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Renormalization of bilinear quark operators for overlap fermions
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We present nonperturbative renormalization constants of fermionic bilinears on the lattice in the
quenched approximation at � � 6:1 using an overlap [H. Neuberger, Phys. Lett. B 417, 141 (1998)]
fermion action with hypercubic (HYP)-blocked links. We consider the effects of the exact zero modes of
the Dirac operator and find they are important in calculating the renormalization constants of the scalar
and pseudoscalar density. The results are given in the RI’ and MS schemes and compared to perturbative
calculations.
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I. INTRODUCTION

This paper describes the computation of matching fac-
tors for converting lattice calculations of matrix elements
of currents to the corresponding values measured in a
continuum MS scheme. The lattice action uses overlap
fermions [1] and HYP-blocked links [2].

We use the nonperturbative methodology introduced in
Ref. [3]. The proposed renormalization scheme is one
which can be implemented not only in lattice
Monte Carlo simulation but also in continuum perturbation
theory. Thus, the conversion of lattice results to a more
conventional scheme such as MS is possible. In this
scheme, the matrix element of a bilinear quark operator
O� � � � between quark fields at a certain momentum
p2 � �2 is computed and matched to the corresponding
tree level matrix element. i.e. the renormalization condi-
tion is

Z�hpjO�jpijp2��2 � hpjO�jpitree: (1)

Here � can be any combination of Dirac matrices. This
method is supposed to work when � satisfies

�QCD � �� 1=a: (2)

The discretization effects are under control if the renor-
malization scale � is much smaller than the lattice cut-off
1=a. �QCD � � guarantees that nonperturbative effects
are ignorable.

There have been many calculations using this scheme.
Ref. [3] used improved Wilson fermions, Ref. [4] used both
the Wilson and the tree level improved SW-Clover fermion
action in the quenched approximation, Ref. [5] worked
with standard Wilson fermions(r � 1) in the quenched
approximation, Ref. [6] is a quenched simulation with
domain wall fermions. Ref. [7] used chirally improved
lattice fermions in the quenched approximation. Here, we
use overlap fermions [1] in the quenched approximation.
Specifically, we work with overlap fermions built from a
‘‘kernel action’’ with nearest and next-nearest neighbor
fermionic interactions [8] and hypercubic(HYP)-blocked
links [2]. Overlap fermions respect chiral symmetry on the
lattice via the Ginsparg-Wilson relation [9], while for
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Wilson-type fermions, the Wilson term breaks the chiral
symmetry explicitly. Chirally improved fermions only
obey the Ginsparg-Wilson relation approximately.

Lattice perturbation theory is probably the most often
used way to calculate the renormalization factors.
However, the convergence of the perturbative series is
often not satisfying. To improve the convergence of the
series, Lepage and Mackenzie proposed a tadpole im-
proved perturbation theory [10]. Nevertheless, lattice per-
turbation series rarely extend beyond the one-loop level,
which is an important source of uncertainty in the extrac-
tion of physical results.

One-loop perturbative calculations of the matching co-
efficients between matrix elements measured in lattice
simulations and their equivalent MS values for the same
overlap fermions and HYP-blocked links that we use here
were done in Ref. [11]. Those perturbative results turned
out to be quite close to unity, and they were used in
computing the Kaon B parameter [12]. This work will
give a nonperturbative check of the matching coefficients.

Perturbative results of the matching coefficients for
other actions also using HYP-blocked links or similar
gauge connections were presented in [13]. They show the
same behavior, that the matching coefficients are quite
close to unity. Our results may be useful to others doing
simulations with HYP links, to give an idea how trust-
worthy perturbation theory is. In recent work [14,15] with
smeared overlap fermions using a Wilson kernel operator,
the Z-factors for the scalar density and the vector current
were calculated nonperturbatively. These factors were
found to be much closer to unity after smearing. The
authors did not consider the effects of the zero modes,
which we will examine in this work.

In Eq. (1), � can be any combination of Dirac matrices.
We will consider the cases � � I, �5, �� and ���5, which
we will denote S, P, Vand A, respectively. Chiral symmetry
implies several relations between renormalization con-
stants for overlap fermions, in particular ZS � ZP and
ZV � ZA.

