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Lattice computations of the pion form factor
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We report on a program to compute the electromagnetic form factors of mesons. We discuss the
techniques used to compute the pion form factor and present results computed with domain-wall valence
fermions on MILC ASQTAD lattices, as well as with Wilson fermions on quenched lattices. We find that the
full-QCD form factor is well described by a VMD picture, with the pole mass in the chiral limit mVMD �
0:868�65� GeV. However, the quenched Wilson fermion results are suggestive of large scaling violations.
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I. INTRODUCTION

The pion electromagnetic form factor is often consid-
ered a good observable for studying the onset, with in-
creasing energy, of the perturbative QCD (pQCD) regime
for exclusive processes. It is believed that, because the pion
is the lightest and simplest hadron, a perturbative descrip-
tion will be valid at lower energy scales than predictions
for heavier and more complicated hadrons such as the
nucleon [1].

A pseudoscalar particle has only a single electromag-
netic form factor, F�Q2�, where Q2 is the four-momentum
transfer, and furthermore at Q2 � 0, this form factor is
normalized to the electric charge of the particle, F�Q2 �
0� � 1; the magnetic form factor vanishes. Thus, in this
paper, we will be measuring the form factor of the posi-
tively charged ��. The experimentally observed behavior
of the form factor at small-momentum transfer is well
described by the vector-meson-dominance (VMD) hy-
pothesis [2–4]

F��Q
2� �

1

1�Q2=m2
VMD

for Q2 � m2
VMD: (1)

The current experimental situation is presented in Fig. 1.
For Q2 � 0:28 GeV2, Amendolia et al. [5] have deter-

mined the form factor to high precision from scattering of
very high energy pions upon atomic electrons in a fixed
target. For higher Q2, the form factor has been determined
from quasielastic scattering from a virtual pion in the
proton [6–8]. In this case, the extracted values for the
form factor must depend upon some theoretical model
[9–11] for extrapolating the observed scattering from vir-
tual pions to the expected scattering from on-shell pions.
As the models have become more sophisticated, the earlier
data [6,7] have been reanalyzed [12] for consistency.
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Shown in Fig. 1 are the results of some model calculations
which seem to cover the range of existing predictions
[13–16].

Given the dominance of the rho meson resonance in the
timelike region �Q2 < 0� of the pion form factor, perhaps it
is not too surprising that the spacelike form factor is well
described at low Q2 > 0 by a VMD-inspired monopole
form with only a contribution from the lightest vector
resonance (mVMD �m� � 0:77 GeV). What is striking is
that it accurately describes all experimental data even up to
scales of Q2 * 1 GeV2. Furthermore, VMD predicts that
the form factor should scale as F��Q2� � 1=Q2 for Q2 	
m2

VMD, the same scaling predicted at asymptotically high
Q2 in perturbative QCD [17,18]. One crucial fact which
makes the pion form factor an ideal observable for study-
ing the interplay between perturbative and nonperturbative
QCD is that its asymptotic normalization can be deter-
mined from pion decay [19–25]
FIG. 1. Summary of experimental data for the pion electro-
magnetic form factor; shaded regions indicate expected sensi-
tivities and coverage of future results. The lines indicate
theoretical calculations of the form factor, as described in the
text.
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F��Q
2� �

8��s�Q2�f2
�

Q2 as Q2 ! 1: (2)

Higher order perturbative calculations of the hard contri-
bution to the form factor [26–29] do not vary significantly
from this value, and are shown in Fig. 1. At the largest
energy scale where reliable experimental measurements
have so far been obtained, around Q2 ’ 2 GeV2, the data
are 100% larger than this pQCD asymptotic prediction.
However, an improved choice of strong-interaction scale
improves this picture considerably[30].

This situation raises many questions. At what scale does
the form factor vary with Q2 as predicted by pQCD?
However, merely observing the proper Q2 dependence is
insufficient as Eq. (1) has the same asymptotic Q2 depen-
dence as pQCD but is numerically about twice as large.
How rapidly will the data approach the pQCD prediction
and at what scale will pQCD finally agree with the data?
These are questions which lattice QCD calculations are
ideally suited to address, provided we can get reliable
results for momentum transfer on the order of a few to
several GeV2.

