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Derivation of the Fradkin-Shenker result from duality: Links to spin systems in external magnetic
fields and percolation crossovers
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In this article, we illustrate how the qualitative phase diagram of a gauge theory coupled to matter can
be directly proved and how rigorous numerical bounds may be established. Our work reaffirms the
seminal result of Fradkin and Shenker from another vista. Our main ingredient is the combined use of the
self-duality of the three-dimensional Z2=Z2 theory and an extended Lee-Yang theorem. We comment on
extensions of these ideas and firmly establish the existence of a sharp percolation crossover line in the
two-dimensional Z2=Z2 theory.
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I. INTRODUCTION

Lattice gauge theories [1] witnessed an accelerated re-
vival in condensed matter physics during the last decade.
Their applications are widespread. Amongst others, these
include novel theories of liquid crystals [2], the incorpo-
ration of Berry phase effects in quantum spin systems [3,4],
and stimulating suggestions for long-distance physics of
lightly doped Mott-Hubbard insulators [5]. Further re-
search relating to fundamental questions in gauge theories
followed, e.g. [6,7]. Central to many of these investigations
is the behavior of matter fields minimally coupled to gauge
fields. Several key results in these theories were noted long
ago by Fradkin and Shenker [8] (complemented by treat-
ments in [9]). Perhaps the best known result of [8] is the
demonstration that (when matter fields carry the funda-
mental unit of charge) the Higgs and confinement phases of
gauge theories are smoothly connected to each other and
are as different as a liquid is from a gas. This result remains
one of the cornerstones of our understanding of the phases
of gauge theories. Although derived long ago, the physical
origin of this effect does not seem to be universally agreed
upon.

In the current article, we revisit this old result and
rederive it for the original Z2=Z2 theory investigated in
[8]. Our proof relies merely on duality and the Lee-Yang
theorem. We further illustrate why similar results are
anticipated for other gauge theories. Our derivation high-
lights the origin of this phenomenon as akin to the absence
of phase transitions in spin systems in a magnetic field.
Notwithstanding the absence of true nonanalyticities, some
such spin models display a percolation crossover line [10]
at which the surface tension of an oppositely oriented spin
cluster vanishes. In this article, we firmly establish the
existence of precisely such a sharp percolation crossover
line for one of the most trivial Z2=Z2 theories (the
d � 1� 1-dimensional theory).
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II. Z2 MATTER COUPLED TO Z2 GAUGE FIELDS

In matter coupled gauge theories, matter fields �f�ig�
reside as lattice sites i while gauge fields Uij reside on the
links connecting sites i and j. The Z2 matter coupled to Z2

gauge field theory (Z2=Z2 in common notation) is the
simplest incarnation of a matter coupled gauge theory. Its
action reads

S � ��
X
hiji

�iUij�j � K
X
�

UUUU (1)

on a hyper-cubic lattice. Here, the first sum is over all
nearest neighbor links hiji in the lattice while the second is
the product of the four gauge fieldsUijUjkUklUki over each
minimal plaquette (square) of the lattice. Both matter (�i)
and gauge (Uij) fields are Ising variables within the Z2=Z2

theory: �i � �1, Uij � �1. A trivial yet fundamental
observation is that the quantity zij � �iUij�j, where i
and j denote two nearest neighboring lattice sites, is in-
variant under local Z2 gauge transformations

�i ! �i�i; Uij ! �iUij�j; (2)

with the arbitrary on-site �i � �1 [11]. The action of
Eq. (1) may be trivially written in terms of these gauge
invariant bond variables fzijg as

S � ��
X
links

zij � K
X
�

zzzz: (3)

The matter coupling � acts as a magnetic field on the spin
variable z. On a new lattice whose sites reside on the
centers of all bonds, this is none other than a model having
4-spin interactions augmented by a Z2 symmetry breaking
(for finite �) magnetic field. For �> 0, the link expecta-
tion value hziji � h�iUij�ji � 0. As shown by Wegner
[12], three- (or 2� 1) dimensional variants of the Z2=Z2

model with couplings ��;K� are equivalent to the same
model at couplings ���; K�� related via the self-duality
relations

exp��2��� � tanhK; exp��2K�� � tanh�: (4)
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III. DUALITY AND THE LEE-YANG THEOREM

As illustrated above, the matter coupled gauge theory
can be reinterpreted as a pure gauge theory with an addi-
tional magnetic field applied. Such an analogy immedi-
ately triggers a certain intuition regarding the exclusion of
phase transitions in certain systems. In standard spin mod-
els governed by the classical action

S � �
1

2

X
ij

Jijsisj �
X
i

hsi; (5)

with H the Hamiltonian no phase transition can occur
when a symmetry breaking magnetic field (h � 0) is ap-
plied. It is clear that the local magnetization hsi � 0 and
this goes hand in hand with an analytic free energy.