The paper is organized as follows: In Sec. II, we briefly
discuss the nonperturbative renormalization method [3],
-1 © 2005 The American Physical Society
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the overlap action, and how we deal with the zero modes of
the Dirac operator. Numerical results are given in Sec. III.
The formulas for conversion to the MS scheme are reca-
pitulated in Sec. IV. We will compare our results with
perturbative calculations in Sec. Vand conclude in Sec. VI.
II. METHODOLOGY

The following is a brief summary of the method from
Ref. [3,7], a short description of the overlap action we used
(for a detail description, see Ref. [8]) and how we deal with
the zero modes of the Dirac operator. For convenience, the
lattice spacing a is set to be one.

From Eq. (1), we have

Z�
1

12
Tr�hpjO�jpihpjO�jpi�1

tree�jp2��2 � 1: (3)

Here the 1
12 comes from the fact that the trace is over color

and spin space. Since

hpjO�jpi � Zq���p�; (4)

we obtain

Z� �
12

ZqTr����p�hpjO�jpi�1
tree�
jp2��2 : (5)

Here Zq is the quark field renormalization constant (the

bare field is  0 � Z1=2
q  ) and ���p� is the amputated

Green function

���p� � S�1�p�G��p�S
�1�p�; (6)

where S�p� is the quark propagator. Equation (5) is the
formula we will use to calculate Z�.
Zq is obtained by comparing the quark propagator to the

free lattice propagator (the RI’ scheme):

ZRI
0

q �
1

12
Tr�S�p�Dov

f �p��jp2��2 ; (7)

where Dov
f �p� is the free lattice overlap Dirac operator.

(Our Zq is the inverse of the quark field renormalization
constant in Ref. [7].)

The Green function G��p� is determined in the follow-
ing way.

G��p� �
X
x;y

e�ip��x�y�h �x�O��0�
� �y�i

�
X
x;y

e�ip��x�y�
1

N

XN
i�1

Si�xj0��Si�0jy�

�
1

N

XN
i�1

�
X
x

Si�xj0�e�ip�x���
X
y

Si�0jy�eip�y�; (8)

where N is the number of gauge configurations. Using
Si�xjy� � �5Si�yjx�y�5 and Si�pj0� �

P
xSi�xj0�e

�ip�x,
we have
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G��p� �
1

N

XN
i�1

Si�pj0���5S
y
i �pj0��5: (9)

The quark propagator in momentum space is given by

S�p� �
1

N

XN
i�1

Si�pj0�: (10)

Si�xj0� is computed on the lattice with a point sourceX
x

Dov�z; x�Si�xj0� � �z;0: (11)

(In Ref. [5] and Ref. [7], momentum sources were used.)
At tree level, hpjO�jpitree � �. Therefore, every quantity
on the right hand side of Eq. (5) is known and then we can
obtain Z�. For � � ��; ���5, the index � is averaged
under the trace in Eq. (5).

We fix the gauge to Landau gauge. Uncertainty due to
Gribov copies is not investigated here. It has been dis-
cussed in Ref. [7,16–18]. The effect was found to be
negligible in current lattice simulations.

The overlap action that we use is described in detail in
Ref. [8]. It uses a ‘‘kernel’’ action with nearest and next-
nearest neighbor couplings. The massless overlap Dirac
operator is

D�0� � x0

�
1	

z�������
zyz

p
�
; (12)

where z � d��x0�=x0 � �d� x0�=x0 and d�m� � d	m
is the massive Dirac operator for mass m. The overall
multiplicative factor of x0 is a useful convention so that
when D�0� is expanded for small d, D 
 d.

The massive overlap Dirac operator is defined as

D�m� �
�

1�
m

2x0

�
D�0� 	m: (13)

In a background gauge field carrying a topological charge
Q, D�0� will have jQj pairs of real eigenmodes with
eigenvalues 0 and 2x0. In computing propagators, it is
convenient to clip out the eigenmode with real eigenvalue
2x0, and to define the subtracted propagator as

~D�m��1 �
1

1� m
2x0

�
D�m��1 �

1

2x0

�
: (14)

This also converts local currents into order a2 improved
operators [19]. Then the free lattice overlap Dirac operator
Dov
f �p� used in Eq. (7) is just ~D�m� in momentum space.
The HYP-blocked links are constructed in three steps

[2]. The parameters �1, �2 and �3 in our simulation have
the favored values of Ref. [2]: 0.75, 0.6 and 0.3,
respectively.