Early lattice calculations validated the vector-meson-
dominance hypothesis at low Q2 [31,32]. Recent lattice
results [33–38], including some of our own preliminary
results [39,40], have somewhat extended the range of
momentum transfer, up to 2 GeV2, and the results remain
consistent with VMD and the experimental data.
II. LATTICE COMPUTATION OF F��Q2�

The electromagnetic form factor is obtained in lattice
QCD simulations by placing a charged pion creation op-
erator at Euclidean time ti, a charged pion annihilation
operator at tf, and a vector current insertion at t as shown in
Fig. 2. A standard quark propagator calculation provides
the two propagator lines that originate from ti. The remain-
ing quark propagator, originating from tf is obtained via
the sequential source method: (1) completely specify the
quantum numbers, including momentum pf, of the anni-
hilation operator to be placed at tf and (2) contract the
propagator from ti to tf to the annihilation operator and use
that product as the source vector of a second, sequential
propagator inversion. The resulting sequential propagator
FIG. 2 (color online). The quark propagators used to compute
the pion form factor.
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appears as the thick line in Fig. 2 extending from ti to t via
tf. Given these two propagators, the diagram can be com-
puted for all possible values of insertion position t and
insertion momenta q; the initial momentum pi is deter-
mined by momentum conservation pi � pf 
 q.

Furthermore, with the same set of propagators, any
current can be inserted at t and any meson creation opera-
tor can be contracted at ti. So, the diagram relevant to
determining the form factor for the transition �� ! ����

can be computed without further quark propagator calcu-
lations. By applying the sequential source method at the
sink, the trade-off is that the entire set of sequential propa-
gators must be recomputed each time new quantum num-
bers are needed at the sink, particularly pf.

We can extract the pion energies E��p� using standard
lattice techniques of fitting pion correlation functions from
which we can compute the momentum transfer


Q2 � �E��pf� 
 E��pi�
2 
 �pf 
 pi�

2 (3)

which should be nonpositive if the pion spectral function is
well behaved. Since the largest Q2 for a given jpj2 occurs
in the Breit frame, pf � 
pi, it is important to choose a
nonzero pf to achieve large momentum transfer; indeed
pf � 0 yields a vanishing Q2 for all q in the chiral limit.

The form factor, F�Q2�, is defined by

h��pf�jV��0�j��pi�icontinuum � ZVh��pf�jV lat
� �0�j��pi�i

� F�Q2��pi � pf�� (4)

where V lat
� �x� is a particular lattice discretization of the

continuum vector current, and ZV is the corresponding
matching factor relating the lattice current to that in the
continuum. In this work we use the local and point-split
currents, Vloc

� �x� and Vp:s:
� �x�, defined by

Vloc
� �x� �  �x��� �x�; (5)

Vp:s:
� �x� �

1

2
f �x� �̂�Uy��x��1� �� �x�


  �x�U��x��1
 �� �x� �̂�g: (6)

In the case of the Wilson action, the point-split current is
conserved, i.e. Zp:s:

V � 1. While this current is no longer
conserved with the domain-wall fermion (DWF) action,
the two currents mix with different operators at O�a2�, and
therefore are subject to different discretization errors for
Q2 � 0. Thus, their use should allow some indication of
discretization uncertainties.

To determine the form factor, we compute the three-
point correlation function depicted in Fig. 2, given by

�AB����ti; t; tf;pi;pf� �
X
xixf

; e

i�xf
x��pf
f e
i�x
xi��pi

� h0j�B�xf�V��x��
y
A�xi�j0i (7)
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where �yA�x� and �B�x� are creation and annihilation op-
erators with pion quantum numbers. The A and B indicate
that different operators may be used at the source and sink,
i.e. smeared source and point sink or pseudoscalar source
and axial-vector sink.

