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Chiral properties of two-flavor QCD in small volume and at large lattice spacing
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We present results from simulations of two flavors of dynamical overlap fermions on 8* lattices at three
values of the sea quark mass and a lattice spacing of about 0.16 fm. We measure the topological
susceptibility and the chiral condensate. A comparison of the low-lying spectrum of the overlap operator
with predictions from random matrix theory is made. To demonstrate the effect of the dynamical fermions,
we compare meson two-point functions with quenched results. Algorithmic improvements over a previous
publication and the performance of the algorithm are discussed.

DOI: 10.1103/PhysRevD.72.054503

I. INTRODUCTION

Chiral symmetry is a fundamental part of the theory of
strong interactions and therefore should be respected when
putting QCD on the lattice. It was realized more than two
decades ago, that this can be done with Dirac operators D
which (at zero quark mass) obey the Ginsparg-Wilson
equation [1]

a
Dys + ¥sD = DD M
0

where a is the lattice spacing and R the radius of the
Ginsparg-Wilson circle. A decade ago, this constraint was
realized by overlap fermions [2,3], fixed-point fermions [4]
and domain wall fermions [5,6]. Among those, only do-
main wall fermions have been used for some time in
simulations on the lattice which include the fermionic
determinant. Only recently the first steps toward dynamical
simulations using overlap fermions have been taken [7—
11]. Because of the high cost of applying the Dirac opera-
tor these are still limited to a small volume. In this paper we
present results from simulations with two flavors of dy-
namical overlap fermions in a small box and at a large
lattice spacing. We measure the topological susceptibility
and, by comparing the low-lying eigenvalue distribution to
random matrix theory (RMT), the chiral condensate. We
also fix the lattice spacing and look for dynamical effects in
meson two-point functions. The measurement of the sus-
ceptibility is greatly facilitated as compared to, e.g., simu-
lations using highly improved staggered fermions [12].
With the overlap operator, we can use the same Dirac
operator in the simulation and in the definition of the
topological charge via the index theorem. The topological
charge defined in this way thus directly influences the
weight of a configuration.

A more technical consequence of that is the discontinu-
ity of the fermionic determinant as a function of the gauge
variables. The surfaces in gauge field space at which the
fermionic action is discontinuous coincide with the change
in topology defined by the index of the Dirac operator.
Although this does not pose a problem in principle, in
practice changing the topological sector turns out to be a
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significant problem. As recent simulations with highly
improved staggered fermions show, this problem itself,
however, is not restricted to chiral formulations of QCD
on the lattice [13].

In a recent paper [10], we described the setup of our
simulations of two degenerate flavors of overlap fermions.
We studied the impact of fat (stout [14]) links and multiple
pseudofermion fields. Some improvements to the algo-
rithm will be reported in the following. The simulations
presented in this paper used very limited computer resour-
ces, i.e. half a year on an array of 12 3.2 Ghz Pentium-
IVE’s. With that we present some results on 8* lattices and
a relatively coarse lattice spacing of around a = 0.16 fm
and a quark mass down to about 35 MeV.

This paper is organized as follows: We first review the
algorithm, describe the improvements over our previous
publication and give the parameters of our simulation.
Then in Sec. IV we attempt to set the lattice spacing by
determining the Sommer parameter r, and proceed with
the extraction of the topological susceptibility in Sec. V. In
Sec. VI we look at meson two-point functions. By compar-
ing to quenched results on matched lattices, we demon-
strate the impact of dynamical fermions on the scalar
correlator. Finally, we compare the low-lying spectrum of
the overlap operator with the predictions from random
matrix theory. A note in caution: for all these investiga-
tions, the volume which we are simulating is too small.
Future simulations will improve on this. Here we want to
demonstrate that simulations with dynamical overlap fer-
mions are possible and give results which match our ex-
pectations of full QCD in a small box.

II. DEFINITIONS AND ALGORITHM

Let us fix the conventions and describe the algorithm
together with the improvements since our previous publi-
cation [10], to which we refer the reader for more details.
The massive overlap operator is given by [2,3]

Doy(m) = (Ro - %)[1 + yse(h(~R)] +m ()

with e(h) = h/~h? the sign function of the Hermitian
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kernel operator h = ysd which is taken at the negative
mass Ry. R is the radius of the Ginsparg-Wilson circle. We
are using a planar kernel Dirac operator d with nearest and
next-to-nearest (“+/2”) interactions. For details see
Ref. [10]. The sign function is computed using the
Zolotarev approximation with an exact treatment of the
low-lying eigenmodes |A) of h(—R,)

e(h(—Ry)) = Z sgn(A)|A){A;

1

Neig

= sgn(A)IAXAl
i=1

b] B Neig
+ h; (s (1 1:21 |Ai><Ai|)- (€)]

For our simulation we use the hybrid Monte Carlo
(HMC) algorithm [15] as modified for overlap fermions
by Ref. [8]. The effective action is given by

npr—1
Sett = g H 2(mo)po + > ¢ H >(m)H*(m;—1) ¢,
=
+ S,[U] “

with  H*(m) = Do, (m)* Do, (m) the square of the
Hermitian overlap Dirac operator. S,[U] is the gluonic
action. The ¢; are the n,; pseudofermion fields used to
include the contribution of the fermion determinant. The
use of several of these fields has been suggested in [16,17].
It improves the stochastic estimate of the determinant. We

studied its effects extensively in Ref. [10]. |

AT { CON(N | )

with N the vector normal to the zero eigenvalue surface, 7
the momentum and A S the discontinuity in the fermionic
action. To monitor whether an eigenvalue has changed
sign, one thus has to compute some number n, of the
lowest eigenmodes of 4(—R,) and see whether the eigen-
value of any of them changes sign. The matching is done
by computing the scalar products of the low modes before
and after a step. Since the eigenmodes are needed anyway
to precondition the construction of the sign function, there
is virtually no overhead associated with this test.