A finite volume artifact we encounter in this quenched
simulation is the presence of exact zero modes of the Dirac
operator. The zero mode contribution (with positive chi-
rality) in the propagator Si�pj0� on a configuration with
-2
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Q � 0 takes the form

1

m

�
j�0�p�ih�0�p�j 0

0 0

�
�

1

m
S0 (15)

in a �5 diagonal basis. Here j�0�p�i is the Fourier trans-
form of the zero mode wave function j�0�x�i. Since the
zero modes are localized in space, j�0�p�i will peak at low
p. These zero modes do not resemble free field modes.
Implicit in the RI’ scheme analysis is the idea that at big�,
lattice propagators resemble continuum ones. Zero modes
clearly do not. In Sec. III, we will find zero modes make a
large contribution to ZS and ZP. We believe this is because
our lattice is not large.

The following little parametrization illustrates our ex-
pectations of the effects of zero modes: Si�pj0� is the sum
of the zero mode contribution and the nonzero mode con-
tribution Sn,

Si�pj0� �
1

m
S0 	 Sn: (16)

Therefore in Eq. (9)

Si�pj0���5S
y
i �pj0��5 �

1

m2 S0��5S
y
0�5 	

1

m
�S0��5S

y
n�5

	 Sn��5S
y
0�5� 	 Sn��5S

y
n�5;

(17)

and then G��p� can be written in the form

G��p� �
1

m2 G2 	
1

m
G1 	G0; (18)

where the subscript counts the number of zero modes: G0

contains no zero mode contribution. The quark propagator
averaged over all configurations and its inverse, if ex-
panded for small m, are

S�p� �
1

m
�S0 	 �Sn;

S�1�p� � m �S�1
0 �m

2 �S�1
0

�Sn �S�1
0 	 � � � :

(19)

Thus the amputated Green function

���p� � S�1�p�G��p�S�1�p�

�

�
1

m
�S0 	 �Sn

�
�1
�

1

m2 G2 	
1

m
G1 	G0

�

�

�
1

m
�S0 	 �Sn

�
�1

! �S�1
0 G2

�S�1
0 when m is small: (20)

So, if the zero modes affect our calculation of Z� (Eq. (5)),
the effect should be evident at small momentum and small
quark mass. Unfortunately, for us, � � 2 GeV, where we
will match, is rather small momentum.

Zero modes represent a finite volume quenching artifact.
We want to design our analysis to minimize their effects.
With overlap fermions, we can use linear combinations of
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scalar and pseudoscalar densities, or combinations of vec-
tor and axial vector currents, so that the zero mode effects
are suppressed in Z�. The use of these combinations de-
pends on the fact that overlap fermions respect chiral
symmetry on the lattice.

The Z-factors we find doing this differ, in some cases,
from what we obtain from a more naive analysis. In order
to confirm that zero modes are the source of the difference,
we will look at results obtained by explicitly subtracting
the contributions of the zero modes from the propagators.
Subtracting zero modes directly from the propagators
amounts to a modification of the quenched approximation,
so we will not use these results in the final values we quote.

For scalar and pseudoscalar densities, we can use Eq. (4)
to rewrite Eq. (1) as

ZSZq�I�p
2 � �2� � I (21)

and

ZPZq��5
�p2 � �2� � �5: (22)

If ZSP � ZS � ZP, then we have

ZSPZq��I 
��5
� � I 
 �5; (23)

and thus

ZSPZq
1

12
Tr��I 
��5

� � 1: (24)

Eq. (6) and (9) give us

�I 
��5
� S�1�p�

�
1

N

XN
i�1

Si�pj0��I 
 �5��5

� Syi �pj0��5

�
S�1�p�: (25)

For zero modes with positive chirality, Si�pj0��I � �5� �
0, while for zero modes with negative chirality, Si�pj0��
�I 	 �5� � 0. Therefore, the zero mode contribution in the
Green function combination GS�p� 
GP�p� are removed.
We can use Eq. (24) to obtain a ZSP which has a suppressed
zero mode contribution (Note that S�1�p� still contains
zero modes).