Inserting complete sets of hadron states, and requiring
ti � t� tf, gives

�AB����ti; t; tf;pi;pf� ! h0j�B�0�j��pf�i
e

�tf
t�E��pf�
f

2E��pf�

� h��pf�jV��0�j��pi�i

�
e
�t
ti�E��pi�i

2E��pi�
h��pi�j�

y
A�0�j0i:

(8)

Similarly for the two-point correlator, with ti � tf,

�AB���ti; tf;p� ! h0j�B�0�j��p�i
e
�tf
ti�E��p�

2E��p�

� h��p�j�yA�0�j0i: (9)

We use both the pseudoscalar density, ��1��x� �
 �x��5 �x�, and the temporal component of the axial-
vector current, ��2��x� �  �x��5�4 �x�, as pion interpo-
lating operators, constructed from both local and smeared
quark fields, denoted by L and S, respectively. We adopt
gauge-invariant Gaussian smearing

b�x� !
�
1�

!
N
rU

�
N
b�x�; (10)

where ! and N are the tunable parameters used to specify
the smearing radius; the flavor structure is suppressed. The
respective merits of these interpolating operators will be
discussed later. For these operators, we define the follow-
ing amplitudes:

h0j��1�L �0�j��p�i � Z�1�L ; (11)

h0j��1�S �0�j��p�i � Z�1�S �jpj�; (12)

h0j��2�L �0�j��p�i � Z�2�L �jpj�; (13)

h0j��2�S �0�j��p�i � Z�2�S �jpj�: (14)

The overlap of the operator ��2�L has trivial p dependence
arising from the Lorentz structure of the operator

Z�2�L � E�jpj�f�: (15)

However, the introduction of an additional three-
dimensional scale introduces nontrivial p dependence for
the smeared overlaps Z�1�S and Z�2�S .

We employ two methods to determine the form factor
F��Q2�. The first method, which we call the fitting method,
054506
involves a fit of the relevant two- and three-point functions
to simultaneously extract the form factor, the energies
E��p�, and the amplitudes Z�p� in a single covariant,
jackknifed fit.

The second method, which we call the ratio method,
starts by determining the energies E��p�, either by fits to
the correlators at nonzero momentum or from a dispersion
relation, and then constructing the following ratio which is
independent of Z�1�L , ZS�jpj�, and all Euclidean time ex-
ponentials for sufficiently large temporal separations:

F�Q2; t� �
�AB�4��ti; t; tf;pi;pf��

CL
���ti; t;pf�

�AL���ti; t;pi��
CB
���ti; tf;pf�

�

�
2ZVE��pf�

E��pi� � E��pf�

�
(16)

where the indices A, B, and C can be either L (local) or S
(smeared). As part of our program, we expect to determine
the relative merits of each extraction method. Furthermore,
excited states have different contributions in the two
methods.

Since the form factor is absolutely normalized at zero
momentum transfer, F�Q2 � 0� � 1, a precise computa-
tion of ZV for each of our chosen currents can be obtained
by applying Eq. (16) for pi � pf:

ZV �
�AB���ti; tf;pi�

�AB�4��ti; t; tf;pi;pf�
: (17)
III. SIMULATION DETAILS

Our first calculations were performed on quenched con-
figurations generated with the Wilson gauge action at
inverse coupling � � 6:0, corresponding to a
1 �
2 GeV. The propagators were computed using the unim-
proved Wilson fermion action with Dirichlet boundary
conditions in the temporal direction, and periodic bound-
ary conditions in the spatial directions. For Wilson fermi-
ons at these lattice spacings, the exceptional configuration
problem is rather mild, particularly when compared to that
for the nonperturbatively improved clover action. This
enabled us to reach pion masses of 300 MeV without
observing any exceptional configurations, whereas compu-
tations using the clover action are limited to pion masses in
excess of roughly 360 MeV [33,36] due to the systematic
errors caused by the frequent occurrence of exceptional
configurations. A detailed listing of the simulation parame-
ters is provided in Table I.

The pion masses attainable in quenched DWF calcula-
tions are limited only by finite volume effects and available
computing power. So far, however, quenched DWF com-
putations of the pion form factor have only explored pion
masses down to 390 MeV, at a
1 � 1:3 GeV [34]. An
important advantage of DWF fermions is that they are
automatically O�a� improved. An alternative approach
-3



TABLE I. Simulation details for quenched Wilson fermion calculations at a
1 � 2 GeV.

