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We study single-spin asymmetries in semi-inclusive deep inelastic scattering with transversely
polarized target. Based on the QCD factorization approach, we consider Sivers and Collins contributions
to the asymmetries. We fit simple parametrizations for the Sivers and Collins functions to the recent
HERMES data, and compare to results from COMPASS. Using the fitted parametrizations for the Sivers
functions, we predict the single-transverse-spin asymmetries for various processes in pp collisions at the
Relativistic Heavy Ion Collider, including the Drell-Yan process and angular correlations in dijet and jet-
plus-photon production. These asymmetries are found to be sizable at forward rapidities.
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I. INTRODUCTION

Single-transverse-spin asymmetries (SSA) in hadronic
processes have a long history, starting from the 1970s and
1980s when surprisingly large SSAs were observed in
p"p! �X [1] and pp! �"X [2] at forward rapidities
of the produced hadron. They have again attracted much
interest in recent years from both experimental and theo-
retical sides [3]. In particular, first measurements by the
STAR, PHENIX, and BRAHMS Collaborations at the
Relativistic Heavy Ion Collider (RHIC) have now become
available [4–6], which extend the SSA observations from
the fixed-target energy range to the collider regime. Again,
large asymmetries were found in p"p! �X at forward
rapidities of the produced pion. Meanwhile, experimental
studies in deep inelastic scattering (DIS) by the HERMES
Collaboration at DESY, by SMC at CERN, and by CLAS at
the Jefferson Laboratory also show remarkably large SSAs
in semi-inclusive hadron production, ��p" ! �X [7–11].
Data from COMPASS for scattering off deuterons have
been published as well [12], which show no large asym-
metry. On the theoretical side, there are several approaches
to understanding SSAs within quantum chromodynamics
(QCD) [3,13,14]. Recent interest focuses on the role of
partonic transverse momentum in creating the observed
asymmetries. Transverse momentum-dependent (TMD)
parton distributions and fragmentation functions, and their
relevance for semi-inclusive DIS (SIDIS), the Drell-Yan
process, and single-inclusive hadron production at hadron
colliders have been investigated in [15–27]. Compared to
the normal integrated distributions, the TMD distributions
provide much more information; for example, some of
them contain information on orbital angular momenta of
partons in the nucleon and have also been linked to spatial
distributions of partons [28,29].

The Sivers function [19] is one of these interesting TMD
parton distributions. It represents a distribution of unpolar-
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ized quarks in a transversely polarized nucleon, through a
correlation between the quark’s transverse momentum ~k?
and the nucleon polarization vector ~S?. The existence of
the Sivers function requires final/initial-state interactions,
and an interference between different helicity Fock states
of the nucleon. In the absence of interactions, the Sivers
function would vanish by time-reversal invariance of QCD,
hence it is often referred to as a ‘‘naively time-reversal-
odd’’ distribution. As was shown in [24–26], the interac-
tions are represented in a natural way by the gauge link that
is required for a gauge-invariant definition of a TMD
parton distribution. Interference between different helicity
Fock states implies nonzero orbital angular momentum
[24,28]. Both these properties motivate the study of this
function. The Sivers function will contribute to the target
SSA in semi-inclusive DIS, but also to SSAs in polarized
pp scattering processes such as the Drell-Yan process and
dijet or jet-photon correlations. We will discuss all these
asymmetries in this paper.

The Collins function is another ‘‘naively time-reversal-
odd’’ function. It is a transverse momentum dependent
fragmentation function and was introduced in [20]. It
represents a correlation between the transverse spin of a
fragmenting quark and the transverse momentum of the
hadron relative to the ‘‘jet axis’’ in the fragmentation
process. Like the Sivers function, it vanishes when inte-
grated over all transverse momentum. Indications of a
nonvanishing Collins effect have been found in semi-
inclusive DIS [9]. Very recently results for measurements
in e�e� annihilation to two hadrons have been reported,
which give direct evidence for the Collins effect [30].

The formulation and study of TMD functions is really
useful only when they appear in processes for which QCD
factorization at small transverse momentum can be estab-
lished. The processes, therefore, also need to be charac-
terized by a large momentum scale, and there has to be
additionally a small measured transverse momentum.
Rigorous theoretical analyses of such reactions started
from Collins and Soper’s seminal paper [16], in which
-1 © 2005 The American Physical Society
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they proved factorization for dihadron semi-inclusive pro-
cesses in e�e� annihilation. Nonperturbative TMD frag-
mentation functions were defined and then further studied
along with TMD parton distributions in [17]. The approach
was extended to Drell-Yan dimuon production at hadron
colliders [18].

More recently, these factorization theorems and the one
for semi-inclusive DIS have been carefully (re-)examined
in the context of the gauge-invariant definitions of the
TMD parton distributions and fragmentation functions
[31,32], paying, in particular, attention to the ‘‘naively
time-reversal-odd’’ functions. In summary, QCD factori-
zation has been established for three classes of semi-
inclusive processes: dihadron production in e�e� annihi-
lation, semi-inclusive DIS, and the Drell-Yan process. It
still remains to be seen whether factorization holds for
more complicated processes in hadronic scattering, such
as for dijet (dihadron) azimuthal angular correlations
[33,34]. These processes, too, are characterized by a large
scale (the individual jet or hadron transverse momenta),
and by an additional small transverse momentum related,
for example, to the pair transverse momentum, or to
the deviation of the two jets from being ‘‘back-to-back.’’
Note that this is in contrast to single-inclusive processes at
hadron colliders like p"p! �X. The spin asymmetries for
such reactions are power-suppressed (‘‘higher twist’’), and
the theoretical description should be based on the methods
developed in [14], where factorization in terms of higher-
twist correlation functions was established.

In this paper, we will use the factorization approaches at
small transverse momentum discussed above to study the
single-spin asymmetries in semi-inclusive DIS. We will
focus on the Sivers and Collins asymmetries which pres-
ently are the most interesting ones. We realize that at
the current stage it is difficult to apply the full factorization
formulas developed in the literature in fitting the data
and making predictions. Instead, we will make some ap-
proximations, neglecting higher-order terms in the hard
and soft factors. In this way we of course introduce some
theoretical shortcoming, which we hope can be overcome
in future studies. Our purpose is to look for the ‘‘main
effects,’’ that is, to provide a quantitative description of the
spin effects now studied experimentally, and to draw our
conclusions on the Collins and Sivers functions from these.
Another goal of this paper is to use the information gath-
ered from semi-inclusive DIS to make predictions for
processes at RHIC, which is now taking data in trans-
versely polarized pp scattering. With the fitted parametri-
zations for the Sivers functions that describe the HERMES
data very well, we will calculate the Sivers asymmetries for
processes at RHIC, including Drell-Yan dimuon produc-
tion and dijet and jet-plus-photon correlations. We
will demonstrate that these asymmetries are expected to
be large at RHIC and should therefore be closely inves-
tigated in the future polarized pp runs. This would then
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provide further tests of the physical picture behind the
SSA, and of our theoretical understanding.

