
PHYSICAL REVIEW D 72, 054504 (2005)
Approximated seventh order calculation of the vacuum wave function of 2� 1 dimensional SU(2)
lattice gauge theory
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Using the coupled cluster expansion with the random phase approximation, we calculate the long
wavelength vacuum wave function and the vacuum state energy of 2� 1 dimensional Hamiltonian SU(2)
lattice gauge theory up to the seventh order. The coefficients �0, �2 of the vacuum wave function show
good scaling behavior and convergence in high order calculations.
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I. INTRODUCTION

Lattice gauge theory was developed into a promising
first principles to approach to the nonperturbative aspects
of gauge field systems. Most of our present knowledge
about lattice gauge theory (LGT) has been obtained from
numerical simulations. However, in order to gain more
physical insight into the theory, it is desirable to develop
more analytical methods. Based on Greensite’s proposal
[1], we developed a scheme of coupled cluster expansions
for the Hamiltonian LGT [2–4]. Although the preliminary
researches were inspiring, the scheme suffers from rapid
proliferation and nonindependence of clusters in the high
order expansive calculations.

In Ref. [2], we used the Cayley-Hamilton relations

TrU � TrU�; U2 � U TrU� 1 for SU�2�; (1)

2 TrU� � �TrU�2 � TrU2;

U3 � U2 TrU�U TrU� � 1 for SU�3�; (2)

to eliminate redundancies and find the independent cluster
bases, where U is any group element. But those relations
are too complicated to be used in the high order expan-
sions. We have tried to use the improved Hamiltonian [5]
with the tadpole improvement [6], so that the physical
results could be obtained in a relatively low order expan-
sion. The research results for 2� 1 dimensional U(1) LGT
show that the improvement of convergence is immaterial
compared with the complexity of calculation brought about
by the improved Hamiltonian [7]. Recently, we introduced
the random phase approximation (RPA) into the coupled
cluster expansions to circumvent the above problems. The
preliminary results of the investigation were encouraging
[8]. In this paper, we use this new method to calculate the
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vacuum wave function and vacuum energy of 2� 1 di-
mensional SU(2) LGT.

The paper is organized as follows. In Sec. II, we briefly
review the scheme of the coupled cluster expansion with
RPA. Section III is devoted to the calculation of the vac-
uum wave function. In Sec. IV, the conclusions and dis-
cussions are presented.

II. FORMULATION AND APPROXIMATION

The Kogut-Susskind Hamiltonian [9] is

H �
g2

2a

"X
l

E2
l �

4

g4

X
p

Tr�Up�

#
; (3)

where the index l denotes the links between sites, a is the
lattice spacing, and Up is the plaquette. The vacuum wave
function can be written as [1]

 0�U� � eR�U�; (4)

where R�U� consists of various Wilson loops or linked
clusters with appropriate symmetries for the state. In the
continuum limit (a! 0, or equivalently � � 4=g2 ! 1),
the long wavelength behavior of the vacuum state can be
approximated by [2]

 �A� � exp

 
��0

Z
d2x trF2�x�

��2

Z
d2x tr�DiF

2�x�� � � � �

!
; (5)

with F being the field strength tensor and Di the covariant
derivative. The superrenormalizability of the theory in
2� 1 dimensions implies that �0 ! const:=e2 and �2 !
const:=e6, where e is the invariant charge which is related
to the dimensionless coupling constant g by g2 � e2a.
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The eigenvalue equation for the vacuum state of H isX
l
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a
l ; R�U��� � �E

a
l ; R�U���E

a
l ; R�U��g �

4

g4

X
p

trUp

�
2a

g2 �0; (6)

where �0 is the vacuum energy. In coupled cluster expan-
sion,R is expanded in terms of a set of linearly independent
clusters Gn;i with suitable symmetries

R�U� �
XM
n�1

Rn �
X
n;i

cn;iGn;i; (7)

with Gn;i denoting the ith cluster of order n, cn;i being a
coefficient to be determined by Eq. (6), and M the highest
order number in the coupled cluster expansion.
Substituting Eq. (7) into Eq. (6) and adopting the trunca-
tion scheme introduced in Refs. [2–4], we obtain the
truncated eigenvalue equation
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�
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n�n0	M

�El; Rn�U���El; Rn0 �U��

)

�
4

g4

X
p

trUp �
2a

g2 �0: (8)

According to the symmetry of the vacuum state, the
lowest order term R1 is chosen to be composed of just
one cluster, which is an elementary plaquette

R1 � c1;1G1;1 � c1;1

X
p

trUp: (9)

The term �Eal ; Rn��E
a
l ; Rn0 � in Eq. (6) will produce the �n�

n0�th order clusters. For example, �Eal ; R1��Eal ; R1� gener-
ates the second order clusters involving two plaquettes.
Obviously, clusters with order �n� n0� may contain at
most �n� n0� Wilson loops. But not all clusters produced
in such a way are independent. They may be related to each
other by Eq. (1). We have to use this relation to identify and
get the independent clusters. When clusters have many
Wilson loops, the formulas (1) become so complicated
that it is impossible to find a set of independent clusters,
as pointed out in Sec. I. To avoid this difficulty, the RPA is
applied in the expansions [8]. In RPA, one set of operators
in a product of two sets of operators is replaced by its
average value [10]. Here we replace one Wilson loop by its
vacuum average value when a cluster produced by
�Eal ; Rn��E

a
l ; Rn0 � consists of two Wilson loops. It is easy

to prove that any new cluster produced in such a way
contains only one Wilson loop. Suppose Rn and Rn0 are
linear combinations of clusters which contain only one
Wilson loop; then the new clusters produced by �El; Rn�

�El; Rn0 � will contain at most two loops, and one loop will
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be replaced by its vacuum average after applying the RPA.
On the other hand, according to Eq. (9) the first order
cluster G1;1 has only one Wilson loop. Therefore, all new
clusters produced in the calculation consist of only one
Wilson loop after using the RPA.

