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Virtual QCD corrections to Higgs boson plus four parton processes
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We report on the calculation of virtual processes contributing to the production of a Higgs boson and
two jets in hadron-hadron collisions. The coupling of the Higgs boson to gluons, via a virtual loop of top
quarks, is treated using an effective theory, valid in the large top quark mass limit. The calculation is
performed by evaluating one-loop diagrams in the effective theory. The primary method of calculation is a
numerical evaluation of the virtual amplitudes as a Laurent series in D� 4, where D is the dimensionality
of space-time. For the cases H ! q �qq �q and H ! q �qq0 �q0 we confirm the numerical results by an explicit
analytic calculation.
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I. INTRODUCTION

In this paper we study the production of a standard
model Higgs boson in association with two jets. This is
one of the most promising discovery channels at the LHC,
especially for a Higgs boson with a mass in the range
110 GeV<MH < 180 GeV. At Born level there are two
classes of processes which contribute, as illustrated in
Fig. 1.

In Fig. 1(a), the Higgs is produced via vector boson
fusion, while in Fig. 1(b) the coupling of the Higgs boson
to gluons is mediated by a top quark loop. In the limit in
which the mass of the top quark tends to infinity the
coupling can be treated using an effective theory as de-
scribed below. We shall refer to this process as the gluon
fusion process. Notice that the external gluon lines in
Fig. 1(b) could as well be replaced by quarks.

The final aim of this study is the calculation of the Higgs
�2-jet rate, at next-to-leading order (NLO), where the
Higgs is produced using the effective coupling to gluons,

L eff �
1

4
A�1� ��HGa

��G
a��: (1)

In Eq. (1),Ga
�� is the field strength of the gluon field andH

is the Higgs boson field. The effective coupling A is given
by

A �
g2

12�2v
; (2)

where g is the bare strong coupling and v is the vacuum
expectation value parameter, v2 � �GF

���
2
p
��1 �

�246 GeV�2. The finite O�g2) correction to the effective
operator has been calculated [1,2]

� �
11g2

16�2 : (3)

The full NLO result will require the evaluation of the
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virtual corrections to the Higgs� 4 parton processes,
which are the subject of this paper, the calculation of the
tree graph rates from the Higgs� 5 partons amplitudes
already given in Refs. [3–5] and the calculation of a set of
subtraction terms. The subtractions remove singularities
present in the real emission diagrams in the regions of soft
and collinear emission. After integration over the momen-
tum of the unobserved parton they are added back to the
virtual emission diagrams and cancel the singularities in
those virtual terms.

We believe this calculation would be a useful addition to
the literature for several reasons. First, the effective
Lagrangian approach appears to be valid for light Higgs
boson mass if the transverse momentum of the associated
jets is less than the top quark mass [6,7]. Second, this
process constitutes a ‘‘background‘‘ to the experimentally
interesting vector boson fusion process, Fig. 1(a). A com-
plete NLO calculation will improve knowledge of this
‘‘background‘‘ process. In addition, because the vector
boson fusion process has a well-determined normalization,
it is one of the most accurate sources of information about
the couplings of the Higgs boson at the LHC [8]. An
uncontrolled background from gluon fusion process could
compromise that measurement. For a comprehensive re-
view of standard model Higgs physics, see Ref. [9].
FIG. 1 (color online). (a) Lowest order process for vector
boson fusion. (b) Example of a diagram contributing to the
gluon fusion process in association with two jets.
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FIG. 2 (color online). (a) Lowest order process for H !
q �qq0 �q0. (b) Second diagram for identical quark process H !
q �qq �q.
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Note that the process calculated in this paper is distin-
guished from the vector boson process, Fig. 1(a), by the
presence of colored particles exchanged in the t-channel.
The exchange of color charge generates extra jet activity in
the central region, allowing discrimination against this
process by a jet veto. Although the efficacy of such a
veto will finally have to be determined by experiment, it
will still be interesting to see how this works at the parton
level with a full NLO calculation.1

In the large top quark mass limit, virtual corrections
have been considered in the effective theory by previous
authors. Loop corrections to the process H ! gg are con-
sidered at one-loop level in Ref. [1] and at two-loop level in
Refs. [10,11]. The results for the processes H ! ggg and
H ! q �qg are given in Refs. [12,13]. In the following we
shall describe results for the virtual corrections to the
processes

0 0

(A)
1To a
Howeve
effects
H ! q �qq �q ; (4)
(B)
 H ! q �qq �q; (5)
(C)
 H ! q �qgg; (6)
(D)
 H ! gggg; (7)
using the effective theory, Eq. (1).
II. LOWEST ORDER PROCESS

A. H! q �qq0 �q0

We first perform the calculation of the matrix element
for the process involving two distinct flavors of massless
quarks, q and q0, process A,

H ! q�k1� � �q�k2� � q
0�k3� � �q0�k4�: (8)

At Born level, only the diagram in Fig. 2(a) contributes.
The color expansion of the amplitude can be written as