To predict the SSAs at RHIC from the distributions fitted
in DIS relies on the factorization for the pp processes
which, as discussed above, is so far only established
for the Drell-Yan reaction. It also relies on the universality
of the TMD distributions. This issue has been addressed
in detail in [25–27,32,34]. It was found, for example, that
the Sivers functions for the Drell-Yan process will have
an opposite sign compared to those for SIDIS, as a result
of the behavior of the gauge links in the functions under
the time-reversal operation. We will use this additional sign
in our prediction for the Drell-Yan SSA at RHIC based
on our Sivers function fitted to the DIS data. How-
ever, recent work has shown [34] that the issue of univer-
sality appears to be much more complicated for the case
of dijet correlations, where the more involved color struc-
ture has profound consequences on the gauge links. As
a result, the Sivers functions for this reaction will
differ from those in DIS by more than just a sign. This
reservation notwithstanding, in order to obtain an order of
magnitude estimate we will assume in this paper that
the Sivers functions to be used for dijet correlations have
the same sizes as those for the Drell-Yan processes,
and opposite signs with respect to the DIS Sivers func-
tions.

In all calculations of cross sections and asymmetries
below, we will use the GRV LO parametrizations for
the unpolarized quark distributions [35], and the Kretzer
set of unpolarized quark fragmentation functions [36].
These will also serve as starting points for our parametri-
zations of the Sivers and Collins functions.

The rest of the paper is organized as follows. In Sec. II,
we will review the basic formulas for the SSAs in SIDIS,
and make model parametrizations for the Sivers and
Collins functions. We then fit our parametrizations to
the HERMES data. We will also compare our fit with
the recent COMPASS data on the Sivers and Collins
asymmetries. In Sec. III, we will calculate the Sivers
asymmetries for the Drell-Yan process and for dijet
and jet-photon correlations at RHIC, using the fitted pa-
rametrizations from Sec. II. We summarize in Sec. IV.
II. SSA IN SEMI-INCLUSIVE DEEP INELASTIC
SCATTERING

In this section, we will study the SSA in the SIDIS
processes ep! ehX and �d! �hX, where h represents
a hadron observed in the final state. We will compare the
theoretical calculations of the asymmetries with the
HERMES measurements. We will use some simple pa-
rametrizations for the Sivers functions and the Collins
fragmentation functions, and fit these to the experimental
data. A comparison of our fit with the COMPASS mea-
surements will also be presented. Similar phenomenologi-
cal studies of these asymmetries have also been performed
-2
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in [37,38] for the Sivers case and in [39] for the Collins
asymmetry, using the earlier HERMES data.

We will start by briefly recalling the factorization for-
mulas for the SIDIS process. For details, we refer the
reader to Ref. [31]. As discussed in the introduction, we
will make some simplifying approximations, in order to
sharpen the constraints on the Sivers and Collins functions.

A. Theoretical formalism and approximations

The differential cross section for SIDIS, including the
unpolarized part and the Sivers and Collins asymmetry
contributions, may be written in the following form:

d�

dxBdydzhd2 ~Ph?
�

4��2
ems

Q4 ��1� y� y2=2�xB

� �FUU � sin��h ��S�j ~S?jFsivers
UT �

� �1� y�xBj ~S?j sin��h ��S�Fcollins
UT 	;

(1)

where �h (�S) is the angle between the lepton plane and
the ��-hadron-plane (and the transverse target spin), y is
the fraction of the incident lepton energy carried by the
photon, and ~Ph? is the (measured) transverse momentum
of the hadron. In order to compare with the experimental
data, in the above formula and the following calculations,
the azimuthal angles (�S and �h) are defined in the so-
called virtual-photon frame where the virtual photon is
moving in the z direction. These definitions are different
from those in [31] where a hadron frame has been chosen
to define these angles. This difference has led to the differ-
ent signs in the above formula, compared to that in [31].
The structure functions FUU and FUT will depend in gen-
eral on ~Ph?, and on the invariant mass Q2 of the virtual
photon, the Bjorken variable xB, and on the fraction zh of
the photon longitudinal momentum carried by the hadron
observed in the final state. According to the factorization
formula of [31], the structure functions can be factorized
into the TMD parton distributions and fragmentation func-
tions, and soft and hard factors. For example, for the
unpolarized structure function, we will have [31]

FUU�xB;zh;Q2;Ph?��
X

q�u;d;s;:::

e2
q

Z
d2 ~k?d2 ~p?d2 ~�?

�q�xB;k?;�
2;xB�;	�

� q̂�zh;p?;�2; �̂=zh;	�S� ~�?;�2;	�

�H�Q2=�2;	�


�2��zh ~k?� ~p?� ~�?� ~Ph?�: (2)

This form is valid at low transverse momentum Ph? 
 Q
and is accurate at the leading power of P2

h?=Q
2. As seen

from the 
-function expressing transverse momentum con-
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servation, the observed hadron’s transverse momentum is
generated by three contributions: the transverse momen-
tum ~k? of partons in the nucleon (described by the TMD
distribution q), the transverse momentum ~p? acquired in
the fragmentation process (as expressed by the TMD frag-
mentation function q̂), and the combined transverse mo-
menta ~�? of (large-angle) soft-gluon radiation, embodied
in the soft factor S. Each of these transverse momenta is
integrated in Eq. (2), but leaves its imprint in the distribu-
tion in Ph? of the observed hadron. In contrast to the TMD
functions in (2), H is a hard factor that depends solely on
the large scaleQ. Furthermore,��Q is a renormalization
scale, 	 a gluon rapidity cutoff parameter, and � is defined
as � � �2P � v�2=v2, with P the target hadron momentum,
taken in the ‘‘plus’’-light-cone direction, P � �P�; P� �
0; ~P? � ~0?�, and v a timelike vector conjugate to P, i.e.,
with only a ‘‘minus’’-light-cone component. For details,
see [31], where also the related definition of �̂ is given.
Similar factorization formulas as (2) can be written down
for the single-transversely polarized structure functions
Fsivers
UT and Fcollins

UT .
For simplicity, in the following numerical calculations,

we will use the leading order expressions for the hard-
scattering and the soft factors, for which we have S � H �
1. At this order, we may also neglect the �; �̂ dependences
in the parton distributions and fragmentation functions. All
this brings us to the parton-model picture for semi-
inclusive DIS [23]. However, we stress that higher-order
effects can be systematically and consistently studied only
within the complete factorization framework. With the
above approximations, the structure functions can be sim-
plified to [31]

FUU �
Z
d2 ~k?d

2 ~p?q�xB; k?�q̂�zh; p?�

� 
�2��zh ~k? � ~p? � ~Ph?�;

Fsivers
UT �

Z
d2 ~k?d2 ~p?