� Volume am� am� m�=m� m�L Zloc
V

0.1480 163 � 32 0.7187(39) 0.6752(45) 0.943(10) 10.80(7) 0.82725(51)
0.1500 163 � 32 0.6387(57) 0.5854(45) 0.900(13) 9.36(7) 0.78486(46)
0.1520 163 � 32 0.5540(83) 0.4851(67) 0.876(14) 7.76(11) 0.74197(54)
0.1540 163 � 32 0.4682(124) 0.3752(73) 0.801(23) 6.00(11) 0.70459(39)
0.1555 243 � 32 0.4209(88) 0.2613(29) 0.621(14) 6.27(7) � � �

0.1563 243 � 32 0.4014(68) 0.1921(29) 0.479(10) 4.61(7) 0.65676(43)
0.1566 323 � 48 0.3724(145) 0.1629(36) 0.437(19) 5.21(12) 0.65553(14)
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using twisted-mass QCD (tmQCD), in which Wilson fer-
mion results are also O�a� improved with just double the
effort [41], has been explored separately [35].

The Lattice Hadron Physics Collaboration (LHPC) has
been employing the MILC Collaboration’s Nf � 2� 1
and Nf � 3 configurations generated with staggered
ASQTAD sea quarks[42] to perform unquenched hadron
structure calculations [43–47]. Valence propagators are
then computed using a domain-wall fermion action:

SDWF � 

XLs
i

��if�DW�
M� � 1�i 
 P
�i�1


 P��i
1g; (18)

where DW�M� is the standard Wilson kernel with mass M,
Ls is the extent of the lattice in the fifth dimension, and the
fermion fields satisfy the boundary conditions

P
�Ls�1 � 
mP
�1; P��0 � 
mP��Ls ;

with chiral projection operators P� �
1
2 �1� �5�. In this

work, we employed a domain-wall height M � 1:7, and
spatial extent Ls � 16. The MILC configurations were
hypercubic blocked [48] before the valence propagators
were computed to avoid unacceptably large residual chiral
symmetry breaking, and the propagators were computed
with Dirichlet boundaries to t � 0 and t � 32, one half of
the temporal extent of the lattices, to save computational
effort. The simulation parameters for the DWF computa-
tion are provided in Table II. A detailed study of the
physical properties of light hadrons composed of staggered
quarks computed on these lattices has recently been com-
pleted by the MILC Collaboration [49]. We use their
TABLE II. Simulation details for domain-wall
MILC ASQTAD lattices at a
1 � 1:6 GeV. The m
used to generate the configurations are denoted by
the mass used in the valence DWF propagator. T
from the DWF calculation.

amud ams amval m� (MeV) m� (MeV)

0.01 0.05 0.01 956(22) 318(3)
0.05 0.05 0.05 955(19) 602(5) 0
0.05 0.05 0.081 1060(14) 758(5) 0
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determinations of the lattice spacings through the 2S-1S
and 1P-1S splitting in � to express our results in physical
units.

IV. RESULTS

The pion form factor for the quenched Wilson case is
obtained by applying the fitting method to the conserved,
point-split vector current Vp:s:

� . For most of our Wilson
data, we have also computed the form factor using the
local vector current, and for this data we show the corre-
sponding matching factors Zloc

V in Table I; the determina-
tion using the two currents is consistent. Our results at each
value of � are shown in Fig. 3. Also indicated is the VMD
form using the experimental value for the � meson mass,
together with recent experimental data, illustrating the
extent to which VMD describes the data.

While the lattice data tend in the correct direction with
decreasing pion mass, the reader will notice that the form
factor for 300 MeV pions already lies below the experi-
mental data, and thus the pole mass that would be obtained
from a VMD fit to the lattice data would be considerably
lower than the physical � mass. In view of the clear
discrepancy with the experimental situation, we do not
attempt a chiral extrapolation to the data, and a correspond-
ing VMD fit. This discrepancy is perhaps expected since it
is known that O�a� scaling violations in the vector meson
mass computed with Wilson fermions yield an underesti-
mate of the mass of roughly 20% [50], the same amount
needed to move the form factor points so as to lie above the
continuum curve.