Lee and Yang [13] proved that, in the thermodynamic
limit, the partition function cannot have zeros. This can be
shown to imply an analytic free energy for magnetic fields
for which jImfhgj< jRefhgj (with Im and Re the imaginary
and real components, respectively). This may be extended
to many systems. Its generalization to a pure Z2 lattice
gauge action with a magnetic field applied on each gauge
link [Eq. (3)] on a general hyper-cubic lattice of dimension
d has been done [14]. However, as Eq. (3) is equivalent to
the general matter coupled gauge theory of Eq. (1), this
implies that the free energy �� lnZ� is analytic for all
sufficiently large matter couplings �. More precisely
[14], if �� � tanhK, and

�link � tanh
�

Ref�g � jImf�gj
2�d� 1�

�
; (6)

then the partition function is nonvanishing and the free
energy analytic in the region

�4
link 	 �� � ��1

� � 3�
��������������������������������������������
��� � ��1

� � 3�2 � 1
q

: (7)

Next we consider the (2� 1) dimensional case and then
briefly remark on the (1� 1) dimensional theory. For the
three (or 2� 1) dimensional case, Eq. (7) explicitly reads

tanh 4 �
4
	 tanhK � cothK � 3

�
�������������������������������������������������������
�tanhK � cothK � 3�2 � 1

q
: (8)

Let us now insert the self-duality relations Eqs. (4) to
obtain

tanhK � exp
�2���; tanh
�
4
�

� �������������
1� �
p

�
������
2�
p

�������������
1� �
p

�
������
2�
p

�
1=2
;

(9)

with

� �
���������������������������������
1� exp
�4K��

q
: (10)

Inserting Eq. (9) into Eq. (8) gives a domain of analyticity
of the free energy in ���; K��. The union of both domains is
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a region free of nonanalyticities. In particular, we find that
for all plaquette couplings

K <�
1

2
ln tanh
4tanh�1�5�

������
24
p
�1=4� (11)

with arbitrary matter coupling �, the partition function of
the three-dimensional Z2=Z2 theory has no zeros in the
thermodynamic limit and the free energy is analytic. The
Lee-Yang line [14] and its dual are displayed in Fig. 1. The
entire region bounded by the smaller of these two lines is
free of nonanalyticities. Along the � � 0 line of Eq. (1)
(the pure gauge only theory), the value K � Kc at which a
confining transition occurs may be inferred from the criti-
cal temperature of the three-dimensional Ising model.
Within the confining transition of the pure gauge theory
[the action of Eq. (1) in the absence of matter coupling—
� � 0], the Wilson loopWC � h

Q
ij2CUiji for a large loop

C changes from an asymptotic perimeter law behavior
(Wc � e�c1l with l the perimeter of C and c1 a constant)
for large plaquette couplings (K >Kc) to a much more
rapidly decaying area law (Wc � e�c2A with A the area of
the minimal surface bounded by C and c2 a constant) for
weak couplings K <Kc [1]. At K � Kc, the free energy is
nonanalytic. By duality [Eqs. (4)], the location of this
nonanalyticity in K along the � � 0 axis maps onto the
location of nonanalyticity associated with the transition in
the 3D Ising model (S3D Ising � ��

P
hiji�i�j)—its critical

point � � �c. Following Eqs. (4), the
relation between the two is tanh�3D Ising model

c �

exp��2K3D Ising gauge
c �. Numerically, in the 3D Ising model

�3D Ising model
c ’ 0:22165. This implies that the critical value

of K within the pure [� � 0 in Eq. (1)] 3D Ising gauge
theory is K3D Ising gauge

c ’ 0:761423, e.g. [15]. The partition
function is nonzero and the free energy is analytic within
the region given by Eq. (11) which lies within the confining
phase of the three-dimensional Z2=Z2 model for small �.
Thus, as pointed out in a seminal paper by Fradkin and
Shenker [8], the Higgs (large �;K) and the confining
phases (small �;K) are analytically connected (see
Fig. 2). No phase transition need be encountered in going
from one phase to the other. Here we explicitly prove this
for the three-dimensional Z2=Z2 model with explicit rig-
orous numerical bounds as in Eq. (11).