~k? � ~̂Ph?
M

qT�xB; k?�

� q̂�zh; p?�
�2��zh ~k? � ~p? � ~Ph?�;

Fcollins
UT �

Z
d2 ~k?d2 ~p?

~p? � ~̂Ph?
Mh


qT�xB; k?�

� 
q̂�zh; p?�

�2��zh ~k? � ~p? � ~Ph?�;

(3)

where a sum over all quark and antiquark flavors, weighted
with the squared quark electric charge, is implicitly under-

stood from now on. ~̂Ph? denotes a unit vector in direction
of ~Ph?. In the above equations, q and q̂ represent the
unpolarized quark distribution and fragmentation func-
tions, respectively, qT the Sivers functions, 
q̂ the
Collins functions, and 
qT the transversity distribution
functions. The definitions of the above distributions and
fragmentation functions are consistent with the so-called
-3
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‘‘Trento conventions’’ [40], while opposite in sign with
respect to that used in [38] for the Sivers function. To
optimize statistics, the experimental measurements of the
asymmetries are normally presented after integrating over
the modulus of the hadron’s transverse momentum Ph?.
After integration, the cross section can be written as

d�
dxBdydzhd�h

�
d�UU

dxBdydzh
� sin��h ��S�

d�sivers
UT

dxBdydzh

� sin��h ��S�
d�collins

UT

dxBdydzh
; (4)

where the various differential cross sections will depend on
xB, zh and y. The dependence of the cross sections on the
azimuthal angles results in the azimuthal asymmetries
measured in experiment. The unpolarized cross section is
given by

d�UU
dxBdydzh

�
4��2

ems

Q4

�
1� y�

y2

2

�
xBq�xB�q̂�zh�; (5)

where q�xB� and q̂�zh� are the integrated parton distribution
and fragmentation functions. Here we assume that we can
obtain the integrated parton distribution by integrating over
the transverse momentum in the corresponding TMD par-
ton distribution. This assumption will of course need to be
modified if higher-order corrections are considered [31].
Similarly, we can calculate the polarized cross sections. In
these calculations, we further assume that the final ha-
dron’s transverse momentum is entirely related to the
transverse momentum dependence in the Sivers and
Collins functions. The transverse momentum contributed
by the other factors in the factorized formula (2) will give
some smearing effects which may be viewed as ‘‘subdo-
minant.’’ After this approximation, we can write down the
polarized cross sections as

d�sivers
UT

dxBdydzh
�jS?j

4��2
ems

Q4

�
1�y�

y2

2

�
xBq

�1=2�
T �xB�q̂�zh�;

(6)

d�collins
UT

dxBdydzh
�jS?j

4��2
ems

Q4 �1�y�xB
qT�xB�
q̂�1=2��zh�;

(7)

where 
qT is the integrated transversity distribution func-
tion. q�1=2�

T �xB� and 
q̂�1=2��zh� are defined as

q�1=2�
T �xB� �

Z
d2k?

j ~k?j
M

qT�xB; k?�;


q̂�1=2��zh� �
Z
d2p?

j ~p?j
Mh

qT�zh; p?�:

(8)

The above formulas (4)–(8) will be used in the following
calculations to study the experimental data for the asym-
metries as functions of xB and zh. Before doing so, we need
to set up models for the Collins and Sivers functions.
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We would like to add one more comment before we
proceed. In the derivation of Eq. (6), we have omitted the
transverse momentum dependence of the fragmentation
function, which we referred to as ‘‘subdominant.’’ This
subdominant contribution could become important at small
zh where we cannot neglect the influence of the transverse
momentum in the fragmentation process. For example, for
a typical transverse momentum of the final state hadron of
Ph?  200� 300 MeV, the quark transverse momentum
could be as large as 2� 3 GeV at zh  0:1, much bigger
than the typical value of the intrinsic quark transverse
momentum for the Sivers function, which is of order of a
few hundred MeV. This means that at small zh our approxi-
mation will break down, and the transverse momentum in
the fragmentation function will be important. This effect
will smear out the polarized cross section and suppress the
asymmetry. Indeed, when assuming a Gaussian transverse
momentum dependence for both the distribution and the
fragmentation functions, an additional factor of zh appears,
suppressing the polarized cross section at small zh [38]. As
a consequence, we should be cautious to apply Eq. (6) at
small zh. On the other hand, the above drawback does not
apply to the case of the polarized cross section for the
Collins contribution, Eq. (7), where we omit the transverse
momentum dependence in the distribution. This is because
there is no kinematic enhancement associated with the
intrinsic transverse momentum in the parton distribution,
compared to the fragmentation case.

B. Model for the Sivers functions

There exist by now quite a few model calculations for
the quark Sivers functions in the nucleon [41]. The results
of these vary rather widely. Here, we will instead adopt
simple parametrizations for the Sivers functions and fit
these to the HERMES data. We choose a form that has
only a single free parameter for each flavor; the present
data probably do not yet warrant a more complex form.
Our parametrization is as follows:

u�1=2�
T �x�
u�x�

� Sux�1� x�;
d�1=2�
T �x�
u�x�

� Sdx�1� x�; (9)

where in both equations u�x� is the unpolarized u-quark
distribution. We assume that only the quark Sivers func-
tions are nonzero, and that the antiquark ones vanish. This
assumption will of course likely need to be modified at
small x. In the above parametrization, the factor x on the
right-hand side represents the valence nature of the Sivers
function, whereas the factor �1� x� denotes an expected
suppressed behavior of the function at large x.1
-4
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C. Model for the Collins functions

For the Collins asymmetry, we have two sets of un-
known functions: the transversity distributions and the
Collins fragmentation functions. From the present experi-
mental data on the Collins asymmetries we cannot obtain
constraints on both of them simultaneously.2 Here we
adopt a parametrization for the transversity function [42]
that is based on saturation of the Soffer inequality [43]. We
note that this parametrization represents an upper bound
for the transversity functions for the quarks.

