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Investigation of the second moment of the nucleon’s g1 and g2 structure functions
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The reduced matrix elements a2 and d2 are computed in lattice QCD with Nf � 2 flavors of light
dynamical (sea) quarks. For proton and neutron targets we obtain as our best estimates d�p�2 � 0:004�5�
and d�n�2 � �0:001�3�, respectively, in the MS scheme at Q2 � 5 GeV2, while for a2 we find a�p�2 �
0:077�12� and a�n�2 � �0:005�5�, where the errors are purely statistical.
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I. INTRODUCTION

The nucleon’s second spin-dependent structure function
g2 is of considerable phenomenological interest since at
leading order in Q2 it receives contributions from both
twist-2 and twist-3 operators. Consideration of g2 via the
operator product expansion (OPE) [1] offers the unique
possibility of directly assessing higher-twist effects which
go beyond a simple parton model interpretation.

Neglecting quark masses and contributions of twist
greater than two, one obtains the ‘‘Wandzura-Wilczek’’
(WW) relation [2]

g2�x;Q
2� � gWW

2 �x;Q2�

� �g1�x;Q
2� �

Z 1

x

dy
y
g1�y;Q

2�; (1)

depending only on the nucleon’s first spin-dependent struc-
ture function, g1�x;Q2�. Including mass and gluon depen-
dent terms up to and including twist-3, g2 can be written [3]

g2�x;Q2� � gWW
2 �x;Q2� � g2�x;Q2�; (2)

where

g 2�x;Q
2� � �

Z 1

x

dy
y

d
dy

�
m
M
hT�y;Q

2� � ��y;Q2�

�
: (3)

The function hT�x;Q2� denotes the transverse polarization
density and has twist two. The contribution from hT�x;Q

2�
to g2 is suppressed by the quark-to-nucleon mass ratio,
m=M, and hence is small for physical up and down quarks.
The twist-3 term � arises from quark-gluon correlations.
05=72(5)=054507(10)$23.00 054507
From Eqs. (1)–(3), the moments of g2 are

Z 1

0
dxxng2�x;Q2� �

n
n� 1

�
�
Z 1

0
dxxng1�x;Q2�

�
Z 1

0
dxxn�1

�
m
M
hT�x;Q2�

� ��x;Q2�

��
: (4)

A leading order OPE analysis with massless quarks
shows that the moments of g1 and g2 are given by [1]

2
Z 1

0
dxxng1�x;Q2� �

1

2

X
f�u;d

e�f�1;n��
2=Q2; g����a�f�n ���;

(5)

2
Z 1

0
dxxng2�x;Q

2� �
1

2

n
n� 1

X
f�u;d

�e�f�2;n��
2=Q2; g����

� d�f�n ��� � e
�f�
1;n��

2=Q2; g����

� a�f�n ���	; (6)

for even n 
 0 for Eq. (5) and even n 
 2 for Eq. (6),
where f runs over the light quark flavors and� denotes the
renormalization scale. The reduced matrix elements
a�f�n ��� and d�f�n ��� are defined by [1]

h ~p; ~sjO5�f�
f��1����ng

j ~p; ~si �
1

n� 1
a�f�n �s�p�1

� � �p�n

� � � � � traces	; (7)

h ~p; ~sjO5�f�
��f�1	����ng

j ~p; ~si�
1

n�1
d�f�n ��s�p�1

�s�1
p��

�p�2
���p�n

����� traces	; (8)
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O 5�f�
��1����n �

�
i
2

�
n

� ���5D
$

�1
� � �D

$

�n
 � traces: (9)

Here D
$

� D
!

�D
 

and e�f�1;n, e�f�2;n are the Wilson coefficients
which depend on the ratio of scales �2=Q2, the running
coupling constant g��� and the quark charges Q�f�,

e�f�i;n ��
2=Q2; g���� �Q�f�2�1�O�g���2��: (10)

The symbol f� � �g (�� � �	) indicates symmetrization (anti-
symmetrization) of indices. The operator (7) has twist two,
whereas the operator (8) has twist three. Note that our
definitions of a2 and d2 differ by a factor of 2 from those
in [4,5].