The bound on a finite region of the phase diagram free of
partition function zeros complements the classic works of
Marra and Miracle-Sole [16] that show that the small �;K
expansion of the free energy corresponding to Eq. (1)
converges if K is sufficiently small irrespective of �, or
if both K and � are sufficiently large. It is noteworthy that
although duality allowed us to generate stringent bounds,
the Lee-Yang theorem itself linked points deep within the
confining phase ��;K� ! �0; 0� to those in the Higgs phase
��
 1; K
 1�. The extension of the Lee-Yang theorem
to gauge theories other than Z2=Z2 is straightforward albeit
technically more involved.
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FIG. 3. The phase diagram above was found by [2] for O�3�
matter fields coupled to Z2 gauge links in the context of liquid
crystals. Here, the confining, Higgs, and Coulomb phases of the
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FIG. 2. A schematic representation of the phase diagram of the
Z2=Z2 theory in d � 3 space dimensions. This phase diagram
was proposed by [8]. The boundaries drawn in Fig. 1 are only
bounds. The confining transition extend deep beyond the line
implied by the Lee-Yang theorem.
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FIG. 1. The region in the phase diagram of the three-
dimensional Z2=Z2 for which we prove that the partition func-
tion is free of zeros and consequently the free energy is analytic.
The horizontal axis is K—the strength of the gauge field and the
vertical axis depicts �—the strength of the matter coupling.
Both axes span the region from 0 to 1. The solid line is the
bound attained from the Lee-Yang theorem. The region above
this curve is free of nonanalyticities. By duality, the region above
the dashed line is also free of nonanalyticities. Thus the union of
both regions is analytic. This connects the Higgs phase (high
�;K) to the confining phase (low � and K). The intercept of the
dashed line with the � � 0 axis is found to be K � � 1

2 �

ln tanh
4tanh�1�5�
������
24
p
�1=4�, which is within the confining

phase for small � as expected (it cannot span the deconfining
phase as then a nonanalyticity in the free energy or zero of the
partition function would be encountered at K � K3D Ising gauge

c ).
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We now examine the much more trivial two-dimensional
incarnation of the Z2=Z2 theory to illustrate that it displays
a single phase. By a duality mapping (see an explicit
derivation in the appendix), it is readily seen that the
partition function of the two-dimensional Z2=Z2 model
at matter coupling � and gauge coupling K is equal (up
to constants) to the partition function of the two-
dimensional Ising model (of unit lattice spacing) given
by Eq. (5) of nearest neighbor exchange constant

Jij �
�
1

2
ln coth�

�
�ji�jj;1 (12)

and uniform external magnetic field

h �
1

2
ln cothK: (13)

As the two-dimensional Ising model in a magnetic field
displays (via the Lee-Yang theorem) no phase transitions,
the two-dimensional Z2=Z2 theory exhibits only a single
phase regardless of the strength of the couplings.
Notwithstanding, as we report towards the end of this
paper, the existence of a line of weak singularities may
be firmly established.
Z2=Z2 theory becomes three different sharp phases (whose
siblings are, respectively, denoted in the above as ‘‘Isotropic,’’
‘‘Ordered,’’ and ‘‘Topological.’’) We prove, by employing self-
duality of the Z2=Z2 theory that a phase diagram having three
phases such as that of O�3� matter coupled to Z2 gauges shown
above is impossible. In the Z2=Z2 theory, phase boundaries may
only terminate on the � � 0 or K � 1 axis—no phase bound-
ary can separate the Higgs and confining phases.
IV. GENERAL CONSIDERATIONS FOR A SINGLE
HIGGS-CONFINING PHASE

Next, we avoid the use of rigorous Lee-Yang bounds and
ask ourselves what statements can be made regarding the
phase diagram on general principle alone both in the
054509
presence and absence of dualities. First, we illustrate that
a phase diagram such as that shown in Fig. 3 is impossible
for the Z2=Z2 theory. The phase diagram depicted in Fig. 3
was proposed for the very different theory of O�3� matter
fields coupled to Z2 by [2] in their beautiful theory of liquid
crystals.