As for the Sivers functions, there have also been several
model calculations for the Collins functions [44], showing
rather wide variations. Again, we will just use a simple
parametrization for the zh dependence of 
q̂�1=2�. The
flavor dependence of the Collins functions is important
since one would like to describe the asymmetries for differ-
ent hadron species. From the theory side, one could get
constraints for the flavor dependence based on momentum
conservation in the fragmentation process: the Schäfer-
Teryaev sum rules [45]. These sum rules state that the
odd-moment (for the intrinsic transverse momentum) of
the Collins function vanishes when the function is summed
over all hadron states. Because the sum rules only involve
the integrals over zh and p? (with a weight p?) of the
Collins functions, one cannot obtain from them more de-
tailed constraints, e.g., for the zh or p? dependences. In the
following we will motivate a simple conjecture for the
Collins functions, based on quark-hadron duality in the
fragmentation process. This will provide us with additional
constraints. The main result is that any quark Collins
fragmentation function is very small when summed over
all final hadrons. For example, the u quark Collins func-
tions to all hadron final states will satisfyX

h


ûh�zh; p?� � O�mu�: (10)

The above equation is motivated as follows. The Collins
function is defined as

�ijpj?
Mh


q̂h�zh;p?��
n�

3z

Z d��
2�

d2 ~b

�2��2
e�i�k

���� ~k?� ~b?�

�
X
X

Trf�5�
��ih0jL��1;0�

� �0�jPhXihPhXj ���; ~b�

�Ly���; ~b;�1�j0ig; (11)

where k� � P�h =zh and ~k? � � ~p?=zh. Here, the final
state hadron has been taken to have a large light-cone
minus momentum component P�h [we remind the reader
2Note, however, that independent information on the Collins
functions is now coming from measurements of hadron-pair
production by the BELLE Collaboration [30]. It is hoped that
combination of these results with those from lepton scattering
would eventually give information on transversity.
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that Ph denotes the momentum of the observed hadron,
while ~p? is the (integrated) transverse momentum that the
hadron acquires in the fragmentation process relative to the
fragmenting parton; see Eq. (2)]. Finally, L is the gauge
link along the light-cone direction conjugate to Ph. Here,
Now, if we sum over all hadrons in the above Collins
fragmentation functions, the intermediate hadronic states
can be replaced by a quark or a quark plus gluons (or
quark-antiquark pairs) using quark-hadron duality argu-
ments. We then get the following equation:

X
h

�ijpj?
Mh


q̂h�zh; p?� �
n�

3z

Z d��

2�
d2 ~b

�2��2
e�i�k

���� ~k?� ~b?�

�
X
X

Trf�5�
��ih0jL��1; 0�

�  �0�jPqXihPqXj ���; ~b�

�Ly���; ~b;�1�j0ig; (12)

whose validity rests on the argument of quark-hadron dual-
ity for the fragmentation process. Duality-breaking effects
will somewhat modify the above equation. The right-hand
side of Eq. (12) may be viewed as a quark Collins frag-
mentation function into a quark (or antiquark/gluon) state.
The helicity-flip required for a nonvanishing Collins func-
tion is then possible because of a finite quark mass. Thus,
we approximately expectX

h


q̂h�zh; p?� � O�mq�  0: (13)

If we further assume that the fragmentation functions for u
and d quarks to strange mesons are suppressed relative to
those into pions, we can have even stronger constraints for
the pion Collins functions:


q̂�
�
�zh; p?� � 
q̂

���zh; p?� � 
q̂
�0
�zh; p?�  0; (14)

where q represents any flavor of u,d quarks and their
antiquarks. Further simplification of the above equation
can be derived by considering isospin and charge symme-
try relations between the different fragmentation functions.
For example, we will have the following relations,


û�
�
� 
d̂�

�

� 
 �̂d
��
� 
 �̂u�

�
� 
q̂�fav


d̂�
�

� 
û�
�
� 
 �̂u�

�
� 
 �̂d

��
� 
q̂�unfav


û�
0
� 
d̂�

0

� 
 �̂d
�0

� 
 �̂u�
0
�

1

2
�
q̂�fav � 
q̂

�
unfav	:

(15)

Here 
q̂�fav and 
q̂�unfav represent the ‘‘favored’’ (in the
sense that the leading Fock state of the hadron contains
the parent quark flavor) and ‘‘unfavored’’ (where it does
not contain it) fragmentation functions, respectively.
Substituting the above relations into Eq. (14), we will
obtain
-5
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q̂�fav � 
q̂
�
unfav  0; (16)

which means that the unfavored Collins function is ap-
proximately equal to the favored one with opposite sign.
This result is counter to the usual notion in the literature
that the favored fragmentation functions should be much
larger than the unfavored ones. It of course crucially de-
pends on the validity of the approximations made in the
above derivation and will be subject to some corrections.
We note, however, that this observation has also support
from a string model description for the Collins fragmenta-
tion function [46]. As a test, we will treat in the following
the favored and unfavored Collins functions free from the
constraint (16), and fit them to the data to see if they
naturally satisfy the above relation or not. To parametrize
the Collins functions, we use the following two sets of
functional forms:

set I: 
q̂��1=2�
fav �z� � Cfz�1� z�û�

�
�z�;


q̂��1=2�
unfav �z� � Cuz�1� z�û�

�
�z�;

set II: 
q̂��1=2�
fav �z� � Cfz�1� z�û

���z�;


q̂��1=2�
unfav �z� � Cuz�1� z�d̂

���z�:

(17)

The z factor in these parametrizations represents the van-
ishing of the Collins function at small z, and the �1� z�
factor follows arguments made in [20]. The difference
between these two sets is that for set I we parametrize
both favored and unfavored Collins functions in terms of
the favored unpolarized quark fragmentation function,
while for set II we parametrize the unfavored Collins
function using the unfavored unpolarized quark fragmen-
tation function. Set I is inspired by the constraint of
Eq. (16); note that this ansatz is expected to violate the
positivity constraints at very large zh. On the other hand,
set II respects the positivity constraints, provided jCf;uj �
4. In the following, we will fit the HERMES data with these
two sets of parametrizations.

D. Comparison with SIDIS data

We will now calculate the Collins and Sivers asymme-
tries using the functions specified above, and fit the free
parameters to the new HERMES data on the Collins and
Sivers asymmetries [10]. Here we will use Q2 �
2:41 GeV2, which is the average for the HERMES kine-
matics. We choose � � Q in the unpolarized parton dis-
tribution and fragmentation functions. We will then
compare our fit results to the recent measurements by
COMPASS [12]. For the fitting, we use the CERNLIB
MINUIT routine [47].

As a function of xB, the Sivers asymmetry can be calcu-
lated from the following formula:

AN�xB� � �

R
dzhdy

d�sivers
UT

dxBdydzhR
dzhdy

d�UU
dxBdydzh

; (18)
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where the minus sign results from the minus sign in the
polarized differential cross section in Eq. (4). Since the y
integral is the same for the numerator and denominator, it
cancels out. Moreover, the integral over zh can be factored
out as a consequence of the approximations that led to
Eqs. (5) and (6), and the Sivers asymmetry will be propor-
tional just to the ratio of the Sivers functions over the
unpolarized quark distributions, summed appropriately
over flavors.