Similarly, for vector and axial vector currents, Eq. (1)
gives

ZVZq����p
2 � �2� � ��; (26)

and

ZAZq����5
�p2 � �2� � ���5: (27)

Letting ZVA � ZV � ZA, we obtain

��ZVAZq���� 
����5
� � I 
 �5 (28)

and subsequently (after the index � is averaged)

ZVAZq
1

48
Tr����� 
����5

���� � 1: (29)
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Similar to Eq. (25), we have

��� 
����5
� S�1�p�

�
1

N

XN
i�1

Si�pj0����I 
 �5��5

� Syi �pj0��5

�
S�1�p�: (30)

For zero modes with positive chirality, Si�pj0����I 	
�5� � Si�pj0��I � �5��� � 0. For those with negative
chirality, Si�pj0����I � �5� � Si�pj0��I 	 �5��� � 0.
Therefore, ZVA calculated from Eq. (29) has a suppressed
zero mode contribution.

III. NUMERICAL RESULTS

The data set that we use contains 40 gauge configura-
tions in the quenched approximation with the Wilson
gauge action. The lattice size is 164 and the gauge coupling
� � 6:1. The bare quark masses in lattice units are amq �

0:015, 0.020, 0.025, 0.035, 0.050 and 0.070. The lattice
spacing a is (a): 0.08 fm determined from the interpolation
formula of Ref. [20] using the Sommer parameter or (b):
0.09 fm from the measured rho mass. Therefore, a� �
0:811 or a� � 0:913 corresponds to � � 2 GeV accord-
ingly. The boundary conditions for the fermions are peri-
odic in space and antiperiodic in the time direction.
Therefore the momentum values are

ap� �
�
2�
N
kx;

2�
N
ky;

2�
N
kz;
�
N
�2kt 	 1�

�
; (31)

where N � 16. The values of k� we used are kx �
1; 2; 3; 4; 5, ky � kz � 0 and kt � 0; 1; 2. In the following
analysis, the statistical errors are obtained by a Jackknife
average with one configuration removed each time.

A. ZRI
0

q and ZRI
0

m

The quark field renormalization constant ZRI
0

q is calcu-
lated with Eq. (7). The results for two examples of bare
FIG. 1. ZRI
0

q vs. a� for bare quark mass amq � 0:020 and 0.070. Z
that obtained from the propagator with zero mode contribution subt

054508
quark masses are shown in Fig. 1. The comparison between
ZRI

0

q obtained from the full propagator and the propagator
with zero mode subtracted is also shown in the same graph.
There is no difference within error bars. The small point-
to-point irregularities in the figures (such as the three
points near a� � 1:1 in Fig. 1) are a lattice discretization
effect.

The full lattice quark propagator takes the form

S�p� �
Z�p�

i� � q�p� 	M�p�
: (32)

Here q�p� is the kinematic momentum depending on the
lattice quark action one uses. At large momentum p,
because of asymptotic freedom the propagator should go
back to the free quark propagator, i.e. Z�p� ! 1 and M�p�
should reduce to the bare quark mass. Figure 2 shows
�1=12�Tr�S�1�p�� versus ap for two examples of bare
quark masses with S�p� determined from Eq. (10).
Results from the full propagator and from the propagator
with zero mode contribution subtracted are compared in
the graph. As is expected, �1=12�Tr�S�1�p�� approaches
the bare quark mass at large momentum. Apparently, only
at small momentum and small quark mass does the zero
mode contribution make a difference.

If we define a renormalized quark mass m��� by

m��� � Zm���m0; (33)

wherem0 is the bare quark mass, then Zm��� is fixed in the
RI’ scheme by

�ZRI
0

m �
�1 � lim

m!0

12m0

ZRI
0

q Tr�S�1�p��

��������p2��2
: (34)

At finite quark masses, the renormalization conditions of
RI’ scheme are compatible with the Ward identities [3,21]
at large �2, therefore we expect ZRI

0

m � Z�1
S at large �2.