Note that this part of the algorithm potentially scales
with the square of the volume: The cost of determining the
height of the step is at least proportional to the volume. The
number of times this procedure has to be executed can be
assumed to be proportional to the density of eigenmodes of
the kernel operator at the origin, which in turn might be
proportional to the volume. It is therefore pivotal to keep
the cost of this step as low as possible.
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With the HMC algorithm, an ensemble distributed ac-
cording to this effective action is generated by updating the
gauge fields using molecular dynamics (MD) trajectories
with a final accept-reject step. At the beginning of the
trajectory one chooses momenta 7 conjugate to the gauge
fields and also refreshes the pseudofermions. One then
integrates the resulting equations of motion (treating S
as the potential) numerically in some fictitious simulation
time 7. They result from the requirement that the total
“energy”“ H = m?/2 + S, is conserved. At the end
one applies an accept/reject step with acceptance proba-
bility P = min[1, exp(—A J )] which corrects for the er-
rors in the numerical integration.

An important difference between conventional fermions
and overlap fermions is that the effective action S is
discontinuous for the latter. The discontinuity has its origin
in the sign function in the definition of the Dirac operator
Egs. (2) and (3). The fermionic action is discontinuous at
the surfaces where the kernel operator A(—R,) has a zero
eigenvalue. According to the index theorem [18], these are
also the surfaces where the topological charge (as seen by
the fermions) changes. Reference [8] gives the prescription
for how to deal with this situation. The molecular dynamics
(MD) evolution can be thought of as resembling that of a
classical particle in the presence of a potential step. If the
step in the action is too big for the particle to get across it,
the particle is reflected, i.e. the momentum component
normal to the zero eigenvalue surface is reversed. On the
other hand, if the normal component is large enough to
change the topological sector, the normal component is
reduced such that energy is conserved. Following Ref. [8]
this is called a refraction. The momentum is then altered
according to

~N(N | )+ Nsgn(N | m (N | m? = 248, if (N | m)? > 245,

. (5)
if (N| m)* = 2AS8;,

{
A major improvement in the algorithm is the way in

which we compute the height of the step. In our previous
publication, we ran two conjugate gradients to compute

N-1

AS = A|:¢JH2(mo)¢o + Z ¢i+H2(mi)H2(mi—l)¢ii|
=

(6)

where the difference is taken between the fermionic ac-
tions for which only the sign of the lowest eigenmode (the
one which becomes zero on the surface) is changed without
changing any of the other modes or the gauge configura-
tion. This was very expensive since we have to decide
frequently whether to refract or reflect. Because the square
of the Hermitian Dirac operator in one chiral sector o =
*1 is of the form
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H2(m) = 2<R% - mTZ>PU|:1 + UZE(A5)|/\i><Ai|j|Pa
+ m? (N

with |A) the eigenvectors of i(—Ry) and P, = 5(1 + o7ys)
the projector on the chiral sector, the sign change of the
crossing mode amounts to the change

|

1
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HG(m) — Hg(m) = (4R§ — m*)P | AXAolP,  (8)

with |Aq) the zero mode and the sign being minus the
product of the sign associated with the chiral sector and
the sign of the eigenmode before the step. Thus, we can use
the Sherman-Morrison formula [19] to compute the height
of the step. The result is

(4R} — m?) 1

A[<¢|P,,WPU|¢>} -5

This has the additional advantage that instead of running
two conjugate gradients for each pseudofermion field, we
only have to invert once, using the eigenmode which
changes sign as a source. Because the height of the step
is directly computed, one also has better control over the
accuracy —compared to taking the difference of two ap-
proximate quantities.

One can further exploit Eq. (9) by realizing that the cost
of the inversion of H?(m) depends on the chirality of the
source and the topological sector in which one is inverting.
One can compute the height of the step from either side of
the surface. In the chiral sector with zero modes, it is
cheaper to invert in the topological sector of lower charge.
However, since the zero modes push the spectrum of the
other modes up, the conditioning number of H2(m) in
the sector without zero modes is lower on the side of the
surface with higher topology. A second advantage of the
use of this formula is that we can monitor the step height
during the conjugate gradient (CG) iterations and terminate
the iteration when it has become clear that we are going to
reflect.

Finally, let us report a small improvement in the com-
putation of the fermion force S [ U]. The derivative of the
Zolotarev part of the approximation to the sign function
Eq. (3) has been given in many places. For each pseudo-
fermion field and each order in the rational approximation
the formula has a term 1/(h% — c¢), the derivative of which
is

1 1
2 _C(héh + Shh)h2 —

10)

One thus has to invert the kernel action, which can be done
simultaneously for all shifts using a multimass algorithm.
The computation of 64 follows via standard methods from
Ref. [20]. However, due to the many shifts in the Zolotarev
approximation and several pseudofermion fields, this part
is a non-negligible contribution to the total cost of the
simulation.

More difficult is the derivative of the projector term
P, = |AXA|. This derivative is basically given by first-
order perturbation theory (see Ref. [21])

1= @RE — m2) (AP, H,2(m)P,1Ao)

<¢|PUWP0|)\O> 2- (9)

[
1 1
(1)

Because (A — &) is singular, its inversion is problematic
even though the contribution of the eigenmode with eigen-
value A is projected out of the source: since both A and |A)
are only approximately known, one faces a ‘““zero divided
by zero” problem. In our previous publication, we there-
fore shifted the pole position, performed the inversion, and
interpolated our result. This turned out to be insufficiently
stable. Now we use a Chebychev approximation to the
inverse of h> — A2 in the range such that the inverse is
precise outside the known eigenvalues of h(—R;). The
advantage is that this approximation is finite at /> — A> =
0. The problem is thus reduced to a contribution from the
eigenvalue A mode which is zero times some finite number
given by the required accuracy and the range in which one
computes the eigenvalues explicitly.