The Sivers asymmetry as a function of zh can be calcu-
lated similarly. In Fig. 1, we show the results of our fit of
the Sivers asymmetries for �� and �� to the HERMES
data [10]. For the two free parameters the fit gives

Su � �0:81� 0:07; Sd � 1:86� 0:28; (19)

with 2=d:o:f  1:2. The band in each plot of Fig. 1
corresponds to a 1-� error in the determined parameters.
One can see that the u quark Sivers function appears
somewhat better constrained by the data than the d quark
one. This is readily understood from the fact that u quarks
in DIS enter with the charge factor 4=9, so that in scattering
off a proton target the u quark distribution is particularly
selected. Another feature is that the d Sivers function
comes out larger (by about a factor of 2) than the u quark
one, and with opposite sign. This behavior is quite different
from model calculations [41]. The result is due to the fact
that the HERMES Sivers asymmetry for �� is much
smaller than that for ��. Theoretically, however, �� pro-
duction should also have a significant contribution from u
quarks, because one finds û�

�
 0:6û�

�
for the fragmen-

tation functions when integrated over the experimentally
relevant region 0:2< z< 0:7. To obtain a much smaller
asymmetry for �� than for ��, there then have to be fairly
strong cancellations between the u and d quark Sivers
functions. We note that the signs we find for our Sivers
functions are consistent with expectations in [29], where
they were qualitatively related to the opposites of the quark
contributions to the proton anomalous magnetic moment.

Figure 2 shows predictions for the �0 Sivers asymme-
tries as functions of xB and zh, based on our fits for the
Sivers functions. We note that our prediction for the �0

asymmetry is nearly independent of zh. This is because the
u and d quark fragmentation functions for �0 are the same,
and because in our approximation the distribution and
fragmentation functions are decoupled. However, we
have to keep in mind that this decoupling might break
down at small zh, as we discussed before. This could be
tested by future HERMES data.

In [37,38], earlier HERMES results [9] for the Sivers
asymmetries were fitted. The methods somewhat differed
from ours. In [38], a particular transverse momentum
dependence is assumed for the Sivers functions and the
unpolarized quark distribution and fragmentation func-
tions. With more free parameters the experimental data
are fitted equally well, and the u and d valence Sivers
-6
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FIG. 1 (color online). Sivers SSA fit to the HERMES data [10]; see text. The bands correspond to the 1-� error of the fitted
parameters. Note that the data have not yet been corrected for acceptance and smearing.
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functions are obtained from the fit. In [37], the asymme-
tries weighted with the transverse momentum of the hadron
were used for the fit. Both fits find a large d quark Sivers
function with opposite sign relative to the u-quark one. We
have also checked that our fit results for the Sivers func-
tions are consistent with these fits within the current large
uncertainties, where we notice that the Sivers function in
[38] has an opposite sign compared to ours and to the
‘‘Trento conventions’’ [40].

The COMPASS Collaboration also has measured the
Sivers asymmetry [12], separately for positively and nega-
tively charged hadrons, produced off a deuteron target. To
simplify the comparison with their data, we assume that the
leading hadrons are mostly pions. We calculate the Sivers
asymmetries for �� and �� in the kinematic region of the
COMPASS experiment, using the above fitted Sivers func-
0 0.1 0.2 0.3 0.4

0

0.05

0.1

0.15

0.2 0πNSivers A

Bx

FIG. 2 (color online). Predicted Sivers SSA a

054028
tions for u and d quarks, and compare to their data for
leading positive and negative hadrons, respectively. We
show this comparison in Fig. 3. One can see that our
calculations based on fits to the HERMES data are also
consistent with the COMPASS data, within error bars. We
note that for the kinematical region of the COMPASS
experiment, our predicted Sivers asymmetries for a deu-
teron target are very small, except in the large-x valence
region. The smallness of the Sivers asymmetry is again
related to cancellations between u and d contributions,
which for deuterons enter in a different combination than
for a proton target. It will be very interesting to check these
predictions with future COMPASS data for a proton target.
Thanks to the higher Q2, such data would also help in
confirming the leading-twist nature of the Sivers and
Collins asymmetries.
0.2 0.3 0.4 0.5 0.6 0.7
hz

symmetries for �0 production at HERMES.
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FIG. 3 (color online). Sivers asymmetries compared to the COMPASS data [12].
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We next turn to the Collins asymmetry. Here we follow a
similar procedure as we did for the Sivers case above. As
we mentioned earlier, the situation is more complicated
because of the fact the nucleon transversity densities are
currently not known, and we need to resort to a model or
ansatz for the latter. As described above, we will use the
parametrizations for the quark transversity distributions of
[42], which represent upper bounds for the densities. We
will fit to the HERMES data using the two sets of simple
parametrizations for favored and unfavored Collins func-
tions given in Eq. (17).

The asymmetry as a function of xB is calculated from the
formula

AhN�xB���

P
q�u;d

e2
q
q̂

�1=2�h
R
dy��1�y�=x2

By
2	xB
qT�xB�

P
q�u;d; �u; �d

e2
qq̂

h
R
dy��1�y�y2=2�=x2

By
2	xBq�xB�

;

(20)

where again the minus sign comes from the sign in the
polarized differential cross section, Eq. (4). 
q̂�1=2�h and q̂h

represent the fragmentation functions integrated over the
accessed region in zh. Kinematic cuts impose a correlation
between xB and y, and the integral over y will depend on
xB. In the experimental analysis, the data for the Collins
asymmetries are presented in two different ways. One is to
give results in terms of the virtual-photon asymmetry,
factoring out the term �1� y�=�1� y� y2=2�. The other
way is to give the directly measured lepton-beam asym-
metry. In our calculations, we follow the latter way. We
neglect the contribution of longitudinal photons to the
unpolarized cross section, which HERMES has considered
054028
in the analysis of the virtual-photon asymmetries [10]. In
view of the overall uncertainties, this is a minor effect, as
we have checked by comparing also to the virtual-photon
asymmetries. From the fit to the lepton-beam asymmetry
data, we get the two fit parameters as follows:

Set I : Cf � �0:29� 0:04; Cu � 0:33� 0:04; (21)

Set II : Cf � �0:29� 0:02; Cu � 0:56� 0:07; (22)

with 2=d:o:f:  0:8�0:7� for the set I and set II parame-
trizations, respectively. The fit results are shown in Figs. 4
and 5, compared to the HERMES data. Both fits are of the
same quality.