The proof of the impossibility of such a phase diagram
for a Z2=Z2 theory and the necessity of having a single
Higgs-confinement phase is quite straightforward. As the
Z2=Z2 theory is self-dual [see Eqs. (4)], the phase diagram
must look the same under the duality transformation.
The phase boundaries where the partition function van-
ishes, Z��;K� � 0, must be the same as those where
Z���; K�� � 0. A phase diagram such as Fig. 3 does not
satisfy self-duality. A critical line emanating from �� �
�1; K � 0� immediately implies a line of singularities
emanating from ��� � 1; K� � � 1

2 ln tanh�1�. If
Z���; K�� � 0 along this line then, as the functional form
for Z���; K�� is equivalent to that of Z��;K� with merely
-3
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the coupling constant tuned to different values, Z��;K�
must also have a line of zeros emanating from �� �
1; K � � 1

2 ln tanh�1� and the phase diagram must pos-
sess, at least, another line of singularities. The same would
apply to a line of singularities starting from �� � 1; K �
K1� which is easily excluded.

Next, we look at the physics of the models in their
limiting incarnations. At K � 0 the partition function of
the Z2=Z2 theory is trivially Z � �2 cosh��Nd with N the
number of lattice sites. Here, the system is simply that of
free bonds in a magnetic field and no singularities can
occur at any value of � � �1 with K � 0. Self-duality
then implies that no singularities can occur in the self-dual
Z2=Z2 theory at � � 1 and any finite value of K.

Putting all of the pieces together, by employing self-
duality, and the absence of singularities at K � 0, within
the Z2=Z2 theory, lines of singularities in the phase dia-
gram can only originate from �� � 0; K � Kc� or from
�� � �c; K � 0� [with possibly more than one value of Kc
(fKc;ig) and/or �c] or form closed loops or lines of tran-
sitions terminating in the bulk. States with � � 0 and K <
minifKc;ig and those withK � 1 and�<maxjf�c;jgmust
be analytically connected to each other. In the standard
spin (K � 0; � � �c) and gauge models �� � 0; K � Kc�
only a single critical value appears. The Higgs and confin-
ing phases must, asymptotically, be one and the same. A
singularity anywhere along the line K � 0� is excluded in
the self-dual theory as that limit corresponds to �! 1
which is completely ordered (zij � 1) and no transitions
occur. This proves the celebrated result of [8].

We now examine the situation in general non-self-dual
theories in which the matter fields (�i) are in a subgroup of
the gauge group (the group G such that all links Uij 2 G).
(This situation does not encompass theories such as those
described by [2,5].) In such instances, the bond variables
zij � ��i Uij�j are elements of G. Similar to Eq. (3), we
may parameterize the action in terms of the gauge invariant
link variables fzijg. In what follows, we focus for concrete-
ness on U�1� [or O�n � 2�] theories. First, we note that
along the K � 0 axis, the pure noninteracting links in the
effective magnetic field � [leading to Z � �In=2�1����Nd

[with In=2�1 a Bessel function of order �n=2� 1�] forO�n�
fields] display no singularities in the free energy. Along the
� � 1 axis, irrespective of the value of K, all the gauge
invariant bonds zij in the U�1� theory are pinned to 1. No
transitions occur as K is varied along the � � 1 line as all
bond variables are already frozen at their maximally mag-
netized unit value. In fact, increasing K for finite � can
only make this magnetization stronger. The partition func-
tion has no dependence on K along this line. Thus, we see
that in general no phase boundaries can traverse the� � 1
or the K � 0 line even in the absence of self-duality and
Lee-Yang results which allow us to make matters more
elegant and provide rigorous numerical bounds. Thus, the
Higgs and confining phases are one and the same for all of
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these theories. We must nevertheless mention that in non-
self-dual theories, relying only on the above we cannot
immediately exclude a transition boundary ending in
the bulk at K � 0�. To exclude this for different individual
theories, we need to examine the radius of convergence
in K.