Equation (7) provides us with a tantalizing result, which
we do not know how to apply in the context of HMC: an
exact formula for the ratio of the fermion determinants on
either side of the topology-changing boundary:

detHy(m) _

1
1+ (4R% — 2)\P,,iP,,)t.
detH,zf(m) ( 0o m )< 0| | 0)

HG(m)
(12)

HMC never uses the exact determinant as part of the
simulation. Instead, it generates configurations whose sta-
tistical weight is controlled by the effective action Eq. (4).
In an algorithm which does approximate the determinant
directly, like the R, algorithm, it seems straightforward;
one would just use the logarithm of Eq. (12) as the step.
However, we are unwilling to abandon HMC for two
reasons: First, we feel that we benefit substantially from
the fact that HMC is exact and therefore do not want to run
an R-type algorithm which cannot be made exact in an
obvious way. Second, we gain considerable speed using
HMC over an R algorithm because in HMC we can use a
previous solution to an inverse of H(m)? to begin the
computation of the new force. This point deserves further
investigation.
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ITI. SIMULATION PARAMETERS AND
PERFORMANCE OF THE ALGORITHM

We simulate on 8* lattices at one value of the gauge
coupling 8 = 7.2 which we chose to be roughly at the
N, = 6 phase transition (for an overview over the lattice
spacings see Table III). We use the Liischer-Weisz gauge
action [22] with the tadpole improved coefficients of
Ref. [23]. Instead of determining the fourth root of the
plaquette expectation value uy = (Up)/ 3)1/4 self-
consistently, we set it to 0.86 for all our runs as we did in
our previous publication.

Our kernel operator d is constructed from gauge links to
which two levels of isotropic stout blocking [14] have been
applied. The blocking parameter p is set to 0.15.

We report on simulations at three values of the bare sea
quark mass am, = 0.03, 0.05 and 0.1. Based on measured
lattice spacings from the Sommer parameter and the per-
turbative calculation of matching factors reported in the
Appendix, we believe that these values correspond to MS
quark masses of about 35, 55 and 100 MeV. An overview of
our collected statistics is given in Table 1. The trajectories
all have length one, divided in 20 elementary time steps.
We use a Sexton-Weingarten [24] integration scheme in
order to apply a smaller time step for the gauge field
integration. We perform 12 applications of the gauge force
and gauge field update per elementary time step. Again, see
Ref. [10] for details.

In order to monitor whether an eigenvalue has changed
sign, we compute the lowest 8 eigenmodes of A(—R)) in

TABLE I. Overview over our collected data at 8 = 7.2 with
several streams per quark mass. We give the number of pseudo-
fermion fields ny used, the number of trajectories, the accep-
tance rate and the total number of reflections and refractions. In
our analysis we typically discard the first 100 configurations per
stream. The statistics includes all (accepted and rejected) trajec-
tories. Note that the number of refractions is higher than the
number of effective changes in topologies because of tunneling
back and rejections.

m, Stream n, Trajectories Accepted rate Reflects Refracts

0.03 1 3 354 73% 1658 31
003 2 3 249 74% 1136 35
003 3 2 220 77% 946 19
003 4 3 173 68% 891 19
0.05 1 3 246 63% 1350 98
005 2 3 225 63% 1033 51
005 3 2 251 71% 1089 36
005 4 2 250 64% 1233 68
005 5 2 250 69% 1218 43
0.10 1 3 196 59% 1043 113
010 2 3 153 49% 1040 153
010 3 2 285 74% 1334 120
010 4 2 191 71% 945 95
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each step. These are also used to precondition the con-
struction of the sign function.

For our analysis, we typically discard the first 100
configurations in a stream and separate two consecutive
measurements by 5 trajectories. The separation of the
configurations is based on our measurement of the auto-
correlation time of the plaquette. It is around 5(1) varying
little with the quark mass. We observed no significant
difference in acceptance rate between the quark masses.
However, the autocorrelation time of the topological
charge differs enormously. This is due to the fact that the
estimation of the step height of the fermionic action intrin-
sic to HMC is much more subject to fluctuation for smaller
masses than for larger ones. As argued in our previous
publication, a poor estimator results in reflections. We
partially address this problem by the use of multiple pseu-
dofermion fields, but the problem remains. In Fig. 1 we
show a scatter plot of the real change in the determinant at
the step, from Eq. (12), as compared to the stochastic
estimate with three pseudofermion fields. We subtracted
the normal component (N, 7r)? of the momentum so that,
according to Eq. (5), negative values allow refractions.
However, (N, 77}2 is almost always smaller than 10. The
stochastic estimate of the step height has a wide spread but
is typically large. Since exp(—AS) will average to the ratio
of the fermionic determinants on both sides of the step, this
is a consequence of the large fluctuation in the estimator.
[A few small values of AS have to be compensated by a
large number of large ones, for which exp(—AS) is ap-
proximately zero.]

The low correlation between the estimator and the physi-
cal step height Eq. (12) shows up in the large autocorrela-
tion time of the topological charge, whose time history is
shown in Fig. 2. Even though part of it is physics—Ilighter
quarks make it harder to get from, e.g., v=0 to
v = *1—the height of the step grows with 1/m? instead
of the expected determinant ratio, logm. Since the normal
component of the momentum is roughly independent of the
quark mass, it becomes more and more difficult to change
topology (also see discussion in Sec. V). The large auto-
correlation time for the topology is a phenomenon that is
also known with other fermions, e.g. improved staggered
quarks. To the extent that these formulations know about
topology, the step in the fermion action for the overlap
might be replaced for them by a steep region which ap-
proximates the step. The result is the same: if the approxi-
mation of the determinant is bad, the step is overestimated
most of the time and one does not change topology.