In Figs. 6 and 7, we plot the fitted favored and unfavored
Collins functions (times z) for sets I and II, respectively.
Note that we multiply the favored ones by ��1� to compare
their magnitudes. For comparison, we also show the cor-
responding unpolarized quark fragmentation functions
[36]. It is evident that the two sets of Collins functions
indeed both satisfy the positivity constraints. The equal
quality of the fits obtained for sets I and II implies that the
current experimental data neither necessarily support the
constraints we derived in Eq. (16), nor do they rule them
out. However, from both fits we indeed find that in a quite
large range of zh the unfavored Collins function has the
same size as that of the favored one with opposite sign. A
similar conclusion was obtained from a fit to this asym-
metry using the transversity functions calculated in the
chiral quark model [39]. We hope that higher-statistics
data will become available in the near future that will
test the relations.
-8
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FIG. 4 (color online). Same as Fig. 1 for the Collins asymmetries, using the set I parametrization of the Collins functions. The data
[10] and the theory curves are for the so-called lepton-beam asymmetries. Note that the data have not yet been corrected for acceptance
and smearing.
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Figures 8 and 9 show predictions for the �0 Collins
asymmetries as functions of xB and zh, based on our fits
for the Collins functions. From these plots, we find that the
asymmetries are very small for both sets of the Collins
functions, because of strong cancellations between the
contributions from favored and unfavored Collins func-
tions. We note that preliminary data from HERMES indeed
indicate that the�0 asymmetry is consistent with zero [48].
0
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0.1 +πNCollins A

0 0.1 0.2 0.3 0.4-0.15

-0.1

-0.05

-0

0.05

Bx
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FIG. 5 (color online). Same as Fig. 4, for the se

054028
Higher-statistics data on this will be highly interesting for
testing the above conclusions.

As before, we also compare our fit to the COMPASS
measurements [12] for the Collins asymmetries, where
only the virtual-photon asymmetries are presented. We
also note that the convention for the Collins asymmetry
used by the COMPASS Collaboration is different from that
used by HERMES. In our calculations, we have made the
HERMES PRELIMINARY
(not corrected for acceptance and smearing)

0.2 0.3 0.4 0.5 0.6 0.7
hz

t II parametrizations for the Collins functions.

-9



0 0.2 0.4 0.6 0.8 1

0

0.02

0.04

0.06

Favored

Unfavored
Collins F.F.

z

FIG. 6 (color online). Set I �21� � favored and unfavored
Collins fragmentation functions. Also shown are the unpolarized
quark fragmentation functions from Kretzer’s parametrizations.
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FIG. 7 (color online). Same as Fig. 6 for the set II Collins
fragmentation functions.
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relevant modifications in order to compare with the
COMPASS data. We show these comparisons in Figs. 10
and 11 for our set I and II Collins functions, respectively.
As for the Sivers case above, there is good consistency. The
0 0.1 0.2 0.3 0.4

0

0.05

0.1 0πNCollins A

Bx

FIG. 8 (color online). Predicted Collins SSA asymm

0 0.1 0.2 0.3 0.4

0

0.05

0.1 0πNCollins A

Bx

FIG. 9 (color online). Predicted Collins SSA asymm

054028
overall asymmetries are again small because of the deu-
teron target used, and because the assumed transversity sea
quark distributions are small. Future high-statistics
COMPASS data for a proton target would be highly
interesting.
0.2 0.3 0.4 0.5 0.6 0.7
hz

etries for �0 production at HERMES with set I.

0.2 0.3 0.4 0.5 0.6 0.7
hz

etries for �0 production at HERMES with set II.
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FIG. 10 (color online). Collins asymmetry compared with COMPASS data [12] for set I of our fitted Collins functions.
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FIG. 11 (color online). Same as Fig. 10, but for set II of Collins fragmentation functions.
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III. SINGLE-TRANSVERSE-SPIN ASYMMETRIES
AT HADRON COLLIDERS

An important issue in the study of hard-scattering pro-
cesses is the universality of the nonperturbative objects: the
parton distributions and fragmentation functions. In the
case of single-spin asymmetries, if universality holds, the
Sivers functions obtained from, for example, SIDIS can be
used to predict single-spin asymmetries in pp or �pp scat-
tering. The universality between different classes of pro-
054028
cesses is a complicated and interesting issue that has
attracted much interest recently [32,34,49,50]. As we de-
scribed earlier, it was found that, while strict universality is
violated already when going from SIDIS to the Drell-Yan
process, the Sivers functions for the two processes differ
only by a sign. It is therefore possible to use the fitted
Sivers function from the last section and to predict the
Sivers single-spin asymmetry for the Drell-Yan process at
hadron colliders. More complicated processes in hadronic
scattering, such as the SSA in dijet angular correlations
-11
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[33], are not yet completely understood at present, as far as
factorization and universality are concerned. Progress has
been made recently [34]; it appears that similarly to the
Drell-Yan process universality is violated only by terms
that are calculable from the color structure of the partonic
scattering and hence may be taken into account in phe-
nomenological analyses. Below, we will also give esti-
mates for Sivers contributions to SSAs in dijet
correlations and in jet-plus-photon correlations at RHIC,
using the Sivers functions of Sec. II, and the usual unpo-
larized hard-scattering functions. In the light of Ref. [34],
we expect that our estimates will likely need to be revised
once these reactions will be completely understood in the
context of factorization and universality, to take into ac-
count the appropriate factors embodying the nonuniversal-
ity of the Sivers functions. We shall briefly return to this
point below.

A. Drell-Yan dimuon production p"p! ����X

In this section, we will calculate the Sivers single-spin
asymmetry for the Drell-Yan process at RHIC, using the fit
result of the last section [see Eqs. (9) and (19)]. As just
discussed, one has

qDYT � �qDIST : (23)

After integrating out the lepton angles in the rest frame
of the virtual photon, we obtain the following differential
cross section for the Drell-Yan process:

d�

dM2dyd2q?
�

4�2�

3sM2 �W0�x1; x2;M
2; q?�

� sin�WTU�x1; x2;M2; q?�	; (24)

where M is the invariant mass of the lepton pair, q? the
virtual photon’s transverse momentum, and y its rapidity.
� � ��� ��S is the difference between the azimuthal
angles of the virtual photon and the transverse polarization
vector in a frame where the polarized hadron is moving in
the z direction. At low transverse momentum, x1 and x2 are
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FIG. 12 (color online). Sivers asymmetries for the Drell-Yan proces
mass M.
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related to the mass and rapidity through x1 � M=
���
s
p
ey and

x2 � M=
���
s
p
e�y where s is the hadronic center-of-mass

energy squared. According to the factorization theorem
[31], the hadronic tensors W0 and WUT can be factorized
into the TMD parton distributions, and soft and hard-
scattering factors. Again, neglecting the soft factor and
using the Born expression for the hard part, we obtain
simple expressions for the tensors:

W0 �
X
q

e2
q

3

Z
d2k1?d2k2?q�x1; k1?�q�x1; k2?�

� 
�2�� ~k1? � ~k2? � ~q?�;

WTU �
X
q

e2
q

3

Z
d2k1?d2k2?