For our subsequent determinations of the pion form
factor in unquenched QCD using the DWF data set, we
fermion calculations on 203 � 64 dynamical
asses of the light (ud) and strange (s) quarks
mud and ms, respectively, while mval denotes

he physical meson masses are those obtained

m�=m� m�L Zloc
V Zp:s:

V

0.333(8) 3.97(4) 1.0714(55) 1.1098(23)
.630(12) 7.68(6) 1.0890(55) 1.0835(37)
.715(10) 9.66(6) 1.1199(14) 1.0833(13)
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FIG. 3 (color online). Results for the pion form factor as a
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spent a substantial amount of effort in extending the cal-
culation to higher values of Q2 than those attained in the
quenched computation. Thus we required the extraction of
the pion energies and amplitudes at relatively large mo-
menta; note that the largest attainable momenta is con-
strained by the fineness of the lattice spacing. In the
continuum limit, the pion dispersion relation should ap-
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proach the continuum one,

E��p�2 � p2 � E��0�2: (19)

At a nonzero lattice spacing, a study of free lattice bosons
suggests the lattice dispersion relation

Ê�p̂�2 � p̂2 � Ê��0�
2 (20)

where Ê and p̂ are the ‘‘lattice’’ energy and momentum,
respectively,

Ê � 2 sinh
�
E
2

�
; p̂x � 2 sin

�
px
2

�
: (21)

Equations (19) and (20) agree in the small-momentum
limit. In Fig. 4, we show the measured lattice energies
against the lattice momenta at each of our quark masses,
together with lines representing the continuum and lattice
dispersion relations. We see that both dispersion relations
provide a reasonable representation of the data, although
there may be a slight flattening of the data against the
continuum curve at higher momenta. These results suggest
that directly fitting all the data to either dispersion relation,
thereby reducing the number of fit parameters needed to
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extract the form factor, may improve the relative signal-to-
noise of the remaining parameters. This may help dramati-
cally in the ratio method, where the only fit parameters are
the form factor and the energies.

In the fitting method, one must reliably extract not only
the energies at high momenta, but also the amplitudes. In
Fig. 5 we present the four amplitudes of Eqs. (11)–(14) that
we estimate from the four two-point correlators we mea-
sure: smeared-smeared and smeared-local for both
pseudoscalar-pseudoscalar and axial-axial operators. In
the fitting procedure, all four correlators are constrained
to have the same energy. From the figure, we can see that
our expectations of Z�1�L / const and Z�2�L �p� / E��p� are
consistent with the data. We can also see from Z�1�S �p � 0�
that the smeared pseudoscalar operator has a strong overlap
with the zero momentum pion relative to the axial-vector
operator.

We plot in Fig. 5 just the relative error estimates for the
amplitudes. This clearly demonstrates that the statistical
noise inherent in a particular source or sink operator need
not be correlated with the magnitude of the amplitude. In
particular, we see that beyond the few smallest momenta,
the pseudoscalar and axial-vector amplitudes are of the
FIG. 5. Results for the local (L) and smeared (S) pseudoscalar (�,4
this study.

054506
same order, but the inherent noise of the pseudoscalar
operator is unacceptably large for higher momenta.

Our final DWF results for the form factor are obtained
from the local vector current using the lattice dispersion
relation, and the ratio method described above. We also
computed the form factor from the point-split vector cur-
rent with comparable accuracy, but found the local and
point-split results to be so correlated that combining the
results proved no more accurate, suggesting that O�a2�
discretization errors in the currents are too small to be
statistically resolved. The form factor at two of our dy-
namical pion masses are shown in Fig. 6, together with fits
of the data to the monopole form of Eq. (1). The shaded
regions correspond to jackknife error bands and the central
values for the pole masses are given in the legend. The data
in Fig. 6 were computed with a pseudoscalar pion sink
operator fixed at momentum pf � �1; 0; 0�. Table III sum-
marizes the fits for all available combinations of mval and
pf.

One common criticism of the ratio method is that it is
difficult to incorporate possible excited state contributions.
So, we also performed the analysis using the same fitting
method described earlier, where we also ignored contribu-
) and axial-vector (�, �) pion source amplitudes Z�i�A �p� used in

-6
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tions from excited states. We expect, if excited state con-
tributions were important, we should see significant sys-
tematic differences between the ratio and fitting methods.
The two methods produced results of comparable accuracy
and no systematic deviations were observed.

