong.

In Fig. 2 we show the distributions of the monopole
clusters length for Wilson action at � � 2:55 and for TI
action at �imp � 3:5. Note, that a single IR cluster per
configuration has entered the histograms which has been
defined for the configuration at hand as described above.
One can see that these distributions are qualitatively simi-
lar, i.e. for the TI action we also observe a clear splitting of
the clusters into IR and UV clusters.

Our results for the densities of IR and UV monopoles
and the total density, taken in lattice units, are presented in
Table III. In physical units of �3=2, the results are shown as
a function of lattice spacing (in units of

���������
�a2
p

) in Fig. 3.
One can see that the IR density converges to a finite value
in the limit a! 0. In contrast to this, the density of UV
monopoles, and thus the total density, behaves divergent in
the continuum limit. We thus find that the TI action leads
qualitatively to the same picture as was observed before
with the Wilson action.

To make a quantitative comparison we plotted in Fig. 4
�IR (left) and �UV (right) for two actions. From these
figures one can see quantitative differences. The contin-
uum value of �IR=�3=2, obtained with a quadratic fit, is
0.50(1) for TI action and 0.71(2) for Wilson action, i.e. they
differ by factor 1.4. We should make a comment on the
different procedures of calculation of �IR=�3=2 for Wilson
action in the present paper and in Refs. [24,26]. One
difference is that in these papers only subsets of the full
ensembles of gauge field configurations used in the present
paper were employed. Another, more important difference
-4



FIG. 2. The monopole cluster length distribution N�l� at � � 2:55 for the Wilson action (left) and at �imp � 3:5 for the TI action
(right).
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is that, in these earlier papers values of � from literature
were used, while here we are using values of � calculated,
as described in the previous section, i.e. on the same set of
configurations on which the monopole density was
calculated.

The observed difference in �IR measured for TI and
Wilson actions, though not being drastically large, means
that the present definition of IR density is not universal.
This makes it difficult to ascribe to it a meaning as a
physical, gauge invariant density. It is evident that the
source of the discrepancy in the values of �IR might be
the appending of UV monopoles, i.e. small loops, to IR
monopole clusters. Since the TI action suppresses UV
degrees of freedom stronger than Wilson action, it is
natural to expect that this additional length assigned to
the IR cluster is smaller for TI action. Whether this is the
only reason deserves further investigation.

The density of UV monopoles is reduced much more
substantially, roughly by a factor 2.5, as can be seen from
Fig. 4 (right). We can say that the TI action indeed sup-
presses (part of) the UV degrees of freedom. As generally
expected for an improved action, one can also see earlier
and faster convergence to the continuum limit.

As it has been mentioned above, the UV monopole
density diverges. It is natural to ask to which power of
a�1 this divergence is compatible. It was first found in [24]
that for the Wilson action �UV � 1=a. In Ref. [26] this was
confirmed with higher confidence. Figure 4 (right) shows
TABLE III. Density of monopoles.

�imp �MAtot �MAIR �LAtot �LAIR

2.7 0.08845(25) 0.08014(30) 0.1103(5) 0.1032(5)
3.0 0.03537(16) 0.02560(23)
3.1 0.02397(15) 0.01529(20) 0.0387(3) 0.0282(3)
3.2 0.01534(11) 0.00869(14)
3.3 0.00982(6) 0.00509(8) 0.0200(2) 0.0118(2)
3.4 0.00618(4) 0.00297(5)
3.5 0.00384(3) 0.00170(4) 0.0103(2) 0.0049(2)
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a�UV=� for both actions. For TI action this ratio seems to
rapidly converge to a finite value in the continuum limit as
soon as

���������
�a2
p

< 0:25 . This implies that �UV � 1=a also
for TI action. Note, that the convergence for the TI action is
faster than for the Wilson action, as can be seen from Fig. 4
(right). If the existence of a reasonable continuum limit in
the latter case would be confirmed, then only for

���������
�a2
p

	
0:1, and the limit value would be markedly larger than for
the improved action. In any case, the data clearly show that
the UV monopole density and therefore the total density of
monopoles is not universal.