~k1? � ~̂q?
M

qT�x1; k1?�

� q�x1; k2?�
�2�� ~k1? � ~k2? � ~q?�;

(25)

where qT�x1; k1?� is now the Sivers function for the Drell-
Yan process. A further approximation can be made by
integrating out the transverse momentum j ~q?j, but keeping
the dependence on azimuthal angle. The differential cross
section can then be written as

d�

dM2dyd�
�

4�2�

3sM2 �
~W0�x1; x2;M2�

� sin� ~WTU�x1; x2;M
2�	; (26)

where

~W 0 �
X
q

e2
q

3
q�x1�q�x2�; (27)

and

~W UT �
X
q

e2
q

3
q�1=2�
T �x1�q�x2�: (28)

In Fig. 12, we plot the sin� asymmetries as functions of the
photon rapidity y and the invariant massM. From this plot,
5 6 7 8 9 10M(GeV)

0<y<1
1<y<2
2<y<3

s at RHIC, as functions of virtual-photon rapidity y and invariant
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we see that the Sivers SSA asymmetry for the Drell-Yan
process at RHIC is expected to be sizable for large rapidity,
and should be measurable at RHIC if enough statistics can
be accumulated in transverse-spin running. We note that
the Sivers asymmetry in the Drell-Yan process is also a
particular focus for proposed measurements in polarized
�pp scattering at the planned GSI-FAIR facility [37,51,52].

B. Correlations in p"p! jet1� ~P1?� � jet2� ~P2?� � X

Other interesting observables at hadron colliders from
which one can access the intrinsic transverse momentum
dependence of parton distributions are ‘‘back-to-back’’
correlations between two jets [33,34]. More specifically,
we are interested in situations in which the sum of the two-
jet transverse momenta, ~q? � ~P1? � ~P2? (or a component
or projection thereof), is measured, while both P1? and
P2? individually are large. As for the Drell-Yan process
discussed above, this is usually a small transverse momen-
tum, much smaller than the large scales j ~P1?j  j ~P2?j
characterizing the overall process, and a special factoriza-
tion may apply. Let us first, however, consider the cross
section integrated over ~q?. Here, collinear factorization
applies, and the dijet cross section has the parton-model
expression [53],

d�

dy1dy2dP2
?

�
X
ab

xafa�xa�xbfb�xb�
d�̂
dt̂
�ab! cd�; (29)

where d�̂=dt̂ is the differential cross section for the par-
tonic process ab! cd, with fa;b the appropriate parton
distribution functions. We have defined the transverse mo-
mentum P? � j ~P1?j � j ~P2?j, and y1 and y2 denote the
rapidities of the two jets. The kinematics are as follows:

xa�
P?���
s
p �ey1�ey2�; xb�

P?���
s
p �e�y1�e�y2�; ŝ�xaxbs;

t̂��P2
?�e

y2�y1�1�; û��P2
?�e

y1�y2�1�: (30)

Here, ŝ, t̂, and û are the usual partonic Mandelstam vari-
ables appearing in the partonic cross sections for the re-
actions ab! cd, namely ŝ � �pa � pb�2, t̂ � �pa � pc�2,
û � �pa � pd�

2, in obvious notation of the partonic mo-
menta. The leading order contributions produce the dijet
pair exactly balanced, that is back-to-back in the partonic
center-of-mass frame. An imbalance in the transverse di-
rection is generated by higher-order QCD corrections. At
small but nonzero imbalance between the two jets, the
dominant contributions will come from the intrinsic trans-
verse momenta of the initial partons. As a model, we will
generalize the above factorization formula to the case of
small ~q?, in analogy with the SIDIS and Drell-Yan cases
discussed earlier, taking into account the various contribu-
tions to the transverse momentum dependence coming
from the parton distributions and soft factors:
054028
d�

dy1dy2dP2
?d

2 ~q?
�
X
ab

Z
d2k1?d

2k2?d
2�?xafa�xa;k1?�

�xbfb�xb;k2?�Sab!cd��?�Hab!cd�P
2
?�

�
�2�� ~k1?� ~k2?� ~�?� ~q?�; (31)

where Sab!cd is a soft factor for the process ab! cd,
while Hab!cd is the hard part of the reaction, related to
lowest order to d�̂=dt̂. We emphasize the overly simplistic
character of Eq. (31) as it stands. The detailed factorized
form (if it exists) will likely be different; in particular, one
expects an interplay of the color structures of the soft
factors and the hard parts, as found in resummation studies
for jet cross sections [54].

In a similar fashion, we write the Sivers-type contribu-
tion d�TU to the single-polarized cross section,

d�

dy1dy2dP
2
?d

2 ~q?
� d�UU � ~ez � � ~S? � ~̂q?�d�TU; (32)

where ~ez is the unit vector in the z-axis direction. In a
factorized form, we will get

d�TU �
X
ab

Z
d2k1?d2k2?d2�?

~k1? � ~̂q?
M

xaqTa�xa; k1?�

� xbfb�xb; k2?�Sab!cd��?�Hab!cd�P2
?�

� 
�2�� ~k1? � ~k2? � ~�? � ~q?�: (33)

We can further simplify the polarized cross section by
evaluating the expression

~e z � � ~S? � ~̂q?� �
jS?j
jq?j

~ez � � ~̂S? � � ~P1? � ~P2?��


jS?j
jq?j

jP?j�sin�1 � sin�2�

 jS?j
�
Sgn��� �� cos�1

� sin�1
jq?j

2jP?j

�
; (34)

where �1 and �2 are the azimuthal angles of the two jets
relative to the polarization vector ~S?, and � � �2 ��1

the angle between the two-jet transverse momenta. All
these azimuthal angles are defined in a frame that the
polarized proton is moving the z direction. In the above
derivation, we have used the approximations jP1?j 
jP2?j  jP?j and jq?j  jP?jj sin�j, which are valid at
small q? (� is close to �). From the above result, we can
see that there are two terms contributing to the spin asym-
metry: one is with cos�1 and the other with sin�1. The first
term has a Sign function associated, which gives a positive
contribution when � is smaller than � and a negative one
otherwise.

In the above formulas, we did not include any gluon
Sivers function contributions. The gluon Sivers function
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could dominate the asymmetry at central rapidities [33].
Another important issue is the relevant Sudakov suppres-
sions for the asymmetries, which was found to be sizable
for the dijet correlation in the RHIC energy range [33]. In
the following numerical studies, as an order of magnitude
estimate for these asymmetries, we will neglect these
effects, which however should be taken into account in
future more detailed studies.

Following the same procedure that we used for the
Sivers asymmetries in SIDIS and Drell-Yan processes,
we can further simplify the polarized cross section by
integrating out the transverse momentum, but keeping the
azimuthal angle dependence explicit. The differential cross
section then can be written as

2�d�

dy1dy2dP
2
?d�1

�
d�UU

dy1dy2dP
2
?