Using the equations of motion of massless QCD one can
rewrite the twist-3 operators O5�f�

��f�1	����ng
such that the dual

gluon field strength tensor ~G�� and the QCD coupling g
appear. For n � 2 one finds

O 5�f�
��f�1	�2g

� �
g
6

� � ~G��1
��2
� ~G��2

��1
� � traces;

(11)

so we can define the reduced matrix element d2 in the
chiral limit also by (see, e.g., Ref. [6])

�
g
6
h ~p; ~sj � � ~G��1

��2
� ~G��2

��1
� � tracesj ~p; ~si

�
1

3
d2��s�p�1

� s�1
p��p�2

� � � � � traces	: (12)

This shows (setting�1 � �2 � 0) that d2 parametrizes the
magnetic field component of the gluon field strength tensor
which is parallel to the nucleon spin. Furthermore we have

d2 � 4
Z 1

0
dxx��x�: (13)

Hence, a calculation of d2 (in the chiral limit) is especially
interesting as it will provide insights into the size of the
quark-gluon correlation term, ��x�.

The Wilson coefficients (10) can be computed perturba-
tively, while the reduced matrix elements a�f�n and d�f�n have
to be computed nonperturbatively. In the following we
shall drop the flavor indices, unless they are necessary.

A few years ago we computed the lowest nontrivial
moment of g2 in the quenched approximation [7]. In this
paper we give our results for the reduced matrix elements
a2 and d2 in full QCD, including Nf � 2 flavors of light
dynamical (sea) quarks, using O�a�-improved Wilson fer-
mions. We employ the same methods as in the quenched
case, in particular, the renormalization of the lattice opera-
tors is done entirely nonperturbatively.

II. LATTICE OPERATORS AND
RENORMALIZATION

The lattice calculation divides into two separate tasks.
The first task is to compute the nucleon matrix elements of
054507
the appropriate lattice operators. This was described in
detail in [8]. The second task is to renormalize the opera-
tors. In the case of multiplicative renormalizability, the
renormalized operator O��� is related to the bare operator
O�a� by

O ��� � ZO�a��O�a�; (14)

where a is the lattice spacing. In our earlier work [8,9], we
computed the renormalization constants in perturbation
theory to one-loop order. However, this does not account
for mixing with lower-dimensional operators, which we
encounter in the case of the reduced matrix elements d�f�n .
In [7] an entirely nonperturbative solution to this problem
was presented for quenched lattice QCD. Here we shall
apply the same approach. We impose the (MOM-like)
renormalization condition [10,11] (which can also be
used in the continuum)

1

4
Trhq�p�jO���jq�p�i�hq�p�jO�a�jq�p�ijtree	�1 �

p2��2
1;

(15)

where jq�p�i is a quark state of momentum p in Landau
gauge.

In the following we shall restrict ourselves to the case
n � 2. Furthermore, we consider quark-line connected
diagrams only, as calculations of quark-line disconnected
diagrams are extremely computationally expensive. In an
attempt to improve on our earlier analysis [7], we simulate
with two nonvanishing values for the nucleon momentum,
~p1 � �p; 0; 0� and ~p2 � �0; p; 0�, together with two differ-
ent polarization directions, described by the matrices �1 �
1
2 �1� �4�i�5�1 and �2 �

1
2 �1� �4�i�5�2. Here p �

2�=LS denotes the smallest nonzero momentum available
on a periodic lattice of spatial extent LS. We consider the
two combinations ~p1=�2 and ~p2=�1. For the twist-2 matrix
element a2 we use in both cases the operator

O 5
f214g �: Of5g (16)

as in [7].
For the twist-3 matrix element d2 we need to use differ-

ent operators for our two momentum/polarization combi-
nations. For ~p1=�2 and ~p2=�1 we take

O5
�2f1	4g �

1

3
�2O5

2f14g �O5
1f24g �O5

4f12g�

�
1

12
� ��2D

$

1D
$

4 � �2D
$

4D
$

1 �
1

2
�1D
$

2D
$

4

�
1

2
�1D
$

4D
$

2 �
1

2
�4D
$

1D
$

2 �
1

2
�4D
$

2D
$

1��5 

�: O�5	1 ; (17)
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TABLE I. Lattice parameters: gauge coupling �, sea quark
hopping parameter 	sea, lattice volume, number of trajectories,
r0=a and pseudoscalar meson mass.