Let us finally take a look at the relative cost of the
various ingredients of the algorithm. In Table II we list
the cost per call and the fraction of the total cost of each of
the major parts of the program. The conjugate gradient
inversion of H2, needed for the computation of the force,
starting action and the reflections/refractions takes by far
the largest fraction. Even though one inverts only on one
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The stochastic estimate of the height of the step compared to the actual change in the logarithm of the determinant from a

subset of our ensemble. We subtracted the normal component of the momentum squared (which is typically less than 10) such that
negative values mean refraction and positive ones reflection. For mass m, = 0.03 on the left we have a number of events in the upper
left quadrant that would have tunneled with the exact change of the determinant and only a few that actually tunneled (in the two lower
quadrants). For m, = 0.05 the picture is similar, even though there are more tunneling events.

source [the zero mode of h(—R;)] in the reflection/refrac-

tion routine, these inversions are very expensive since there
is no good starting vector. Therefore, they alone take a fifth
to a quarter of the total cost, depending on the quark mass.
The inversions can be cheaper for the lighter quark mass
because there is less topology; the conditioning number of

H,, for v = 0 is lower than for |¢| > 0.

The cost of computing the § eigenvectors of the kernel

operator is small, about 10%. It is cheap because the
eigenmodes of the kernel do not change much during the
evolution; one thus has good starting vectors. We need
them to precondition the construction of the overlap op-
erator and to monitor whether an eigenvalue has changed

sign. Finally, the computation of the fermion force (outside
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FIG. 2. The history of the topological charge » as given by the index theorem for our three quark masses. The data shown include the
thermalization runs.
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TABLE II.
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The cost in wall clock time for various parts of the algorithm measured on a subset

of the data. The inversion of H2, takes the largest part. It is responsible for the majority of the
cost in the first, second and fifth row, together about 75%.

mg, = 0.03 my = 0.05
Sec per call % of total time Sec per call % of total time
CG in MD evolution 406 48% 534 46%
Reflection/refraction 800 18% 1029 26%
Fermion force 148 17% 175 15%
Eigenvalues of h(—Ry) 110 12% 115 9%
Setup source 577 3% 634 3%
Gauge update 27 3% 27 2%

the inversion of H2,) takes about a sixth of the total time.
This is due to the inversion of the kernel operator, the
computation of ;" Sh(—Ry)y; for each of the poles in
the Zolotarev approximation of the sign function and the
inversion of h(—R,) for the projector term in the sign
function as discussed at the end of Sec. II.

IV. SETTING THE SCALE

In order to get an idea at which lattice spacing we are
simulating, we measured the heavy quark potential and
extracted the Sommer parameter r, [25]. [It is defined as
the distance at which the force between two heavy quarks
F(r) with distance r satisfies r3F(ry) = 1.65.] This is
necessary because we expect a substantial shift due to the
dynamical fermions [26] with respect to the quenched
lattice spacing [27]. Unfortunately, our lattice is relatively
small. It is thus not possible to estimate the uncertainty in
the extraction of the potential from the data alone. To
illustrate this we show in Fig. 3 the potential extracted
from Wilson loops W[r, f] which have been constructed

12t

0.8 f

04

0.2 f

FIG. 3. The heavy quark potential extracted from fits to Wilson
loops constructed from HYP links. The two sets result from two
different fit ranges; t € [2,4] and ¢ € [3, 4]. The curves are fits
of the form Eq. (13) to the potential which include a perturbative
correction to account for the HYP links.

from a particular hypercubic smearing method, HYP
smeared links [28]. The two sets correspond to single
exponential fits to the W[r, ¢] with t €E[2,4] and ¢t €
[3, 4], respectively. The latter set gives a significantly
smaller potential. The curves represent fits of the form

V(r) =é+Br+ C+ Df(r) (13)

where f(r) is a perturbatively determined correction [29] to
account for the effect of the HYP links on short distances.
The results are given in Table III.

To estimate the systematic error from the small volume,
we have generated a quenched set of 8* and 12* lattices at
B =177, up = 0.887 with a similar lattice spacing [a =
0.163(1)]. Analyzing these lattices, we find that the r
extracted from the 8* lattices with fit range ¢ € [3, 4] is
the same within error bars as the one extracted from the 12+
and fit ranges starting at 3 or 4 ranging to 5 or 6. In the
following, we will therefore work with the lattice spacing
extracted from the ¢ € [3, 4] fit range.

The dimensionless quantity ry./o has been used in the
past to quantify the impact of dynamical quarks on the
shape of the potential [30]. We find ro/o = 1.10(1) al-
most independent of the sea quark mass and 1.18(1) for our
quenched ensemble. On larger lattices and a finer lattice
spacing, Ref. [30] found a quenched value of about 1.16
and 1.128 for two flavors of dynamical staggered quarks.
From Ref. [31] we get a value of about 1.14 on at a similar
lattice spacing with two flavors of dynamical clover Wilson

TABLE III. The Sommer parameter r, and the lattice spacing
a in fm from ry = 0.5 fm. We show results from two fit ranges
used to extract the potential. The fit range for the fit to the
potential was r € [1.4, 6.1] with little variation between differ-
ent choices for this range.

B=12 1 €3 4] €2 4]

m, ro/a a (fm) ro/a a (fm)
0.03 3.27(3) 0.153(2) 3.04(2) 0.165(1)
0.05 3.17(5) 0.158(2) 2.97@3) 0.168(1)
0.10 3.00(4) 0.167(2) 2.82(3) 0.177(2)
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fermions. Given the systematic and statistical errors these
values agree well with our findings.