The TI improved action has corrections of order
O��sa2� andO�a4�while the Wilson action has corrections
of order O�a2�. Thus it is natural to expect that some
contribution of lattice artifacts to the monopole density is
suppressed in case of the improved action. Now we are able
to conclude that a considerable part of the UV monopoles
FIG. 3. The monopole densities in MAG for the case of the TI
action. The dashed line shows a quadratic fit.
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FIG. 5. The small (UV) clusters’ length distribution in MAG for the Wilson action at various � (left) and for the TI action at various
�imp (right). Curves are fits to Eq. (14).

TABLE IV. Parameters of the fits to Eq. (14) of the small
clusters’s length distribution in MAG for both actions.
Respective fit ranges (lmin, lmax) are also shown.

� � c��� lmin lmax �imp � c��� lmin lmax

FIG. 4. Comparison of the monopole densities obtained with TI (full symbols) and Wilson actions (open symbols) in MAG: left—IR
monopole density; right—UV monopole density.

BORNYAKOV, ILGENFRITZ, AND MÜLLER-PREUSSKER PHYSICAL REVIEW D 72, 054511 (2005)
in the Wilson action case (more than 50%) are lattice
artifacts. In contrast to this, we notice that IR monopoles
are not much affected by lattice artifacts.1 Whether the
value of �IR obtained with the improved action is already
the final universal one is an open question. This should be
checked in simulations with other improved actions.

The interesting, yet unanswered question is the physical
role of UV monopoles. It was found in [22,23] and then
confirmed with higher precision in [26] that the number
N�l� of small clusters of length l falls like

N�l�

L4
� c���=l�; (14)

where � 
 3. The value � � 3 was shown to be in agree-
ment with percolation theory and also to be derivable
within the polymer approach to the field theory of free or
Coulomb-like interacting scalar particles [4]. Our data for
both actions are also in agreement with relation (14), with
values of parameter � close to 3, as can be seen from Fig. 5
and Table IV.
1The IR density is definitely affected by the roughness of
monopole currents inside the largest cluster, and hence not
completely free of discretization artifacts.

054511
Let us come back to the observation that �UV �
1
a . This

implies that magnetic currents from small clusters have a
finite density per unit of 2D volume rather than per unit of
3D volume which is actually the case for the IR magnetic
currents. It has been recently verified that the density of
P-vortices in the indirect Z�2� center gauge is finite in the
continuum limit [27]. On the other hand, it is known that in
this gauge P-vortices and monopoles are highly correlated
[28,29]. It is then natural to assume that magnetic currents
belonging to the small clusters ‘‘populate’’ the surfaces
formed by P-vortices with some constant density. The
strong reduction of the density of UV monopoles in the
case of TI action in comparison with Wilson action sug-
2.45 2.93(2) 0.23(2) 10 70 3.3 2.97(4) 0.12(1) 8 40
2.50 2.99(2) 0.20(1) 12 50 3.4 3.01(7) 0.08(2) 10 30
2.55 3.08(2) 0.17(1) 10 50 3.5 2.87(9) 0.03(1) 10 30
2.60 3.11(6) 0.12(2) 14 40
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FIG. 6. The constrained UV monopole density derived from the small clusters’ length distribution Eq. (15) for TI (left) and Wilson
(right) actions.
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gests that the density of P-vortices will be suppressed, too.
This should be checked in a future calculation.

We now introduce a regularized UV monopole density
by summation of the average number of small clusters of
length l per lattice volume, i.e. N�l�, multiplied by the
length l. In this definition we shall exclude clusters below
a certain (minimal) length scale lph specified in natural
units:

�UV�lph� �
1

4L4a3

X
l�lph=a

N�l�l: (15)

We call this UV monopole density ‘‘constrained density.’’
This definition counts all monopole currents in small clus-
ters with a length above or equal lph, and the emerging
density depends on it as a parameter. Thus, very small
loops sensitive to the ultraviolet cutoff are excluded. In
Fig. 6 we show �UV�lph�=�3=2 as a function of lph for both
actions. One can see that scaling is very good as long as
lph

����
�
p

< 2 in the case of the TI action and lph
����
�
p

< 4 in
the case of Wilson action. In general, scaling becomes
worse at larger values of lph

����
�
p

. This might be the con-
FIG. 7. The constrained UV monopole density derived from the
clusters according to Eq. (16), for TI (left) and Wilson (right) actio
constant for better readability of the figures.