� 	sea Volume Ntraj r0=a mPSa

5.20 0.134 20 163 � 32 O�5000� 4.077(70) 0.584 7(12)
5.20 0.135 00 163 � 32 O�8000� 4.754(45) 0.414 8(13)
5.20 0.135 50 163 � 32 O�8000� 5.041(53) 0.290 7(15)
5.25 0.134 60 163 � 32 O�5800� 4.737(50) 0.493 2(10)
5.25 0.135 20 163 � 32 O�8000� 5.138(55) 0.382 1(13)
5.25 0.135 75 243 � 48 O�5900� 5.532(40) 0.256 38(70)
5.29 0.134 00 163 � 32 O�4000� 4.813(82) 0.576 7(11)
5.29 0.135 00 163 � 32 O�5600� 5.227(75) 0.420 57(92)
5.29 0.135 50 243 � 48 O�2000� 5.566(64) 0.326 88(70)
5.40 0.135 00 243 � 48 O�3700� 6.092(67) 0.403 01(43)
5.40 0.135 60 243 � 48 O�3500� 6.381(53) 0.312 32(67)
5.40 0.136 10 243 � 48 O�3500� 6.714(64) 0.221 20(80)

FIG. 1. Parameters of our dynamical gauge field configura-
tions, together with lines of constant r0=a (solid lines) and lines
of constant mPSr0 (dashed lines). The simulations are done on
243 � 48 (crosses) and 163 � 32 (circles) lattices, respectively.
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3
�2O5

1f24g �O5
2f14g �O5

4f21g�
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1

12
� ��1D

$

2D
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2 �
1

2
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1

2
�2D
$
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1

2
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$

2D
$

1 �
1

2
�4D
$

1D
$

2��5 

�: O�5	2 ; (18)

respectively. In the following we shall suppress the index
of O�5	 unless it is needed. The operators Of5g and O�5	

belong to the representations ��4�3 and ��8�1 , respectively, of
the hypercubic group H�4� [12]. The operator O�5	 has
dimension five and C parity �. It turns out that there exist
two operators of dimensions four and five, respectively,
transforming identically under H�4� and having the same
C parity, with which O�5	 can mix:

1

12
i � ��13D

$

1 � �43D
$

4� �: O�; (19)

1

12
� ��1D

$

3D
$

1��1D
$

1D
$

3��4D
$

3D
$

4��4D
$

4D
$

3� �:O0;

(20)

for ~p1=�2, and similarly for ~p2=�1 with 1! 2. We use the
definition ��� � �i=2����; ��	.

The operator (20) mixes with O�5	 with a coefficient of
order g2 and vanishes in the tree approximation between
quark states. We therefore neglect its contribution to the
renormalization of O�5	. The operator O�, on the other
hand, contributes with a coefficient / a�1 and hence must
be kept. We then remain with

O �5	��� � Z�5	�a��O�5	�a� �
1

a
Z��a��O��a�: (21)

The renormalization constant Z�5	 and the mixing coeffi-
cient Z� are determined from

1

4
Trhq�p�jO�5	���jq�p�i

� �hq�p�jO�5	�a�jq�p�ijtree	�1 �
p2��2

1; (22)

1

4
Trhq�p�jO�5	���jq�p�i

� �hq�p�jO��a�jq�p�ijtree	�1 �
p2��2

0: (23)

Rewriting Eq. (21) as

O �5	��� � Z�5	�a��
�
O�5	�a� �

1

a
Z��a��

Z�5	�a��
O��a�

�
;

(24)

we see that O�5	��� will have a multiplicative dependence
on� only if the ratio Z��a��=Z�5	�a�� does not depend on
�, which should happen for large enough values of the
054507
renormalization scale. The scale dependence will then
completely reside in Z�5	.
III. SIMULATION DETAILS

To reduce cutoff effects, we use nonperturbatively O�a�
improved Wilson fermions. The calculation is done at four
different values of the coupling, �, and at three different
sea quark masses each. The latter are specified by the
hopping parameter 	sea. We use the force parameter r0 to
set the scale, with r0 � 0:467 fm. Our lattice spacings
range from a � 0:07 to 0.09 fm. The actual parameters,
as well as the corresponding values of r0=a and the pseu-
doscalar meson masses, are given in Table I and shown
pictorially in Fig. 1.
-3



10 20 30 40 50 60 70 80 90 100
2

(GeV
2
)

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

Z
R

G
I

{5
}

FIG. 2. Zf5gRGI calculated in the MS scheme (circles) and in a
MOM scheme (filled squares) at � � 5:40. The scale is fixed
using r0 � 0:467 fm.
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The quark matrix elements for the renormalization con-
stants are computed using a momentum source [11].
Performing the Fourier transform at the source suppresses
the effect of fluctuations: The statistical error in this case is
/ �VNconf�

�1=2 for Nconf configurations on a lattice of
volume V, resulting in small statistical uncertainties even
for a small number of configurations, at least five in our
case. Hence, the main source of statistical uncertainty in
our final results is from the calculation of the bare matrix
elements, not the Z values.