V. ESTABLISHING NEW PERCOLATION
CROSSOVERS BY DUALITY

With all stated thus far, it would appear that the single
Higgs-confining phase is one bulk phase and no transitions
occur within it. We now illustrate that this is not the case—
at least not within the simplest of all matter coupled lattice
gauge theories—the two-dimensional Z2=Z2 theory which
we now show to possess a richer phase diagram than
anticipated (a single phase). With no matter, as is well
known e.g. [1,17], the pure two-dimensional Z2 gauge
theory given by the plaquette term of Eq. (1) is equivalent
(by a trivial gauge fix, e.g. Uij � 1 on all horizontal bonds
in the plane) to a stack of decoupled one-dimensional Ising
chains (all of which are horizontal Ising chains formed by
the vertical bonds in the gauge alluded to here). As Ising
chains are disordered at any finite coupling, the two-
dimensional Z2 gauge theory is trivially always confining.
As along the K � 0 line no transitions can occur (as
discussed in Sec. IV), the system must be in this confining
phase for all finite � and K. As we will shortly illustrate,
although no transitions occur within this single phase, new
sharp percolation crossovers may be established.

Now let us introduce matter coupling [a finite � in
Eq. (1)] and consider the following thought experiment:
we color every appearance of zij � �1 in the two-
dimensional Z2=Z2 theory by one of two colors and ask
ourselves whether the bonds of a uniform sign (the zij � 1
bonds for �> 0) percolate, upon a trivial mapping, across
the sample and if so whether a transition between perco-
lative and nonpercolative clusters can exist within the
single Higgs-confining phase. Although this question is
very general, we can make easy progress and establish
rigorous results by relying on the exact duality of
Eqs. (12) and (13), to the well-studied model of a two-
dimensional Ising magnet in a magnetic field. Some time
ago, Kertesz argued [10] that although there might not be
(via the Lee-Yang theorem) any thermodynamic singular-
ities in various spin models when subjected to an external
magnetic field, sharp crossovers related to vanishing sur-
face tension (of droplets of oppositely oriented spins) and a
change of character of the high field series (for quantities
such as the free energy or magnetization) occur. As is well-
established by now, this crossover may be discerned by the
percolation of clusters constructed via the Fortuin-
Kastelyn representation [18]. We would like to suggest
that the massive character of the photons in the confin-
ing/Higgs regimes may reflect such a difference. Here, the
spins of [10] are replaced by a functional of the gauge
-4
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FIG. 5. The phase diagram of the two-dimensional matter
coupled Ising gauge theory [Eq. (1) in d � 2 dimensions] as
derived from Fig. 4 following the duality transformations of
Eqs. (12) and (13). As we establish here by an application of the
duality relations of Eqs. (12) and (13) linking this gauge theory
to the two-dimensional Ising model in a magnetic field, a
percolation transition separates phase B (spanning the confining
regime) and phase A (which overlaps with the Higgs phase). The
solid line along the K � 1 axis signifies the disordered phase of
the simple ferromagnet. [At K � 1, Eq. (1) reduces to S �
��

P
hiji�i�j, the action of a ferromagnet.]

DERIVATION OF THE FRADKIN-SHENKER RESULT . . . PHYSICAL REVIEW D 72, 054509 (2005)
invariant meson variables zij � ��i Uij�j. For the 1�
1-dimensional Z2=Z2 theory, we now readily establish
this result: By Eqs. (12) and (13), the d � 1�
1-dimensional Z2=Z2 theory may be directly mapped to a
two-dimensional Ising model in a magnetic field given by
Eq. (5). However, as established by [19] the two-
dimensional Ising model in a magnetic field displays a
Kertesz line. In general dimension d, with nV the number
of drops of volume V whose spins are oppositely oriented
[those opposing the external magnetic field h in Eq. (5)],
we have, for large V, the leading order relation

ln nV ��2hV � �V�d�1�=d: (14)

Here, the surface tension � vanishes in one phase (phase B
of Fig. 4) while it is finite in the other (phase A in Fig. 4)
[10]. Equivalently, this crossover may be ascertained via
the examination of the radii of expansion [19] in� � e�2h

[see Eq. (5)] for the magnetization

hsi � 1� 2
X
V

VLV�u��
V; (15)

where u � e�2J, and LV is a polynomial in u. Although for
any finite h, the radius of convergence in � is finite (as
indeed no transitions occur by the Lee-Yang theorem)—
the radius of convergence increases across the percolation
h

J

a’