V. TOPOLOGICAL SUSCEPTIBILITY

The topological susceptibility illustrates the strengths
and weaknesses of our simulation. In contrast to all simu-
lations with nonchiral actions, the measurement of the
topological charge in an overlap simulation is trivial. It
can even be done during the simulation by monitoring zero
crossings of the smallest eigenmode of the kernel operator
(if the topological charge has been determined once at the
beginning of the simulation). However, as we have already
remarked, the autocorrelation time of the topological
charge during the simulation is annoyingly long.

We begin by showing (in Fig. 2) time histories of the
topological charge for the different simulations performed
at our three values of dynamical quark mass. The topology
is recorded at the end of each trajectory (rather than at the
end of each time step). No sophisticated analysis is needed
to see that the autocorrelation time grows as the quark mass
falls, and Fig. 4 shows that the mean time between topo-
logical changes varies inversely with the square of the
quark mass. Histograms of the topological charge (includ-
ing the thermalization runs) are shown in Fig. 5.

With such long times between tunnelings, we are con-
cerned about thermalization effects in our data. At am, =
0.1 (») is zero within statistical uncertainty [it is —0.05(13)
throughout the run] and (»?) seems to have stabilized after
50 trajectories are discarded, so we cut the data there. At
am, = 0.03 (v) is —0.15(11) when 100 trajectories are
discarded from each run and 0.04(12) when 150 are dis-

5 O T T T T ‘ T T T T ‘ T T T T

[ -

30 — —]

time
T
1

20 — —]

10 — —

0 500
l/mq2

1000

FIG. 4. Monte Carlo simulation time between topology
changes versus quark mass.
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carded; (v?) shows little variation with cuts of more than 50
initial trajectories per stream, and so we dropped the first
100 trajectories. At am, = 0.05 the situation is similar; we
see little variation cutting more than 90—100 configurations
and again dropped 100 before averaging.

We find topological susceptibilities of ya* =
2.17(29) X 10~* at am, = 0.1, ya*=1.37(39) X 107*
at am, = 0.05, and ya*= 1.02(24) X 10™* at am, =
0.03.

For the quenched data we are able to space configura-
tions used in the analysis far enough apart in simulation
time as to be essentially uncorrelated. We measured a
lattice topological susceptibility of ya* = 6.13(76) X
10*. With the quenched ry/a = 3.08, this is y ~
(191 MeV)*, which is quite consistent with typical
quenched results, e.g. [32].

We attempt to translate this data into dimensionless units
in order to facilitate comparisons with other measure-
ments. We take our measurements of ry/a from the pre-
vious section to compute yr§ and do the same with our
quark masses, using the Z factor as described in the
Appendix to convert them to u = 2 GeV MS values. We
present our results in Fig. 6. Diirr [33] has presented a
phenomenological interpolating formula for the mass de-
pendence of the topological susceptibility, in terms of the
condensate %, and quenched topological susceptibility Xq»

1 N 1
— = f2+—. (14)
L Xq
600 ) 800 e T
(a) ] L o
400 |- ~ 400 -
200 |- - 200}
o 111 o

-4 -2 0 2 4 -4

300 T T T 1 AT T
(e) (d)

» 1 a0k . ]
200 - — [ ]
100 [~ - ; 1

I 1 10 -

ol | | | I IS SUUURT R U P R B A PR T

-4 -2 0 2 4 -6 -4 -2 0 2 4 6

FIG. 5. Histograms of topological
(@ am,=0.03, (b) am, =005 (c)
(d) quenched simulations.

charge from
am, = 0.1 and
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0408 T T T T ‘ T T T T ‘ T T T T

0.06 — ]
<t [ -
= 0.04 — |
~ I i

0.02

0.00

FIG. 6. Topological susceptibility versus quark mass, in units
of (. The curved line is the Diirr interpolating formula, Eq. (14).
The three horizontal lines give the quenched value and its error.

Taking 2 from our RMT analysis in the next section
(r3% = 0.43) produces the curve shown in the figure.

Lattice results presented elsewhere typically use the
pseudoscalar mass as the ordinate. As we will describe in
the next section, we do not have reliable pseudoscalar
masses because our lattices are too small. However, we
can use the Diirr formula as a benchmark to compare with
other simulations. Our results are in rough agreement in
magnitude with those of another dynamical overlap simu-
lation, at lattice spacing a ~ 0.25 fm, by Fodor et al. [9].
The two simulations both lie below the Diirr curve.

Data were taken from simulations with two flavors of
ordinary staggered simulations and analyzed and published
by (among others) Hasenfratz [34]. At finite lattice spacing
all these data lie far above the Diirr curve, and are not too

100

80 f

dyn., my=0.03

Cpp(t)
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different from the quenched result. Other dynamical fer-
mion data with nonchiral fermions [35] are also high with
respect to the Diirr formula and to overlap data. It is easy to
imagine that simulations with nonchiral actions would
overestimate the topological susceptibility since their
massless Dirac operators do not have exact zero modes.

We do not think that the small volumes of our simulation
have suppressed the susceptibility since our quenched
simulations are not anomalously low. Little is known about
the scaling properties of overlap actions, and our results
and those of Ref. [9] have large lattice spacings. We are of
course not satisfied with the quality of our data from the
point of view of autocorrelations, lattice spacing, extrac-
tion of hadron masses, and simulation volume.

VI. MESON TWO-POINT FUNCTIONS

Let us now turn to meson two-point functions. The
purpose of doing so is twofold. First, we want to get an
idea of the pion masses at which we are simulating. This
will not work very well since the three volume is small and
the time extent is far too small for the excited states to
decay, but it can provide us with an upper limit of the
pseudoscalar mass. The second purpose is to compare the
two-point functions to quenched results on similarly sized
lattices and look for effects of the dynamical fermions in
the scalar correlator. We compute zero-momentum corre-
lators

Cyt) = 3 S0, 040, 03(x, ATp(x, ) (15

where the fermion fields ¢ are contracted with the appro-
priate flavor structure. We compute the quark propagators
with Gaussian sources of radius 2a on gauge configura-
tions in Coulomb gauge. We use point sinks and apply low-
mode averaging using the four lowest eigenmodes of the
Dirac operator [36,37].