Nucleon matrix elements are determined from the ratio
of three-point to two-point correlation functions

R �t; �; ~p;O� �
C��t; �; ~p;O�
C2�t; ~p�

; (25)

where C2 is the unpolarized baryon two-point function
with a source at time 0 and sink at time t, while the
three-point function C� has an operator O insertion at
time �. To improve our signal for nonzero momentum we
average over both polarization/momentum combinations.

Correlation functions are calculated on configurations
taken at a distance of 5–10 trajectories using 4–8 different
locations of the fermion source. We use binning to obtain
an effective distance of 20 trajectories. The size of the bins
has little effect on the error, which indicates autocorrela-
tions are small.
0 1 2 3 4 5 6 7 8 9 10
(GeV)

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

Z
/Z

[5
]

FIG. 3. The ratio Z��a��=Z�5	�a�� at � � 5:40.
IV. COMPUTATION OF RENORMALIZATION
CONSTANTS

The twist-2 operator defined in Eq. (16) is renormalized
multiplicatively with the renormalization factor Zf5g�a��,
while the renormalization of the twist-3 operators in
Eqs. (17) and (18) is more complicated due to the mixing
effects described in Sec. II. Since the renormalization of
O�5	1 and O�5	2 is identical (up to lattice artifacts) we con-
sider only O�5	1 .

The calculation of the nonperturbative renormalization
factors is a nontrivial exercise, the full details of which are
beyond the scope of this paper. Here we restrict ourselves
to a short outline of the procedure. More details can be
found in Sec. 5.2.3 of Ref. [13], and a fuller account will be
given in a forthcoming publication.

First, a chiral extrapolation of the nonperturbative re-
normalization factors is performed at fixed � and fixed
momentum. The extrapolation is performed linearly in
�r0mPS�

2 � ��r0=a�amPS�
2, where for each value of � we

use the chirally extrapolated value of r0=a (see Table 3 of
Ref. [14]). We then apply continuum perturbation theory to
calculate the renormalization group invariant renormaliza-
tion factor ZRGI from the chirally extrapolated Zs [13].
This can be done in various schemes, e.g., the MS scheme,
and should lead for any scheme to the same momentum-
independent value of ZRGI, at least for sufficiently large
momenta. For this step, we use r0�MS � 0:617 [14]. In
054507
Fig. 2, we show the � dependence of Zf5gRGI computed in the
MS scheme and in a continuum MOM scheme at � �
5:40. While in both cases a reasonable plateau appears, the
plateau values do not coincide exactly, and we take the
difference as a measure of the uncertainty of our Zs, caused
by our incomplete knowledge of the perturbative
expansion.

The final step requires ZRGI to be converted to ZMS at
some renormalization scale, which is done perturbatively,
and the result depends on the value of �MS in physical
units. From r0�MS � 0:617 and r0 � 0:467 fm we obtain
�MS � 261 MeV.

As mentioned above, the renormalization of the twist-3
operator in Eqs. (17) and (18) has further complications
due to the mixing effects described in Sec. II. In this case it
is unclear how to convert our MOM results to the MS
-4
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scheme. So we shall stick to the MOM numbers. For the
comparison of our results with experimental determina-
tions this does not cause problems, because no QCD cor-
rections have been taken into account in the analysis of the
experiments and hence different schemes are not
distinguished.