A           B
a

FIG. 4. A caricature of the original [10] phase diagram pro-
posed by Kertesz and later verified in detail by [19]. The J and h
axes parameterize the classical two-dimensional Ising
Hamiltonian S � �J

P
hijisisj � h

P
isi. The low temperature

solid line along the h � 0 axis denotes the usual first order
transition, while the fainter lines denote Kertesz transitions.
Here, in phase A there is an exponentially rare number of
droplets whose spin points opposite to the applied field h with
a finite surface tension. In phase B, the surface tension of
oppositely oriented spin droplets vanishes. The lines a and a0

denote the droplet cluster transition across which the surface
tension [� of Eq. (14)] drops to zero.
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line (appearing as jumps in [19]). For couplings J larger
than the percolation threshold J > Jp, the radius of con-
vergence in � is up to � � 1 [i.e. it is convergent for all
h 	 0 in Eq. (5)] and to a larger value �> 1 for J < Jp
(the surface tension free regime)—up to finite negative
values of h [19]. Upon dualizing [Eqs. (12) and (13)], this
implies an identical crossover in the single plaquette ex-
pectation value of hzijzjkzklzlii (which is none other than
the minimal Wilson loop hUijUjkUklUlii) when expanded
in powers of ~� � tanhK for fixed ~u � tanh�. The transi-
tion is discerned by the convergence of the single plaquette
expectation value up to negative K values.

Taken together, the duality relations of Eqs. (12) and
(13), and the firm results of [19] prove, for the first time,
that the two-dimensional Z2=Z2 theory must also exhibit a
Kertesz line. A sketch of the original phase diagram of
Kertesz [10] and its new gauge theory dual are depicted in
Figs. 4 and 5. Percolation transitions established here for
the two-dimensional Z2=Z2 theory and others speculated
elsewhere might be linked to infinite Wilson loop-like
observables [20,21].
VI. CONCLUSIONS

In conclusion, we illustrate that a phase diagram of a
gauge theory coupled to matter can be proved directly and
stringent numerical bounds provided. Our methods reaf-
firm the seminal result of Fradkin and Shenker [8]. We
further remarked on extensions of this result. Our results
suggest that the existence of a single Higgs-confining
-5
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phase in some theories (as mandated via a generalized Lee-
Yang theorem in the Z2=Z2 theory and strongly hinted by
general considerations in other general instances) often can
be viewed as the analogue of the absence of phase tran-
sitions in spin systems subjected to an external magnetic
field. Similar to such spin systems, we speculate that the
locus of gauge and matter couplings �K;�� at which a
correlated percolation of clusters (given by an effective
spin state related to gauge invariant bonds variables zij �
��i Uij�j) occurs may constitute an analogue of the Kertesz
line known in such spin systems [10]. We establish the
validity of this anticipation and the existence of a Kertesz
line within a simple gauge theory harboring a single con-
fining phase—the 1� 1-dimensional Z2=Z2 theory.
Possible manifestations of this effect for more physically
pertinent higher group gauge fields [e.g. SU�3�] in d � 4
remain a speculation.
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FIG. 6. A contribution to the low coupling series of the two-
dimensional Z2=Z2 action. The centers of plaquettes are labeled
by the solid rectangles. The crosses (x) denote energetic bonds
(gauge invariant bond variables z of text) residing on the pe-
rimeter of the contour.
APPENDIX: DERIVATION OF THE DUALITY OF
THE Z2=Z2 THEORY

The Z2=Z2 theory of Eq. (3) in d � 2 dimensions is dual
[via Eqs. (12) and (13)] to the two-dimensional Ising in an
external magnetic field of Eq. (5). This duality allowed us
to prove the existence of a sharp percolation crossover (a
Kertesz [10] line) within the Higgs-confining phase of the
simplest of all matter coupled gauge theories—the two-
dimensional Z2=Z2 theory. The existence of a duality
between the two-dimensional Ising model in a magnetic
field and the two-dimensional Z2=Z2 theory was noted in
[8]. As this duality is pivotal in proving our new percola-
tion crossovers (Sec. V) even in this simplest of all matter
coupled gauge theories, we explicitly illustrate its deriva-
tion below.