In Fig. 7 we show the pseudoscalar two-point function

for our two smaller dynamical quark masses.
100
80 |
dyn., my=0.05
60 |

Cpp(t)

40 t

20

FIG. 7. The pseudoscalar zero-momentum two-point function for m, = 0.03 and m, = 0.05. The lines represent a fit to a single cosh

in the range t € [2, 6].
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35
3t
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o |

15}

2
(ro Mpp)

1t
05 |

0

0 005 01 015 02 025 03 0.35
o mq

FIG. 8. The squared mass of the pseudoscalar meson as a
function of the bare quark mass. It does not follow the Gell-
Mann—Oakes—Renner relation.

Unfortunately, the corresponding masses, shown in Fig. 8,
do not differ much. This can be attributed to the fact that
T = 8 is just too small. We thus see a superposition of
excited states with the ground state which does not depend
on the quark mass.

PHYSICAL REVIEW D 72, 054503 (2005)

More impressive is the comparison of the scalar corre-
lator from the dynamical and the quenched ensemble. It is
known that this correlator turns negative in the quenched
theory, which is a sign that quenched QCD is not unitary. In
Fig. 9 (bottom panel) we show that this is the case even on
a small lattice. The full two-point function is shown (con-
nected by a line) as well as the contributions of the various
topological sectors. Whereas the function is positive in
v = 0, the zero modes in the sectors of nontrivial topology
turn it negative. In the full theory, however, the fermion
determinant suppresses the sectors with || >0 suffi-
ciently for the whole two-point function to remain positive
(Fig. 9 upper row).

VII. THE CONDENSATE FROM RANDOM MATRIX
THEORY

It was proposed more than a decade ago that the distri-
bution of the low-lying eigenvalues of the QCD Dirac
operator in a finite volume can be predicted by RMT
[38—40]. Since then this hypothesis has received impres-
sive support from lattice calculations, mainly quenched
simulations [41-45], but also some dynamical ones using
staggered quarks [46,47].

50 . r x r 50 . r r x x .
all + all +
40 dyn., mq=0.03 v=0 x 40 dyn, mq=0.05 v=0 x
Ivl=1 % lvl=1 *
30 30 f lvl=2 @
X X
20 f 20 f x x
X X
= 10} X x X = 10} X x
% 8 X X X
O 0 ¥ % (&) 0
-10 * * * % ¥ 10 }
- L - L ]
20 20 B & ! G o o
-30 30 +
_40 L _40 "
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
t t
50 r r x .
all +
40 quenched, mq=0.03 v=0 x
Ivl=1
30 f V=2 o
20 f
$ o LIS S T SR
x x
-10 % * * * %
-20
6]
30 | @ o e ¥ @ &
-40

FIG. 9. The scalar zero-momentum two-point function for the dynamical m

= 0.03 and m, = 0.05 ensembles and for the quenched

q q

ensemble with a valence quark mass of m, = 0.03. Contrary to the quenched theory, the scalar two-point function stays positive with
dynamical quarks. We show the full two-point function (connected by a line) and the contributions from each topological sector
separately. The topologically nontrivial configurations turn the correlator negative in the quenched theory, where they are more

abundant.
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Typically, the predictions are made in the so-called
epsilon regime, for which 1/A < L < 1/m, with A a
typical hadronic scale. However, it has been found that
they describe the data in a wider range. In two recent large
scale studies using the overlap operator on quenched con-
figurations [45,48], it could be shown that on lattices with
lengths larger than 1.2 and 1.5 fm, respectively, the RMT
predictions match the result of the simulation. Our dynami-
cal lattices have a spatial extent of about 1.3 fm. As we will
see, random matrix theory describes our low-lying Dirac
spectra quite well.

Our analysis is based on the distribution of the kth
eigenmode from RMT as presented in Ref. [49] and suc-

PHYSICAL REVIEW D 72, 054503 (2005)

cessfully compared to simulation results in Ref. [47]. The
prediction is for the distribution of the dimensionless
quantity { = A,V in each topological sector with A; as
the kth eigenvalue of the Dirac operator, X the chiral
condensate and V the volume of the box. These distribu-
tions are universal and do not depend on additional pa-
rameters other than the number of flavors, the topological
charge and the dimensionless quantity m,%V. (Note that
topology affects the distributions, in contrast to the behav-
ior of staggered fermions seen by Ref. [47].) By comparing
the distribution of the eigenmodes with the RMT predic-
tion one can thus measure the chiral condensate 2. The
main advantage of this method is that it gives the zero

mq =0.03

mode=2, Ivl=1 + mode=3, |vI=1 b

0.3 + mode=1, Ivl=1 +
0.2 r T T ] e
} .LVZI -t —t— 4.74 =
T mode=2, v=0 + mode=3, v=0 b
0 4 12 16 O 4 8 12 16

AZV

Mgy = 0.05

0.3 + mode=1, Ivl=1 +
0.2 r T

01 | +

iy

mode 2, lvl=1 + mode 3, lvl= 1 E

A

M |

odeZvO-—modeSvO b

Ji

16 O 4
AZV

FIG. 10. The distribution of the lowest two eigenmodes of the Dirac operator for our ensemble for the sector of trivial topology and
v = *1. The lines are the result of fits of the random matrix theory prediction to the data for the two lowest modes. They correspond to
2V/a =52(2) and 2V /a = 51(2) for the am, = 0.03 and am, = 0.05 ensembles, respectively. The lines for the third mode are

predictions.
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quark mass, infinite volume condensate directly. The va-
lidity of the approach can be verified comparing the shape
of the distribution for the various modes and topological
sectors. The main uncertainty comes from a too small
volume which causes deviations in the shape, particularly
for the higher modes. As we will see below, the direct
measurement of 3 from (¢//)(m), which requires extrapo-
lation into the chiral limit as well as correction for the finite
volume, is unreliable for our data.