In Fig. 3 we plot the ratio Z��a��=Z�5	�a�� as a function
of � for � � 5:40. As expected, a plateau develops for
larger values of �, and therefore the operator O�5	��� only
depends on � multiplicatively.
V. RESULTS FOR REDUCED MATRIX ELEMENTS

In order to compute the reduced matrix elements in
Eqs. (7) and (8), we calculate the ratio of three- to two-
point correlation functions R, as given in Eq. (25), for the
operators defined in Eqs. (16)–(20). The bare operator
matrix elements are obtained from the ratio R by

R a2
�

1

2	sea

1

6
Mpa2; Rd2

�
1

2	sea

1

3
Mpd2: (26)
TABLE II. Bare (unrenormalized) matrix eleme
our entire set of ��;	sea� combinations.

� 	sea a�u�2 a�d�2

5.20 0.134 20 0.142(18) �0:0318
5.20 0.135 00 0.123(22) �0:032�
5.20 0.135 50 0.131(32) �0:061�
5.25 0.134 60 0.113(12) �0:0389
5.25 0.135 20 0.110(19) �0:0281
5.25 0.135 75 0.1107(74) �0:0345
5.29 0.134 00 0.1141(77) �0:0255
5.29 0.135 00 0.0989(90) �0:0281
5.29 0.135 50 0.1228(65) �0:0302
5.40 0.135 00 0.1195(44) �0:0227
5.40 0.135 60 0.1238(63) �0:0331
5.40 0.136 10 0.127(13) �0:0277

TABLE III. Bare (unrenormalized) matrix elem
proton for our entire set of ��;	sea� combination

� 	sea d��u�2 =a d��2

5.20 0.134 20 �0:220�19� 0.046
5.20 0.135 00 �0:305�29� 0.077
5.20 0.135 50 �0:395�60� 0.080
5.25 0.134 60 �0:252�17� 0.045
5.25 0.135 20 �0:239�23� 0.063
5.25 0.135 75 �0:353�13� 0.063
5.29 0.134 00 �0:213�9� 0.037
5.29 0.135 00 �0:258�13� 0.051
5.29 0.135 50 �0:338�10� 0.065
5.40 0.135 00 �0:301�8� 0.059
5.40 0.135 60 �0:385�15� 0.072
5.40 0.136 10 �0:420�25� 0.087

054507
We define the continuum quark fields by
�����������
2	sea

p
times the

lattice quark fields. The factor for Rd2
is the same for all

three operators O�5	, O� and O0.
In Tables II and III we present our results for the bare

matrix elements of the operators Of5g, O�5	, O� and O0

defined in Eqs. (16)–(20) for u and d quarks in the proton.
The corresponding renormalized (reduced) matrix ele-

ments for the renormalization scale �2 � 5 GeV2 are
given in Tables IV and V. While the superscripts �u� and
�d� again refer to u and d quarks in the proton, the matrix
elements for proton and neutron targets are denoted by �p�
and �n�, respectively. For a2 the latter are given by

a�p�2 �Q�u�2a�u�2 �Q�d�2a�d�2 ; (27)
a�n�2 �Q�d�2a�u�2 �Q�u�2a�d�2 (28)

and similarly for d2. The renormalized values of d�f�2 for
nts a2, d�5	2 , for u and d quarks in the proton for

d�5	�u�2 d�5	�d�2

�78� �0:014 3�23� 0.000 5(14)
11� �0:032 9�59� 0.009 4(35)
22� �0:057�14� 0.006 4(59)
�51� �0:016 5�25� 0.002 3(13)
�74� �0:031 0�39� 0.006 9(17)
�47� �0:057 5�28� 0.007 4(15)
�35� �0:003 3�11� �0:000 09�63�
�45� �0:025 2�19� 0.004 6(11)
�26� �0:046 8�23� 0.007 83(92)
�24� �0:021 35�99� 0.002 32(61)
�34� �0:044 5�26� 0.006 9(11)
�60� �0:067 4�48� 0.010 3(25)

ents d�2 =a and d0
2 for u and d quarks in the

s.

d�=a d0�u�
2 d0�d�

2

(8) �0:0312�46� 0.0096(22)
(13) �0:039�10� 0.0145(49)
(21) �0:063�14� 0.0194(75)
(6) �0:0371�34� 0.0150(28)
(10) �0:0329�61� 0.0131(42)
8(44) �0:0463�39� 0.0141(20)
9(35) �0:0322�23� 0.0086(12)
8(42) �0:0312�34� 0.0118(21)
1(36) �0:0390�25� 0.0120(13)
5(33) �0:0396�18� 0.01231(84)
3(50) �0:0502�26� 0.0137(15)
(9) �0:0411�60� 0.0178(39)
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TABLE IV. Renormalized matrix elements for the renormalization scale �2 � 5 GeV2 in the
MS scheme. The superscripts �u� and �d� refer to u and d quarks in the proton.