The numerical results of �ZRI
0

m �
�1 are shown in Fig. 3. The
RI0
q obtained from the full propagator (diamond) is compared with
racted (square).
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FIG. 3. �ZRI
0

m �
�1 for bare quark masses amq � 0:020 and 0.070. Diamonds are from the full propagator and squares from the

propagator with zero mode contribution subtracted.

FIG. 2. �1=12�Tr�S�1�p�� vs. ap for bare quark masses amq � 0:020 and 0.070. Results from the full propagator (diamond) and from
the propagator with zero mode contribution subtracted (square) are compared. The zero mode contribution is important only at small
momentum and small quark mass.
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error bar at small quark mass is large. A zero mode con-
tribution is visible only at low momentum. We will com-
pare �ZRI

0

m �
�1 with ZS later.

B. ZRI
0

S and ZRI
0

P

The results for ZS and ZP are shown in Fig. 4. At low
quark mass and momentum region, the zero mode sub-
tracted propagators give different values of ZS and ZP (we
will label them as ZNZS and ZNZP in the following) from
those obtained with the full propagators. The pseudoscalar
density couples to the Goldstone boson channel but the
coupling is suppressed at large � [3]. Therefore we see a
difference between ZS and ZP at small�, but no difference
at large �.

As was discussed in Sec. II, we can also use Eq. (24) to
suppress the zero modes and obtain ZSP. Figure 5 shows
the results of ZSP comparing with ZS and ZP. The ZSP’s
from configurations with topological charge Q � 0 and
Q< 0 are quite close to each other. At small quark mass
and small �, ZSP is apparently different from ZS and ZP as
054508
can be seen in the graph for amq � 0:020 in Fig. 5. ZSP
agrees with ZNZS and ZNZP obtained from the zero mode sub-
tracted propagators in Fig. 4 for amq � 0:020. For large
quark mass, for example amq � 0:070, and small�, ZSP is
close to ZS but very different from ZP. ZSP from Eq. (24) is
still contaminated by the coupling to the Goldstone boson.
Thus, this means that suppressing the zero modes can
suppress the coupling to the Goldstone boson. We do not
see this behavior in Fig. 4 for amq � 0:070. The ZNZP from
the zero mode subtracted propagator is very close to the ZP
from the full propagator. However, as we stated before,
subtracting zero modes directly from the propagators
amounts to a modification of the quenched theory. To
further investigate the zero modes, a quenched artifact,
simulations with dynamical fermions are necessary.

The comparison of �ZRI
0

m �
�1 with ZRI

0

S is given in Fig. 6.
We see a good agreement between �ZRI

0

m �
�1 and ZRI

0

S at
large � as expected.

In Fig. 7–9, ZS, ZNZS , ZP, ZNZP and ZSP (average from
configurations with Q � 0 and Q< 0) are plotted versus
-5



FIG. 5. ZSP obtained by using Eq. (24) comparing with ZS and ZP. The left is for quark mass amq � 0:020, the right amq � 0:070.
Q is the topological charge.

FIG. 4. ZS and ZP from the full propagators and the zero modes subtracted (labeled as ZNZS and ZNZP ) propagators. The left is for
quark mass amq � 0:020, the right amq � 0:070.

FIG. 6. �ZRI
0

m �
�1 compared with ZRI

0

S . At large �, �ZRI
0

m �
�1 � ZRI

0

S is well satisfied.
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FIG. 9. Extrapolation of ZSP to the chiral limit using Eq. (35).
Z is the average from configurations with Q � 0 and Q< 0.
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quark mass at a� � 0:708, 1:057 and 1:583 along with the
extrapolation to the chiral limit. A linear fit is used for ZS
and ZNZS . The data for ZS, which is obtained from the full
propagator, do not support a linear extrapolation, as is
shown in Fig. 7. For ZP, we see similar behavior as was
seen in [5,7,22–24] since the pseudoscalar density couples
to the Goldstone boson channel. As in [7,24], we use

1

ZP��2; m�
�
A��2�

amq
	 B��2� 	 C��2��amq� (35)

to fit ZP and then remove the pole term A��2�=amq to
obtain ZNPP � B��2��1 in the chiral limit. The fit is good as
can be seen in Fig. 8. Figure 8 shows one example of a fit to
ZP as part of a single elimination jackknife.