054511
sequence of the IR cluster splitting discussed above which
underlies the splitting into UV and IR monopoles: some
large clusters which actually should belong (are akin) to IR
monopole clusters were counted as small ones because of
trivial winding. Although such clusters are relatively sel-
dom their number increases with increasing �. To exclude
the effect of these ambiguously identified ‘‘UV’’ clusters
we subtract the contribution of clusters with l > ~lph �
c=

����
�
p

and plot in Fig. 7 the difference

�UV�lph� � �UV�~lph� (16)
with coefficients c 
 13:6 and c 
 10:65 for Wilson ac-
tion and TI action, respectively. One can see that now
scaling is uniformly well satisfied for all lower cutoffs
lph < ~lph except very small ones. Thus we come to the
conclusion that the UV monopole density derived from the
small cluster density N�l� as defined in Eq. (15), i.e. when
clusters close to the cutoff scale are excluded, shows good
scaling, i.e. is independent of a similar to the IR monopoles
density (derived from the IR clusters).
small clusters’ length distribution and corrected for ambiguous
ns. The curves show fits by Eq. (18). The data were lifted by a
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Using Eq. (14) with � � 3 we get

�UV�lph� �
c���

4a3  
0�lph=a�;  �z� �

�0�z�
��z�

: (17)

We fitted the data in Fig. 7 by the function

c1 0�lph=a� � c2 (18)

and found that this function describes well our data, espe-
cially for the TI action case, with constants ci only weakly
dependent on �. This implies that for small a (large lph=a)
the density behaves as �UV�lph� � �=lph since  0�z� � 1=z
for large jzj. This fact is in agreement with the 1=a behav-
ior of �UV we argued for, since it can be unambiguously
regulated by the assignment �UV�lph � 4a� ! �UV.

B. The Laplacian Abelian gauge (LAG)

To calculate the lowest eigenvector of the covariant
adjoint Laplacian operator (5) we used the Arnoldi algo-
rithm [30]. This algorithm, as well as others used to solve
this problem, requires large memory increasing fast with
lattice size. Therefore, the measurements in LAG for
Wilson action have been made on smaller lattices than
shown in Table II for � � 2:45, 2.55, 2.60, but with large
FIG. 9. Various monopole densities in LAG for TI action (left) a

FIG. 8. The monopole cluster length distribution N�l� in LAG at �
action (right).

054511
enough physical size, which was never smaller than 1.4 fm.
In case of the TI action we made measurements in LAG
only for four values of the coupling constant, because this
proved to be enough for our purposes of comparison with
MAG.

We first present the cluster length distribution for the
two actions in Fig. 8. One can see that in LAG the separa-
tion into IR and UV clusters works very well. We note that
there are only rare cases of clusters with nontrivial winding
even for most fine lattices. Our results for various densities
are presented in Fig. 9. We found that the total monopole
density in LAG is substantially higher than in MAG in
agreement with earlier observations [10] made for Wilson
action. We further looked at IR and UV densities separately
and found that increasing of the density is true for both of
them. For our finest lattice these densities in LAG are 2–3
times higher than in MAG. It is not clear from our data
whether the IR density in LAG converges to a finite value
as it is the case in MAG. This is most probably due to a
substantial (more fractal) admixture of lattice artifacts to
the IR clusters. We also observed that the UV monopole
density �UV is much more strongly diverging in LAG than
in MAG and is compatible with �UV � 1=a2 rather than
with �UV � 1=a, as observed in MAG. Accordingly, the
nd for Wilson action (right). Lines are drawn to guide the eye.