� 	sea a�u�2 a�d�2 d�u�2 d�d�2

5.20 0.134 20 0.194(27) �0:044�11� 0.0360(59) �0:0113�29�
5.20 0.135 00 0.168(32) �0:044�15� 0.039(12) �0:0082�65�
5.20 0.135 50 0.179(45) �0:083�30� 0.034(28) �0:015�11�
5.20 	c 0.154(65) �0:079�37� 0.040(31) �0:011�14�
5.25 0.134 60 0.154(19) �0:0532�76� 0.0335(53) �0:0070�24�
5.25 0.135 20 0.150(27) �0:038�10� 0.0109(79) �0:0047�34�
5.25 0.135 75 0.151(13) �0:0472�70� 0.0024(54) �0:0050�25�
5.25 	c 0.149(24) �0:042�12� �0:0169�89� �0:0036�41�
5.29 0.134 00 0.159(14) �0:0356�53� 0.0468(27) �0:0094�13�
5.29 0.135 00 0.138(15) �0:0392�67� 0.0284(43) �0:0064�20�
5.29 0.135 50 0.171(13) �0:0421�43� 0.0201(44) �0:0056�17�
5.29 	c 0.167(24) �0:0469�84� �0:0008�70� �0:0026�28�
5.40 0.135 00 0.170(12) �0:0323�39� 0.0499(27) �0:0127�13�
5.40 0.135 60 0.176(13) �0:0471�55� 0.0401(57) �0:0097�22�
5.40 0.136 10 0.181(21) �0:0394�88� 0.019(10) �0:0094�46�
5.40 	c 0.187(28) �0:056�11� 0.010(12) �0:0056�50�

TABLE V. Renormalized matrix elements for the renormalization scale �2 � 5 GeV2 in the
MS scheme. The superscripts �p� and �n� denote the matrix elements for proton and neutron
targets, respectively.

� 	sea a�p�2 a�n�2 d�p�2 d�n�2

5.20 0.134 20 0.081(12) 0.0022(55) 0.0148(26) �0:001 0�14�
5.20 0.135 00 0.070(14) �0:0008�75� 0.0166(55) 0.000 8(32)
5.20 0.135 50 0.070(20) �0:017�14� 0.013(13) �0:002 8�58�
5.20 	c 0.058(29) �0:020�18� 0.017(14) �0:000 2�71�
5.25 0.134 60 0.0627(82) �0:0065�36� 0.0141(24) 0.000 6(12)
5.25 0.135 20 0.063(12) �0:0004�53� 0.0043(36) �0:000 9�18�
5.25 0.135 75 0.0620(58) �0:0041�31� 0.0005(24) �0:001 9�13�
5.25 	c 0.062(10) �0:0024�53� �0:0079�40� �0:003 5�21�
5.29 0.134 00 0.0668(61) 0.0019(25) 0.0198(12) 0.001 05(64)
5.29 0.135 00 0.0570(65) �0:0021�31� 0.0119(19) 0.000 31(99)
5.29 0.135 50 0.0715(57) 0.0003(19) 0.0083(20) �0:000 28�89�
5.29 	c 0.069(10) �0:0015�38� �0:0006�31� �0:001 2�15�
5.40 0.135 00 0.0720(50) 0.0045(17) 0.0208(12) �0:000 09�63�
5.40 0.135 60 0.0731(58) �0:0014�24� 0.0168(25) 0.000 1(11)
5.40 0.136 10 0.0760(93) 0.0026(43) 0.0072(46) �0:002 1�23�
5.40 	c 0.077(12) �0:0048�53� 0.0039(54) �0:001 3�26�

M. GÖCKELER et al. PHYSICAL REVIEW D 72, 054507 (2005)
f � u; d in the proton are calculated from

d�f�2 � Z�5	d�5	�f�2 �
1

a
Z�d��f�2 : (29)

In the lines for 	sea � 	c, Tables IV and V contain
results in the chiral limit, obtained by an extrapolation
linear in �r0mPS�

2. The scale has been fixed from the value
of r0=a at the respective quark masses using r0 �
0:467 fm. Alternatively, we could have worked with the
chirally extrapolated values of r0=a. This would increase
d�p�2 and d�u�2 by up to twice the statistical error but would
leave the other observables almost unaffected. On the other
054507
hand, setting r0 � 0:5 fm or varying r0�MS between 0.572
and 0.662 (corresponding to the combined statistical and
systematic errors given in Ref. [14]) leads only to rather
small changes in the final results.