In Fig. 10 we show the distribution of the two lowest
eigenmodes of the overlap operator (scaled by X V) mea-
sured on the » = 0 and v = %1 parts of the am, = 0.03
and am, = 0.05 ensembles. To correct for the fact that our
eigenvalues lie on a circle of radius R, instead of a straight
line, we use the stereographic projection A = A/(1 —
A/(2R)). We fit the RMT prediction from Ref. [49] to
these distributions. The chiral condensate 2. is the only free
parameter in this fit; we get 3V/a = 52(2) and 3V /a =
51(2), respectively. This corresponds to 1% = 0.44(2) and
0.40(2). We studied the dependence of this result on the
number of trajectories used in the thermalization and the
separation of consecutive configurations. We found no
systematic variation beyond omitting the first 100 trajecto-
ries and separating them by 5.

To estimate the quality of the fit we apply the
Kolmogorov-Smirnov test to the individual distributions.
The confidence level is given in Table IV and rather poor
for most of them. In order to understand the origin of this
failure, we also fit the RMT prediction to the distributions
for the lowest two modes with ¥ = 0 and » = %1 sepa-
rately. These fits and confidence levels are shown in
Table V. For the am, = 0.03 ensemble we get SV/a=
48(2) and 55(2), respectively. At am, = 0.05 we obtain
SV/a =46(2) and 57(3) for v =0 and v = *=1. The
distributions for the different topological sectors appar-
ently do not give the same value for 2 /a. This is probably
an effect of the too small volume and a sign of the break-
down of RMT for eigenvalues larger than the Thouless
energy [43,50]. The Kolmogorov-Smirnov test for these
fits, however, gives much more favorable results.

The RMT predictions are made with the assumption that
the volume is infinite. We (obviously) are not in that
situation. In finite volume, in the epsilon regime of chiral

TABLE IV. The confidence level of the individual distributions
for the result of the fit to the lowest two modes in both
topological sectors.

Confidence level

am, |v| S/a Mode 1 Mode 2
0.03 0 52(2) 0.00001 0.0037
0.03 1 0.002 0.16
0.05 0 51(2) 0.001 0.007
0.05 1 0.012 0.003

PHYSICAL REVIEW D 72, 054503 (2005)

perturbation theory, finite volume modifies the formula for
the condensate by multiplication by a shape factor, X —
p>, where

C(li/l)
faL?

p=1+ (16)

and c(l;/1) depends on the geometry [51]. We do not know
p since we have not measured f,, but combining our
lattice spacing and lattice size with f, = 93 MeV gives
p ~ 1.4. This is too large a correction to be trustworthy;
again, we need a lattice with a larger physical size. Our two
rgE values must be multiplied by Zg and p to give a
continuum value: with r, = 0.5 fm, p2(MS) = 0.031(1)
or 0.028(1) GeV? or (p=(MS))!/3 =312 or 304 MeV.
(Errors are from ry/a and the fit uncertainty in 2..)

We also attempted to measure the mass-dependent quark
condensate {(i(m)) using 12 random sources per lattice
on subsets consisting of about 50 lattices per mass value,
spaced by 5 trajectories. Our data are displayed in Fig. 11.
We show the mass-dependent condensate summed over all
topological sectors as well as its value in sectors of topo-
logical charge v =0 and |v| = 1 (with the zero-mode
contribution removed for the latter case). As expected,
there is no divergence in (yris(m)) at zero quark mass (as
would occur in a quenched simulation).

The parameter 3, must be extracted from a fit of (i(m))
to some functional form. For example, were we in a large
volume, we would fit to the usual constant plus chiral

T T 71 ‘ T T 71 ‘ T T 71 ‘ 1T T 1
1.0 — % —
é L i
s | % ]
=
mgﬂo 0.5 — 0) —
L @ -
O‘O 1 1 1 1 l 1 1 1 1 l 1 1 1 1 l 1 1 1 1
0.0 0.1 0.2 0.3 0.4
rom,
FIG. 11. The mass-dependent condensate vs quark mass,

scaled by appropriate powers of ry, from direct measurement.
Octagons show the full result (summed over all topological
sectors). Squares and diamonds show ¢(m)) in sectors of
topological charge |v| = 0 and 1, respectively, the latter with
the zero-mode contribution removed.

054503-11



THOMAS DEGRAND AND STEFAN SCHAEFER

logarithm plus Cm,, formula. This expression would give a
very small value of the condensate at zero quark mass.
However, our volume is small. Perhaps the appropriate
fitting function is that for the so-called € regime, given
by Gasser and Leutwyler [51] for the average-topology
case, or by Leutwyler and Smilga [52], for the case of fixed
topology. In either case the condensate is given by
_p2 Iz

S(V,u)=—=>—

7 o (17)

with Z the appropriate partition function written by the
above authors or given equivalently by random matrix
theory, and u = quV. We append a linear Cm,, term to
Eq. (17) and attempt to fit the parameters 2, and C to the
data. This fitting attempt was also not successful.