Since the clusters consist of only one Wilson loop, the
independent cluster bases for the expansions can be ob-
tained directly. In addition, the number of independent
bases of high order expansions is much smaller than that
without using the random phase approximation; for ex-
ample, the number of independent third order clusters is
nine in the coupled cluster expansion [2], while it is two
after using the RPA (see Sec. III). Therefore, the calcula-
tions are simplified considerably.

The vacuum average value of a Wilson loop can be
determined by the Feynman-Hellman theorem. Let G be
some Wilson loop and hGi be its vacuum average. Defining
W � H2a=g2, we make a transformation as [11]:

W ! WG � W � �GG; (10)

where �G is a variable and will take zero at last. From
WGj 0i � wG0 j 0i, we get

hGi �
@wG0
@�G

���������G�0
: (11)
III. CALCULATION OF APPROXIMATION

We now present the calculation of expansion. From

�Eal ; G1;1��Eal ; G1;1� � �4� 2G2;1 �G01 �G
0
2; (12)

we get three new clusters G2;1, G01, and G02 in the second
order calculation. The corresponding graphs are given in
Fig. 1. Two of them, which consist of two Wilson loops,
turn to cluster G1;1 times hG1;1i by RPA. Therefore, there is
only one cluster with order two after applying the RPA,
that is, G2;1, and

R2 � c2;1G2;1: (13)

Substituting R1 and R2 into Eq. (8), we obtain a set of
equations about c1;1, c2;1, and w0 with a parameter hG1;1i
which can be determined by Eq. (11). Solving those equa-
tions, we get the second order approximation of vacuum
wave function  0�U� � eR1�U��R2�U�. The long wavelength
coefficients up to the second order are

�0 �

�
c1;1

2
� 2c2;1

�
g4; (14)

�2 � �
c2;1

4
g8: (15)

The third order clusters are produced by term �Eal ; R1�

�Eal ; R2�, i.e. c1;1c2;1�Eal ; G1;1��Eal ; G2;1�. Since
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FIG. 1. The linked clusters used in the expansions up to order 3.
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�Eal ; G1;1��E
a
l ; G2;1� � �2G3;1 �G3;2 �G
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3 �

1
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0
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� �2G3;1 �G3;2 � 3hG1;1iG2;1

� 3G1;1; (16)
FIG. 2. �0 and �2 as a function of � � 4=g2. The four curves
represent the results from the fourth order to the seventh order
expansion with RPA, respectively.
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we get

R3 � c3;1G3;1 � c3;2G3;2: (17)

The number of independent clusters is two at third
order, while it is nine in the expansion without RPA [2].
The calculation procedure is simplified considerably. In
Eq. (16), when applying RPA to cluster G03,G04, andG05, we
replace the smaller Wilson loop with its vacuum average
and let the larger one remain unchanged as in Ref. [8].
Thus, only one vacuum average of cluster emerges in the
third order calculation. This simplifies the calculation pro-
FIG. 3. The vacuum energy vs �. We also give the third order
vacuum energy calculated without using RPA.
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cedure further. On the other hand, the vacuum or exciting
states possess definite correlation lengths. Only when the
space occupied by glueball is covered with the Wilson
loops is the calculation efficient. To take this into account,
we replace the smaller loop with its vacuum average and
preserve the larger one. Submitting R1, R2, and R3 into
Eq. (8), and solving the equation, we obtain the third order
approximation of the vacuum wave function.

Higher order calculation can be carried out similarly. We
have done the calculation up to the seventh order. The
number of independent clusters is 1, 1, 2, 6, 14, 44, and
109 at order 1, 2, 3, 4, 5, 6, and 7, respectively. The results
for�0 and�2 from the fourth order to the seventh order are
presented in Fig. 2. In Fig. 3, the vacuum energyw0 against
� is plotted.

IV. RESULTS AND DISCUSSIONS

From Fig. 2, we see that the curves of �0 (or �2) show
good scaling behavior and a convergent trend in weak
coupling region � � 5:5–9:5. The sixth and seventh order
values of �0 are coincident in the scaling region, which
shows that the approach is rapidly convergent. From the
seventh order results, we obtain

�0 � 2:3; (18)
054504
�2 � �0:3: (19)

A Monte Carlo measurement was given by Arisue [12]

�0 � �0:91� 0:02�; �2 � ��0:19� 0:05�: (20)

The value of �0 in Eq. (18) is larger than Arisue’s. At the
moment, we do not know the reasons. It is perhaps because
there is some systematic error introduced by the random
phase approximation in our procedure or due to other
causes. What is really the cause needs further study.

In Fig. 3, the curves of the sixth and seventh order results
of vacuum energy are almost coincident, which proves the
expansion is able to converge rapidly again. We also give
the third order result of the vacuum energy calculated
without RPA for comparison. The third order values of
the vacuum energy with RPA are lower than that without
RPA. Such a case was also true in the case of SU(3) LGT
[8].
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