� cos�1
d��1�TU

dy1dy2dP
2
?

� sin�1
d��2�TU

dy1dy2dP2
?

; (35)

where the unpolarized cross section has been given in
Eq. (29), and the polarized ones read

d��1�TU
dy1dy2dP

2
?

�
X
ab

xaq
�1=2�
Ta �xa�xbfb�xb�

d�̂
dt̂
�ab! cd�;

d��2�TU
dy1dy2dP

2
?

�
M
jP?j

X
ab

xaq
�1�
Ta�xa�xbfb�xb�

d�̂
dt̂
�ab! cd�;

(36)

with the distribution q�1�T defined as

q�1�T �x� �
Z
d2k?

k2
?

2M2 qT�x; k?�: (37)

We note that the second term in the polarized cross section
is power suppressed by M=P?. This suppression is due to
the fact that we have integrated over all intrinsic transverse
momentum. Clearly, this term is beyond the approxima-
tions we have made, and we cannot reliably predict it since
there will be other sources of power-suppressed contribu-
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FIG. 13 (color online). Sivers asymmetries for dijet correlations at

054028
tions, for example, generated within the Qiu-Sterman
mechanism [14]. Since it is anyway expected to be small,
we will discard it in the following. Employing the same set
of Sivers functions that we used for our predictions for the
Drell-Yan process above, we then find the results for AN �
d��1�TU=d�UU shown in Fig. 13. We show the asymmetries
as functions of the rapidity of jet ‘‘1,’’ and of the jet
transverse momentum P?. One can see that the SSA for
the dijet correlation can become very large, in particular, in
the forward rapidity region. Asymmetries of this size
should be relatively easily measurable in the future. We
also note that the asymmetry has opposite sign compared to
that for Drell-Yan dimuon production discussed earlier.
The reason for this is that u-quark contributions dominate
in Drell-Yan, thanks to their large electromagnetic charge,
whereas for dijets, d-quark contributions are not
charge suppressed and in fact dominate, keeping in mind
that the analysis of the HERMES data appears to favor a
large d quark Sivers function. The opposite signs of the
Sivers up and down-quark distributions we found in
Eq. (19) then explains the opposite signs of the spin
asymmetries for Drell-Yan and dijets. We note that if the
two jets are within the central rapidity region, our predic-
tion for the asymmetry is much smaller. As mentioned
above, the gluon Sivers function could dominate the asym-
metry in this region [33].

We stress again that if factorization can be shown for the
Sivers SSA in dijet production, it is likely that the structure
of the resulting expression may differ from the one we use.
In particular, there will be calculable factors that represent
the nonuniversality of the Sivers functions related to the
process dependence of the gauge links, leading effectively
to modified partonic hard-scattering functions [34], at vari-
ance with our use of the standard unpolarized ones. As a
test, we have also used the modified partonic cross sections
derived in [34]. We find relatively small changes in the
results we obtain. Unfortunately, however, this is not really
representative: the cross sections given in [34] are only for
the quark-(anti)quark scattering channels, whereas the
dominant contribution in our calculation mostly comes
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RHIC, as functions of rapidity y1 and transverse momentum P?.
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from qg scattering (with the gluon from the unpolarized
proton). It remains to be seen to what extent eventually our
predictions will change, once the process dependence for
the Sivers functions in dijet correlations is completely
understood.

We finally note that it would also be interesting—in
particular, for measurements with the PHENIX detector—
to study correlations between hadrons in opposite jets.
Such dihadron correlations could serve as surrogates for
the dijet correlations we have discussed above. In this case
there will, however, also be contributions from the Collins
mechanism.

C. Jet-photon correlations in p"p! jet� �� X

It is straightforward to extend the analysis of dijet cor-
relations discussed above to the case of jet-plus-photon
correlations. We simply need to implement the cross sec-
tions for the appropriate Born-level partonic scatterings
q �q! �g and qg! �q in Eq. (36). Although events
with a photon suffer from smaller rates than two-jet events,
they would offer additional information on the Sivers
functions. It is also likely that proofs of factorization are
more easily obtained here, since the reactions q �q! �g
and qg! �q each have only a single color structure.
Figure 14 shows results for the single-spin asymmetry for
jet-photon correlations for the same kinematics as for the
dijet case in Fig. 13. Variables with the subscript ‘‘1’’
denote photon variables. Again, sizable asymmetries are
seen, in particular, at forward rapidities. The asymmetries
are somewhat smaller than the ones we found for dijets.
This is a result of cancellations between our Sivers u and d
functions, due to the larger weighting factor 4=9 that the
u-quark contributions now have for the prompt-photon
case.
IV. CONCLUSIONS

In this paper we have studied single-transverse-spin
asymmetries in semi-inclusive deep inelastic scattering
054028
and at hadron colliders. We have analyzed the Sivers and
Collins contributions to the spin asymmetry in SIDIS, and
fitted simple parametrizations of the corresponding func-
tions to recent data from HERMES. These fits work well
and also turn out to be consistent with COMPASS mea-
surements of the asymmetries in DIS off a deuteron target.
For the Sivers functions, we found dominance of the down-
quark distribution over the up-quark one. The Sivers-d
density in SIDIS turns out to be positive, while the
u-quark distribution comes out negative. Concerning the
Collins functions, we have found that current data do not
yet pin down the relative size of favored and unfavored
functions, which is also due to the fact that the transversity
densities are not yet known. We have also given theoretical
arguments that the favored and unfavored Collins functions
could be of similar size, and of opposite sign.

We have then investigated Sivers-type single-spin asym-
metries at hadron colliders, focusing on the Drell-Yan
process and on dijet and jet-photon correlations, all in
circumstances where there is a small measured transverse
momentum, but the process is overall characterized by a
large scale. Using the Sivers functions obtained from the
analysis of the HERMES data, we have made predictions
for single-spin asymmetries for these processes. We find
relatively large asymmetries, in particular, at forward rap-
idities of the observed final state. Such asymmetries should
be measurable with dedicated efforts at RHIC. Besides the
additional valuable information they would give on the
Sivers functions and therefore on the structure of the
nucleon, they would also provide a test of our theoretical
understanding of ‘‘naively time-reversal-odd’’ phenomena
in QCD. The crucial issues in this are the factorization of
the corresponding cross sections, and the universality of
the Sivers functions, on both of which further theoretical
work is required.
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Note added.—Upon completion of this paper, we no-
ticed the preprint [55] where also the Sivers functions were
fitted to the new HERMES and COMPASS data, and
predictions for SSAs in the Drell-Yan process were
made. As far as we can see, our results are in qualitative
agreement with those of [55], keeping in mind that their
sign convention for the Sivers function is opposite to ours
and to that in the ‘‘Trento conventions.’’
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