We also use Eq. (35) to extrapolate ZSP to the chiral limit
to obtain ZNPSP � B��2��1. The fit is shown in Fig. 9.

Values of ZS, ZNPP , ZNZS , �ZNZP �
NP and ZNPSP in the RI’

scheme in the chiral limit are listed in Table I. In the table,
FIG. 8. Extrapolation of ZP to the chiral limit using Eq. (35). ZP in the left graph is obtained by using the full propagator, while ZNZP
in the right graph is obtained by using the propagator with zero modes subtracted. Both are fits after the last configuration is dropped
during the Jackknife average process.

FIG. 7. Linear extrapolation of ZS to the chiral limit. The left is for ZS obtained from full propagators. The data do not support a
linear extrapolation. We did it anyway just for comparison. The right is for ZS obtained from zero mode subtracted propagators
(labeled as ZNZS ). At small quark mass, ZS and ZNZS are very different.

SP
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TABLE I. Values of ZS, ZNPP , ZNZS , �ZNZP �
NP and ZNPSP in the RI’ scheme in the chiral limit. The

MS(2 GeV) value is obtained from a linear interpolation from the two closest � values of the
data. The lattice spacing is (a): 0.08 fm from Sommer parameter or (b): 0.09 fm from the
measured rho mass. Correspondingly, we get two MS(2 GeV) values. ZS and ZNPP contain zero
modes and are quite different from the Z’s which contain no zero modes.

a� ��a�(GeV) ��b�(GeV) ZS ZNPP ZNZS �ZNZP �
NP ZNPSP

0.439 1.08 0.96 1.31(6) 0.43(2) 0.455(2) 0.642(2)
0.708 1.75 1.55 0.85(4) 0.97(1) 0.64(1) 0.631(1) 0.732(2)
0.982 2.42 2.15 0.89(3) 0.94(2) 0.753(9) 0.755(1) 0.828(2)
1.057 2.61 2.32 0.86(2) 0.887(9) 0.764(8) 0.7685(9) 0.7972(9)
1.194 2.95 2.62 0.89(2) 0.92(1) 0.805(5) 0.817(1) 0.8489(9)
1.583 3.91 3.47 0.90(1) 0.906(4) 0.860(5) 0.8611(3) 0.8874(6)
2.050 5.06 4.49 0.896(7) 0.901(2) 0.868(6) 0.8725(2) 0.8826(4)

MS�a� 2 GeV 1.01(2) 1.12(1) 0.79(5) 0.79(5) 0.89(4)
MS�b� 2 GeV 1.01(1) 1.091(9) 0.83(3) 0.83(4) 0.93(3)
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the superscripts �a� and �b� indicate the two different ways
of determining the lattice spacing. We could not get ZS for
the smallest momentum because the signal in our data is
too noisy. ZS and ZNPP are different from each other at small
� so that theMS values of them differ from each other. The
MS values are obtained by using the conversion formulas
in Sec. IVand a linear interpolation from the two closest �
value of the data. The quantities ZNZS and �ZNZP �

NP are our
results using propagators from which zero modes are re-
moved. They are in good agreement with each other, as
expected from chiral symmetry, but are very different from
ZS and ZNPP . The analysis using ZNPSP is theoretically the
cleanest of our choices, and it is what we will compare with
perturbative calculations.

C. ZRI
0

V and ZRI
0

A

In Fig. 10, the renormalization constants of the vector
current ZV and axial vector current ZA are given. For
FIG. 10. ZV ,ZA and their average versus a� for quark masses amq
a�, the x-positions of ZV and ZA are shifted a little.
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clarity, at each value of the momentum a�, the x-positions
of ZV and ZA are shifted a little in the graph. As is shown in
the graph, ZV and ZA are independent of the scale at large
� (a� > 0:7), and ZV � ZA within statistical errors. At
low�, ZA is bigger than ZV . We think this happens because
the axial vector current is coupled to the Goldstone boson.
ZNZV and ZNZA obtained from quark propagators with zero
modes subtracted are compared with ZV and ZA in Fig. 11.
Apparently, zero modes have little effect on ZV and ZA.
ZVA obtained from Eq. (29) is shown in Fig. 12. It agrees
with the average of ZV and ZA. This confirms that the zero
mode contribution is not important in the computation of
ZV and ZA.