First, we do not know which of our mass values lie in the
region of validity of our fitting function. Figure 12 shows a
set of fits to the » = 0 condensate. The fitting function is a
sum of the fixed-topology expression plus a linear mass-
dependent term. Curves (a) and (c¢) show the result of fits to
the three or lowest two-mass data points. Curves (b) and (d)
are the part of the fit coming from the 2(V, ) expression
of Eq. (17). The three-mass fit gives 3> = 0.53(4) while
the two-mass fit gives 0.67(8). These numbers are obvi-
ously unstable. We are currently generating data at smaller
quark masses which should alleviate this problem by filling
in the curve.

But the numbers we record are quite different from the
RMT ones. We think (see Ref. [53] for a useful discussion)
that this is an artifact of the small simulation volume. The

145 I 1T T T ‘ 1T T 1 ‘ 1T T 71 ‘ 1T T T |
1.0 — —
I (a)
/>'\ L -
Pxt . (c¢) 4
L (d) 4
0.5 — —]
i (b) |
OAO | I | ‘ I I ‘ | I — ‘ | I |
0.0 0.1 0.2 0.3 0.4

FIG. 12. Examples of fits to the » = 0 mass-dependent chiral
condensate. Curves (a) and (c¢) use the three-mass points and the
two lower ones, respectively. Curves (b) and (d) show the part of
the fit coming from the %(V, u) expression of Eq. (17).
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TABLE V. The confidence level of the individual distributions
for a fit to the topological sectors separately.

Confidence level

am, |7| S/a Mode 1 Mode 2
0.03 0 48(2) 0.01 0.08
0.03 1 55(2) 0.16 0.78
0.05 0 46(2) 0.13 0.002
0.05 1 57(3) 0.40 0.52

problem of principle that we face is that the formulas to
which we fit (¢s(m)) assume that the condensate is given
by an integral over a known spectral density p*)(£, u) for
all values of ¢,

3, () _ o pV(E p)

5 2,u,ﬁ dl Ot (18)
We are doing simulations in small coarse lattices, and so
this assumption is unwarranted. We expect that cutoff
effects will alter the high eigenvalue part of the spectrum.
Only a larger lattice will cure this problem.

We can check this assumption by fitting (¢/(m)) in the
|v| = 1 sector. We get 2, = 0.70(3) from a fit to the am =
0.03, 0.05 and 0.1 data sets, and 0.88(10) from the am =
0.03 and 0.05 sets. These are bigger discrepancies from the
RMT results than the » = O fits. Figure 10 shows that the
third eigenmode of the » = 0 sector matches the RMT
prediction much better than the third |v| = 1 mode does.

VIII. CONCLUSION

We have presented results from simulations of two
flavors of dynamical overlap fermions at sea quark masses
of about 35, 55 and 100 MeV. For us, this is a second step in
gaining experience with these simulations. We therefore
focused on dynamical fermion effects in the results. We
were able to show that the topological susceptibility is
greatly reduced as compared to quenched simulations.
This measurement also is a great strength of the use of
overlap fermions for the sea quarks. The topological
charge as defined by the index theorem has a direct impact
on the update of the gauge fields during the simulation.
However, we are still worried about the long autocorrela-
tion time of the topological charge.

We also extracted the quark condensate from a compari-
son of the distribution of the lowest eigenvalues with
random matrix theory. This method is much simpler than
a direct fit to {i(m)) and has the advantage of giving the
infinite volume, zero mass condensate directly without
need of extrapolation. The eigenvalue distributions fit con-
sistently the distributions in the various topological sectors
for the first three modes. However, due to our very small
volume, there is a finite size correction to 2, which is not
well under control. This correction is probably ©(40%) for
our simulation. But it is expected to scale which 1/L? and
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one thus only needs a moderately larger volume to make it
small.

We were also able to demonstrate the effect of the
dynamical quarks on the scalar meson two-point function.
We showed that contrary to the quenched theory the scalar
two-point function is not turned negative by the zero modes
in the sectors of nontrivial topology.

All this is possible through an efficient implementation
of the overlap operator using fat links, multiple pseudofer-
mion fields to decrease the autocorrelation time of the
topological charge and improvements in the algorithm,
namely, the computation of the height of the step in the
fermionic action.
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APPENDIX: Z FACTORS FROM PERTURBATION
THEORY

A simple application of the techniques described in
Ref. [54] gives us one-loop predictions for the vector, axial
vector, pseudoscalar, and scalar currents for our action.
They are shown in Table VI. The value of the momentum
scale at which the strong coupling constant is evaluated
(from the Lepage-Mackenzie convention [55]) is also
shown. At one-loop order there is no difference between
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TABLE VI. Table of Z factors and ¢*’s for our action, defined
0 Z; = 1+ 2;,8%(¢*)C;/(167%) = 1 + z;a(q")/(37).

Process Z; q*a
Zy,a 0.54 2.24
Zpg 2.96 2.85

the gauge propagator from a tadpole improved action and
the tree-level one, so we use the tree-level propagator in
our computation. In this order of perturbation theory, each
step of stout smearing is equivalent to a step of unitarized
APE smearing [56] with p = /6 in the terminology of
Ref. [57].

In practice, we define the coupling through the so-called
“ay” scheme. We only know the one-loop expression
relating the plaquette to the coupling; it is

1 87

ln3 TrU, = — ?av(q*)W

(AD)
with W =0.366 and g*a =3.32 for the tree-level
Liischer-Weisz action. In our calculation of the condensate,
we take the lattice spacing from the Sommer parameter.
The coupling from the plaquette is matched to its M.S value
and run to the needed value of ¢*, where we perform the
match. Then the MS result is run to u = 2 GeV using the
usual two-loop formula. In our simulations ay(3.32/a) =
0.192, 0.193, 0.193, and Zg = 1.19, 1.22 and 1.23 for the
am, = 0.03, 0.05 and 0.10 data sets. Essentially all the

difference from unity comes from the MS running from
u = 1/ato 2 GeV. Using Z,, = 1/Zg gives the MS quark
masses quoted in the body of the paper.
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