Let us first focus on the results for the twist-2 matrix
element a2. In Fig. 4 we show the chirally extrapolated
renormalized results for a2 in the proton in the MS scheme
as a function of the lattice spacing a. It should however be
noted that the data at � � 5:20, i.e., those for the largest
lattice spacing are to be considered with caution, because
potentially they are affected by lattice artifacts. For a2 the
dependence on the quark mass turns out to be rather small.
-6
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FIG. 5. The chirally extrapolated reduced matrix element a2

for the neutron target renormalized at the scale �2 � Q2 �
5 GeV2 as a function of the lattice spacing a. The cross denotes
the phenomenological value.
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FIG. 4. The chirally extrapolated reduced matrix element a2

for the proton target renormalized at the scale �2 � Q2 �
5 GeV2 as a function of the lattice spacing a. The crosses denote
phenomenological determinations.
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On the other hand, we do not attempt a continuum extrapo-
lation of the chirally extrapolated results. Instead we take
the value at our smallest lattice spacing (� � 5:4) as our
best estimate: a�p�2 � 0:077�12�. This is consistent with
earlier quenched results [7], indicating that quenching
effects are small.

At the physical pion mass, we compare with two results
taken from the literature which are obtained from an analy-
sis of experimental data. The larger value is taken from an
earlier analysis performed by Abe et al. [4], while the
lower point is extracted from a recent analysis by
Osipenko et al. [15] with the help of the perturbative
Wilson coefficient. In the MS scheme with anticommuting
�5, we use the two-loop expression for the Wilson coeffi-
cient described in Ref. [16]. To avoid large logarithms, we
set Q2 � �2 � 5 GeV2 to obtain

e�f�1;2 �Q�f�2 � 1:030 75: (30)

We do not see exact agreement between our chirally
extrapolated value and those obtained from experimental
data, but there are still several sources of systematic error
in our final number. First, our simulation only involves the
calculation of connected quark diagrams. That is, we do
not consider the (computationally expensive) case where
an operator couples to a disconnected quark loop, although
such disconnected diagrams are not expected to contribute
in the large x region. Second, our results are restricted to
the heavy pion world, mPS > 550 MeV. In this region we
observe a linear dependence of our results on m2

PS. A more
advanced functional form guided by chiral perturbation
theory, such as those proposed for the moments of unpo-
larized nucleon structure functions [17] or nucleon mag-
netic moments [18], may be required. One such form has
been suggested in [19], but only for isovector matrix
054507
elements. So we attempt to gain an estimate of the system-
atic uncertainty due to our linear extrapolation by compar-
ing results for a�u�d�2 in the chiral limit using both a linear
extrapolation and the form proposed in [19]

a�u�d�2 �m2
�� � a�u�d�2

�
1� cLNAm2

� log
m2
�

m2
� ��2

�

� b2
m2
�

m2
� �m2

b

; (31)

where the authors recommend a preferred value for the
leading nonanalytic (LNA) coefficient as cLNA �
��0:48g2

A � 1�=�4�f��2 and b2 is constrained by the
heavy quark limit to be

b�u�d�2 �
5

27
� a�u�d�2 �1��2cLNA�: (32)

We set � � 0:25 GeV as proposed in [19] and find at � �
5:29, a�u�d�2 � 0:214�29� employing a linear extrapolation
and a�u�d�2 � 0:183�9� using Eq. (31), suggesting there is a
15% systematic error in our linear extrapolation.

Finally, we have not considered finite size effects [20] in
this work, and our data do not yet allow us to perform a
decent continuum extrapolation.

Our results for a2 in the neutron are shown in Fig. 5.
They are hardly different from zero. Taking again the value
for � � 5:4 as our best estimate, we end up with a�n�2 �
�0:005�5�, in agreement with the result from the analysis
of Abe et al. [4].