The RI’ scheme values of ZV , ZA, ZNZV and ZNZA in the
chiral limit are given in Table II. The superscripts �a� and
�b� in the table indicate the two different ways of determin-
ing the lattice spacing. The MS values are obtained by
using the conversion formulas in Sec. IV. ZV � ZA is very
well satisfied as expected since the overlap fermion re-
� 0:020 and 0.070. For clarity, at each value of the momentum
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FIG. 12. ZVA and 0:5�ZV 	 ZA� at the smallest quark mass
amq � 0:015.

FIG. 11. ZNZV and ZNZA compared with ZV and ZA for quark masses amq � 0:020 and 0.070.
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spects chiral symmetry on the lattice. The linear extrapo-
lation to the chiral limit is shown in Fig. 13.
TABLE II. Values of ZV , ZA, ZNZV and ZNZA in
GeV) value is obtained from a linear interpolation
lattice spacing is �a�: 0.08 fm from Sommer para
mass. Correspondingly, we get two MS(2 GeV) v

a� ��a�(GeV) ��b�(GeV) ZV

0.439 1.08 0.96 1.11(3
0.708 1.75 1.55 1.03(1
0.982 2.42 2.15 1.024(9
1.057 2.61 2.32 0.998(9
1.194 2.95 2.62 1.026(6
1.583 3.91 3.47 1.023(5
2.050 5.06 4.49 0.992(5

MS�a� 2 GeV 1.022(2
MS�b� 2 GeV 1.021(1

054508
IV. CONVERSION TO MS

The ratio ZMS� ��
2�=ZRI

0

� ��
2�, which connects the MS

scheme to the RI’ scheme, is computed by continuum
perturbation theory. There is a need to determine the
coupling constant �s��� in the ratio. We obtain �MSs ���
by first measuring the trace of the plaquette operator Uplaq

(the 1� 1 Wilson loop), which gives us �Vs �3:41=a� [10].
Then a�V and a�MS are calculated. Finally �MSs ��� is
determined by

��MSs �����1 � �0 ln��=�MS�
2 	 ��1=�0� lnln��=�MS�

2;

(36)

where �0 � 11=4� and �1 � 102=16�2 for the quenched
approximation. If the lattice spacing a � 0:08 fm from the
Sommer parameter, we find �MSs �� � 2 GeV��
�MSs �0:811=a��0:2038. If a � 0:09 fm from the mea-
sured rho mass, then �MSs �� � 2 GeV� �
�MSs �0:913=a� � 0:1940.
the RI’ scheme in the chiral limit. The MS(2
from the two closest � values of the data. The
meter or �b�: 0.09 fm from the measured rho
alues.

ZA ZNZV ZNZA

) 1.17(4) 1.15(2) 1.16(3)
) 1.03(1) 1.04(1) 1.04(1)
) 1.026(10) 1.023(9) 1.022(9)
) 1.000(9) 0.999(8) 0.999(8)
) 1.029(6) 1.029(6) 1.029(6)
) 1.023(6) 1.023(6) 1.023(6)
) 0.992(5) 0.992(5) 0.992(5)

) 1.023(1) 1.028(6) 1.028(7)
) 1.022(1) 1.022(4) 1.022(4)
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FIG. 13. Extrapolation of ZV and ZA to the chiral limit.

TABLE III. Values of ZS;P and ZV;A at a� � 1 for HYP-planar
overlap action from perturbative calculation in Ref. [11].

�Vs �1:96=a� �Vs �1:52=a� �MSs �1:96=a� �MSs �1:52=a�

ZS;P 1.010 1.011 1.008 1.009

�Vs �1:26=a� �Vs �1:46=a� �MSs �1:26=a� �MSs �1:46=a�
ZV;A 0.989 0.990 0.991 0.992
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For the scalar and pseudoscalar densities, in Landau
gauge and in 3-loop order, the conversion ratio is [21,25]

ZMSS
ZRI

0

S

�
ZMSP
ZRI

0

P

� 1	
16

3

�s
4�
	

�
4291

18
�

152�3

3

��
�s
4�

�
2

	