In what follows, we employ series expansions (a stan-
dard approach for deriving many dualities) in the high and
low coupling limits to show that the high and low coupling
regimes of the two disparate models [the two-dimensional
Z2=Z2 theory of Eq. (3) and the two-dimensional Ising
model in a magnetic field of Eq. (5)] become one and the
same upon a change of variables (the duality transforma-
tion). Hereafter, we set in Eq. (5) the exchange constant
Jij � J�ji�jj;1 . We start by expanding the partition func-
tion

Z �
X
fzijg

exp
�S�; (A1)

in a small �;K (‘‘high temperature’’) series. In Eq. (A1),
the action S is given by Eq. (3) and the summation in
054509
Eq. (A1) spans all gauge invariant bond variables (zij �
�1 on all nearest neighbor links hiji). To attain the low
coupling expansion of the partition function Z of Eq. (A1),
we employ the identities

exp
�z� � cosh��1� z tanh��;

exp
Kzzzz� � coshK�1� zzzz tanhK�;
(A2)

to obtain a polynomial expansion in

x � tanhK; y � tanh�: (A3)

With these elements in tow, the partition function of
Eq. (A1) becomes a sum of diagrams. These diagrams
(Fig. 6) correspond to drawing closed contours in the plane
and counting the number of dual lattice sites (the centers of
plaquettes surrounded by four gauge links—correspond-
ing to the plaquette terms zzzz stemming from the expo-
nentiation of the second term in the action of Eq. (3)—
which are labeled by the solid rectangles) and the number
of bonds (z), obtained from exponentiation of the first term
of Eq. (3), labeled by the crosses residing on the contour
boundaries. The sum over all values of zij � �1 allows
only diagrams containing closed loops in which each bond
(zij) appears to an even power (all other diagrams neces-
sarily have at least one bond which appears an odd number
of times and therefore leads to zero once the sum
over zij � �1 is performed). For even nij (nij � 0; 2),
the sum over each bond leads to

P
zij��1z

nij
ij � 2. All in

all, the series for the partition function becomes
-6
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FIG. 7. The corresponding contribution to the strong coupling
(‘‘low temperature’’) series of the two-dimensional Ising model
in a magnetic field. The flipped spins are marked by black
rectangles with the bad energetic bonds that the flipped spins
generate along their perimeter marked by a thick dashed line.
The bonds of the dual lattice are marked by a thin dashed line.
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Z � 4N�coshK�N�cosh��2N
X

closed loops

xAyjCj; (A4)

where A denotes the net area enclosed by the set of loops C
and, jCjmarks the net perimeter of all closed loops making
up the joint contour C.

If we expand the partition function corresponding to the
action of Eq. (5) about J ! 1 [corresponding to flipping
the spins si from their infinite coupling (‘‘zero tempera-
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ture’’) ground state value of one (h > 0)] then we will
obtain a polynomial expansion in

~x � exp
�2h�; ~y � exp
�2J�: (A5)

Explicitly, the partition function reads

~Z � ~Z0

" X
clusters of flipped spins

�~x�A�~y�jCj
#
; (A6)

where ~Z0 is the zero temperature (infinite h and J) partition
function, A is the net area of all clusters of flipped spins
�si � �1), and jCj is the perimeter of all clusters of flipped
spins. In Fig. 7, a simple cluster of flipped spins is shown.
The flipped spins are marked by black rectangles (each
flipped spin incurs a Boltzmann energy penalty of ~x), and
the bad energetic bonds that the flipped spins generate
along their perimeter (perpendicular to the domain wall)
are marked by a thick dashed line. In Fig. 7, the bonds of
the dual lattice are marked by a thin dashed line. Note the
obvious one-to-one relation between the cluster of flipped
spins of Fig. 7 to the high temperature limit in Fig. 6. The
polynomials for the partition functions Z and ~Z in (x; y) and
�~x; ~y�, respectively, are identical. The partition function of
the two-dimensional Z2=Z2 model at matter coupling �
and gauge coupling K is equal (up to constants) to the
partition function of the two-dimensional Ising model of
exchange constant and magnetic field given by Eqs. (12)
and (13). As the two-dimensional Ising model in a mag-
netic field of Eq. (5) exhibits no phase transition and thus
no nonanalyticities for any nonzero h [corresponding to
any finite K in the action of Eq. (3) on the square lattice],
the radii of expansion of the series derived above are
infinite and the duality transformations of Eqs. (12) and
(13) hold throughout.
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