From a�p�2 and a�n�2 in the chiral limit we calculate [see
Eq. (5)] the second moment of the polarized structure
function g1 for the proton and neutron. Using the Wilson
coefficient given in Eq. (30) we find
-7
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5 GeV2 as a function of the lattice spacing a. The cross denotes
the phenomenological value.
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Z 1

0
dxx2gp1 �x;Q

2� �
1:030 75

4
ap2 � 0:0170�18�; (33)

Z 1

0
dxx2gn1�x;Q

2� �
1:030 75

4
ap2 � �0:0013�8�: (34)

We now turn our attention to the second moment of g2.
We find that our data for d2 also exhibit a linear behavior in
m2

PS. While this is not unexpected at the large pion masses
where our simulations are performed, this linear behavior
will not necessarily continue near the chiral limit.
Unfortunately, the dependence of d2 on the pion mass
near the chiral limit is not yet known. Therefore in this
work we perform only a linear extrapolation of d2 to the
chiral limit. In Figs. 6 and 7 we plot some of the data versus
�r0mPS�

2 together with the linear extrapolations. The chir-
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FIG. 7. The chiral extrapolation of the reduced matrix element
d2 for the neutron target renormalized at the scale �2 � Q2 �
5 GeV2.

054507
ally extrapolated results for d2 in the proton and neutron
are shown in Figs. 8 and 9, respectively. At our smallest
lattice spacing we obtain in the chiral limit

d�p�2 � 0:004�5�; (35)

d�n�2 � �0:001�3�: (36)

The errors are statistical only. Taking the behavior of a�u�d�2
as a guide, the chiral extrapolation might introduce a 15%
systematic uncertainty. For d�p�2 the other systematic un-
certainties discussed above would amount to an additional
error of about 0.005, while d�n�2 is almost unaffected. Our
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FIG. 9. The chirally extrapolated reduced matrix element d2

for the neutron target renormalized at the scale �2 � Q2 �
5 GeV2 as a function of the lattice spacing a. The cross denotes
the phenomenological value.
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result for the proton agrees very well with the experimental
number [5], while for the neutron the experimental result
differs from ours by 2 standard deviations. A more precise
experimental value would be most desirable in the case of
the neutron.

From Eq. (4), the moments of g2 receive contributions
from g1 and g2, the second of which contains a mass
dependent term and a gluon insertion dependent term.
From Eq. (3), the second moment of g2 is (dropping the
explicit Q2 dependence)

1

6
d2 �

Z 1

0
dxx2g2�x� �

Z 1

0
dxx

2

3

�
m
M
hT�x� � ��x�

�
;

(37)

so if d2 vanishes in the chiral limit, then
R

1
0 dxx��x� must

also vanish. Our results lead us to conclude that for the n �
2 moment the Wandzura-Wilczek relation [2]

Z 1

0
dxx2g2�x;Q

2� � �
2

3

Z 1

0
dxx2g1�x;Q

2� (38)

is satisfied within errors for both proton and neutron
targets.

From the expression in Eq. (3), we also expect the first
moment of g2 to vanish in the chiral limit. Combining these
two observations with the Burkhardt-Cottingham sum rule
[21],

R
1
0 g2�x�dx � 0, and the knowledge that from elastic

scattering processes g2 receives nontrivial higher-twist
contributions at x � 1 [see, for example, Eqs. (4) and (5)
of [15]], we expect that there should be some sort of
smooth transition at intermediate x, which presents an
interesting challenge for the planned experiments at JLab
[22].
054507
VI. CONCLUSIONS

We have calculated the second moments of the proton
and neutron’s spin-dependent g1 and g2 structure functions
in lattice QCD with two flavors of O�a�-improved Wilson
fermions. A key feature of our investigation is the use of
nonperturbative renormalization and the inclusion of op-
erator mixing in our extraction of the twist-2 and twist-3
matrix elements.

Our result for a�p�2 � 0:077�12� for the proton is some-
what larger than what follows from analyses of experimen-
tal data, while for the corresponding result for the neutron,
we find a small but negative value, a�n�2 � �0:005�5�, in
agreement with experiment. Note that the errors are purely
statistical and do not include any systematic uncertainties,
although we estimate a systematic uncertainty of approxi-
mately 15% arising from the chiral extrapolation.

For the twist-3 matrix element, d2, our results agree very
well with experiment and are consistent with zero, leading
us to the conclusion that higher-twist effects occur only at
large or intermediate x.
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