�
3890527

324
�

224993�3

54
	

2960�5

9

��
�s
4�

�
3

	O��4
s�; (37)

where �n is the Riemann zeta function evaluated at n.
Substituting �MSs �� � 2 GeV� � 0:2038 or 0.1940 into
the above equation, we get ZMSS =ZRI

0

S � ZMSP =ZRI
0

P � 1	
0:08650	 0:04668	 0:03131 � 1:1645 or 1	
0:08234	 0:04230	 0:02701 � 1:1516:

For the vector and axial vector currents, since ZRIV �
ZMSV and the difference between RI scheme and RI’ scheme
is only due to the different definition of the quark field
renormalization constants, we have

ZMSA
ZRI

0

A

�
ZMSV
ZRI

0

V

�
ZRIV
ZRI

0

V

�
ZRI

0

q

ZRIq
�
ZRI

0

q =ZMSq

ZRIq =Z
MS
q

: (38)

ZRI
0

q =ZMSq and ZRIq =ZMSq were calculated in Ref. [21,25] to
three loops, so we find

ZMSA
ZRI

0

A

�
ZMSV
ZRI

0

V

� 1�
67

6

�
�s
4�

�
2
�

�
52321

72
�

607�3

4

�

�

�
�s
4�

�
3
	O��4

s�: (39)

The numerical value at � � 2 GeV is �1	 0� 0:00294�
0:00232� � 0:9947 or �1	 0� 0:00266� 0:00200� �
0:9953.

In Table I and II, the MS values at � � 2 GeV are
obtained from linear interpolations between the two closest
� values of the data.
054508
V. COMPARISON WITH PERTURBATIVE
CALCULATIONS

The perturbative calculation in Ref. [11] gives the lattice
to MS matching factor Zi � 1	 zi�s�q��=3� at a� � 1.
Here i � S; P;V and A for fermion bilinears. The values of
zi and the scale q� are given in Table V in Ref. [11].

We may use �Vs �q�� run from �Vs �3:41=a�, as is deter-
mined from the plaquette [10] or �MSs �q�� from Eq. (36).
The results of Zi’s are listed in Table III. The ambiguity in
the choice of �s and q� in perturbation theory is small. We
have to run the result of ZS;P to � � 2 GeV to compare
with our MS(2 GeV) value. We use the two loop formula
for the running quark mass given in Ref. [26](Eq. (4.81)). If
the inverse lattice spacing is 1=a � 2:47 GeV
(a � 0:08 fm) from the Sommer parameter, then we find
ZS;P�2 GeV� � 0:975 from ZS;P�2:47 GeV� � 1:009. If
the inverse lattice spacing is 1=a � 2:19 GeV�a �
0:09 fm� from the measured rho mass, then ZS;P�2 GeV� �
0:995. In any case, the value of ZS;P from a perturbative
calculation is quite close to 1, while our nonperturbative
results 0:79�5�=0:89�4� or 0:83�4�=0:93�3� (see Table I) are
not. Thus, the one-loop perturbative calculation of the
matching factors for scalar and pseudoscalar density for
HYP-planar overlap action seems unreliable.

Unlike ZS or ZP, ZV and ZA are scale independent. We
can compare the values of ZV;A in Table III directly with
our nonperturbative MS�2 GeV� results in Table II. All are
quite close to 1 (the shift from one is less than 0.03). This
-10
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indicates that we can believe in the perturbative calcula-
tions of ZV and ZA for the HYP-planar overlap action.

VI. SUMMARY AND CONCLUSION

We calculated the renormalization constants of bilinear
quark operators nonperturbatively using the HYP-planar
overlap action with exact chiral symmetry. By comparing
the results with those from perturbative computations, we
find that a perturbative calculation is reliable for ZV and
ZA, but not for ZS and ZP. The exact zero modes of the
Dirac operator turn out to be important in calculating ZS
and ZP, while not relevant in calculating ZV and ZA. ZV
and ZA are also in good agreement with each other as is
054508
expected from the chiral symmetry of the action. We
expect that zero modes will be much less important in
simulations done with dynamical overlap quarks[27].

The perturbative result that actions using HYP-blocked
links have matching factors quite close to unity is con-
firmed for vector and axial vector currents with our HYP-
planar overlap action. This does not appear to be the case
for the scalar and pseudoscalar densities.
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