� 2:6 for the Wilson action (left) and at �imp � 3:5 for the TI
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constrained density �UV�lph� was found to be divergent as���
�
p

alph
. The small clusters’ length distribution was fitted to

Eq. (14) with a resulting parameter � in the range 2.7–2.8,
i.e. significantly smaller than for MAG.
V. THE ABELIAN STRING TENSION IN MAG

To estimate the Abelian string tension we calculate the
Abelian potential Vab�R� using (spatially) smeared Abelian
Wilson loops Wab�R; T�. As usually Vab�R� is defined as a
limit

Vab�R� � lim
T!1

Vab�R; T�; (19)

where the potential estimator Vab�R; T� is
FIG. 10. The Abelian potential Vab�R; T� in MAG at �imp �
3:3 vs T=a for R=a � 4 for 3 (open circles) and 100 (full circles)
smearing sweeps.

FIG. 11. Ratio between the Abelian string tension (in MAG) and th
and for Wilson action (right).

054511
aVab�R; T� � � log
Wab�R; T � a�
Wab�R; T�

: (20)

It is important to check that Vab�R� is unique, i.e. indepen-
dent of the operators used to create the Abelian flux tube.
One can get different such operators varying the number of
smearing sweeps Nsm. In Fig. 10 we show Vab�R; T� for
Nsm � 3 and 100. For large number of sweeps the behavior
of Vab�R; T� clearly shows absence of the positivity. For
small number of sweeps the behavior is similar to the case
when positivity is fulfilled. This is presumably due to
higher excitations: in this case they are not suppressed
for small T=a. Lack of positivity for gauge dependent
correlators in covariant gauges was discussed recently in
[31]. The most important observation for us to be read off
from Fig. 10 is that at large enough T results agree with
each other. This implies that Vab�R� is indeed defined
uniquely.

We found that the behavior of the ratio �ab=� for TI
action is qualitatively similar to that for the Wilson action,
see Fig. 11. For both actions the ratio is between 0.90 and
0.95 for all considered values of lattice spacing. We thus
definitely confirm the universality of Abelian dominance in
the continuum limit. Our results, due to large statistical
errors, coming mainly from the determination of the non-
Abelian string tension, do not allow to determine precisely
the continuum limit of the ratio �ab=�.
VI. SUMMARY

In this paper two important questions on the properties
of the Abelian projection were addressed: universality and
gauge dependence. Comparing results obtained with
Wilson and TI actions on lattices with varying lattice
spacing we confirmed that the Abelian dominance passes
the universality check in MAG. Moreover, this universality
holds in the continuum limit. We found that in the contin-
uum limit the ratio �ab=� seems to be in the range from
0.90 to 0.95. No convergence to 1 was observed contrary to
our earlier results [24] seen with smaller statistics. We have
e non-Abelian string tension vs lattice spacing for TI action (left)

-9
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not yet accomplished the check of the monopole domi-
nance universality for the string tension although our pre-
liminary results confirm it. They will be published
elsewhere.

For the monopole density we found qualitative similar-
ities: for both actions �IR is finite in the continuum limit,
while �UV is divergent as 1=a. On the quantitative level we
found a violation of universality for the densities. This
implies that an UV contribution might be substantial in
the measured �IR, or in other words, �IR needs to be
properly renormalized.

We further introduced a constrained UV density
�UV�lph�, Eq. (15) which is determined by counting only
monopole loops longer than some physical length lph. We
found that this density scales properly in the continuum
limit:

�UV�lph� �
c�
lph

; (21)

where the coefficient c is independent of a but has a
different value for Wilson and TI actions, i.e. is
nonuniversal.

A comparison of the monopole densities in MAG and
LAG, made for both actions, revealed that both �IR and
054511
�UV are 2–3 times higher in LAG. It is not clear from our
data whether �IR in LAG is finite in the continuum limit.
The UV component �UV behaves like �1=a2 in LAG
contrary to the divergence �1=a found in MAG. This
adds to other doubts expressed in the literature [32] about
the usefulness of the LAG. Thus, the maximally Abelian
gauge turns out to be particularly suited to the separation of
IR and UV degrees of freedom.
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