We obtain a value of the pole mass in the chiral limit by
performing an unconstrained linear extrapolation of the
two most reliable data points for mVMD, at mval � 0:01
and 0.081 with pf � �1; 1; 0�. This yields mVMD �

0:868�65� GeV in the zero quark mass limit. From this
we estimate the mean square charge radius of the pion to be
hr2iVMD � 0:310�46� fm2, which is significantly below the
experimental value of hr2iexpt � 0:439�8� fm2. More dy-
namical quark masses, particularly lighter ones, will be
needed to perform a proper chiral extrapolation.

We were unable to compute statistically significant form
factors with the same pseudoscalar sink operator for
mval � 0:01 and pf � �1; 1; 0� by the ratio method, appar-
ently due to the poor signal-to-noise inherent in the overlap
of the chosen sink operator with the higher momentum
TABLE III. Results of fit of form factor data to the VMD
monopole ansatz of Eq. (1).

amval pf mVMD (GeV) 	2=d:o:f: d:o:f: Nconfs

0.01 (0,0,0) � � � � � � � � � 51
(1,0,0) 0.888(56) 1.37(72) 13 251
(1,1,0) 0.30(20) 1.7(1.2) 11 106

0.05 (0,0,0) 1.278(87) 2.8(1.3) 20 104
0.081 (0,0,0) 1.192(93) 3(17) 15 49

(1,0,0) 1.030(73) 2.1(1.7) 22 70
(1,1,0) 1.022(87) 3.6(2.2) 23 73

054506
state. For mval � 0:01 and pf � �0; 0; 0� the signal was
rather better but 51 sequential propagators were too few to
allow for a stable fit to the VMD ansatz. We expect that an
axial-vector sink operator would be a better choice for
future calculations at nonzero sink momentum. Some of
us are also extending our group-theoretical construction of
extended baryon operators [51–55] to include mesonic
quantum numbers.
V. CONCLUSIONS

From our quenched Wilson form factor results, we find
that both the ratio method and the fitting method are useful
tools for computing the pion form factor. Each method has
different systematic errors, so the extent to which both
agree should give confidence that the systematic errors
are small and well understood. A comparison of the
Wilson form factor results with the experimental pion
form factor data suggests that the former have large, and
expected, discretization errors. Thus the use of an im-
proved fermion action would seem essential if contact is
to be made with the experimental situation.

Domain-wall fermions are free of O�a� discretization
uncertainties to the extent that any residual mass is elim-
inated. Thus in our subsequent dynamical fermion study,
we employed domain-wall fermions for the valence
quarks, computed on ASQTAD lattices. From a careful
analysis of the pion spectrum, we recognize the importance
of using a large basis of pion operators so that we can
identify at least one operator at each pion momentum
whose overlap with the pion has a reasonable signal-to-
noise ratio. The local axial-vector operator appears to be a
better choice than the pseudoscalar operator for fitting
higher momentum states since its overlap with a given
state increases in proportion with the pion energy and
without any degradation of the signal-to-noise ratio.

Our analysis enables us to obtain the pion form factor for
a pion mass approaching 300 MeV at a range of Q2

commensurate with the current experimental program.
We find that a VMD form provides a faithful description
of the pion form factor over this Q2 range, and an uncon-
strained linear fit yields mVMD � 0:868�65� GeV in the
chiral limit.

A comparison between the full-QCD and quenched-
QCD results is clouded by the large discretization errors
indicated in the latter. While this issue could be investi-
gated through a quenched DWF calculation, such a com-
putation would be as demanding as the hybrid ASQTAD sea-
quark/domain-wall valence quark computation presented
here, given the availability of the full-QCD gauge configu-
rations. It is this hybrid approach that enables us to make
our first forays into full-QCD studies of pion structure at
light quark masses.

Given our existing analysis framework and the propa-
gators and sequential propagators that we have already
computed, we can also compute the �� ! ��� transition
-7
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form factor. This analysis will be completed in the near
future.
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