MA
0 �k1; k2; k3; k4� �

�
�i1i4�

i3
i2
�

1

Nc
�i1i2�

i3
i4

�
a�0��1; 2; 3; 4�;

(9)

where ij denotes the color index of the jth quark and we
have introduced the notation

a�0��1; 2; 3; 4� � a�0��k1; h1; k2; h2; k3; h3; k4; h4�; (10)

where ki and hi denote the momentum and the helicity of
quark i. The result for the squared matrix element summed
over the spins and colors of the final state quarks and
antiquarks is then
limited extent this has been looked at in Ref. [3].
r in a tree graph calculation one cannot look at the

of finite jet size or of the central jet veto.
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A0�k1; k2; k3; k4� �
X
jMA

0 �k1; k2; k3; k4�j
2

� g4A2V
�
�s13s24 � s23s14�

2 � s2
12s

2
34

s2
34s

2
12

�
�s13 � s24�

2 � �s14 � s23�
2

2s34s12

�
: (11)

The number of colors Nc enters as V � N2
c � 1, so, for the

case of SU(3), we have that V � 8. The Lorentz invariants
are defined as sij � �ki � kj�2 � 2ki � kj. The momentum
of the Higgs can be eliminated in terms of the four massless
momenta, pH � �k1 � k2 � k3 � k4, so that

M2
H � s12 � s13 � s14 � s23 � s24 � s34: (12)
B. H! q �qq �q

In the case of massless quarks of identical flavor, process
B,

H ! q�k1� � �q�k2� � q�k3� � �q�k4�; (13)

the Born amplitude squared is determined by the two
diagrams, shown in Fig. 2(a) and 2(b), which differ by
the exchange of the final state antiquarks. The color ex-
pansion of the amplitude can be written as

MB
0 �k1; k2; k3; k4� �

�
�i1i4�

i3
i2
�

1

Nc
�i1i2�

i3
i4

�
a�0��1; 2; 3; 4�

�

�
�i1i2�

i3
i4
�

1

Nc
�i1i4�

i3
i2

�
a�0��1; 4; 3; 2�

� MA
0 �k1; k2; k3; k4� �M

A
0 �k1; k4; k3; k2�:

(14)

The result for the matrix element squared, summed over
the spins and colors of the final state quarks and antiquarks
is given by

B0�k1; k2; k3; k4� �
X
jMB

0 �k1; k2; k3; k4�j
2

� A0�k1; k2; k3; k4� � A0�k1; k4; k3; k2�

� B00�k1; k2; k3; k4�; (15)

where the interference term is defined as
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B00�k1; k2; k3; k4� � �2
X

Re�MA
0 �k1; k2; k3; k4�

?

	MA
0 �k1; k4; k3; k2�
: (16)

The result for the lowest order interference term B00 is given
by,

B00�k1; k2; k3; k4� � g4A2Cff��s13 � s24�
2�s12s34 � s14s23

� s13s24� � 2�s13s24 � s14s23 � s12s34�

	 �s12s34 � s13s24 � s14s23�
g

	
1

s12s14s23s34
; (17)

with Cf � �N2
c � 1�=�2Nc� � 4=3.

C. H! q �qgg

We now turn to process C,

H ! q�k1� � �q�k2� � g�k3� � g�k4�: (18)

At lowest order the amplitude is given by

MC
0 � �T

a3Ta4�i1i2c
�0�
1 �1; 2; 3; 4�

� �Ta4Ta3�i1i2c
�0�
2 �1; 2; 3; 4�; (19)

where a3; a4 are the color indices of the gluons and i1; i2
are the color indices of the quarks. As before we have
introduced notation of the form

c�0�i �1; 2; 3; 4� � c�0�i �k1; h1; k2; h2; k3; "3; k4; "4�; (20)

where "i is the polarization vector of gluon i and
c�0�2 �1; 2; 3; 4� � c�0�1 �1; 2; 4; 3�. Explicit forms for the three
independent helicity amplitudes can be found, for example,
in Refs. [3,14]. The former reference also contains explicit
results for the amplitude squared.

D. H! gggg

Lastly we consider the matrix element for the process D,

H ! g�k1� � g�k2� � g�k3� � g�k4�: (21)

At lowest order the four gluon matrix element has the
structure

MD
0 �

X
�2S4=Z4

tr�Ta��1�Ta��2�Ta��3�Ta��4� �

	 d�0�1 ���1�; ��2�; ��3�; ��4��; (22)

where the sum runs over the six noncyclic permutations
and we have introduced the notation

di�1; 2; 3; 4� � di�k1; "1; k2; "2; k3; "3; k4; "4�: (23)

The partial amplitudes satisfy the relations [15,16]
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d�0�i �1; 2; 3; 4� � d�0�i �4; 1; 2; 3� cyclicity; (24)

d�0�i �1; 2; 3; 4� � d�0�i �4; 3; 2; 1� reflection; (25)

d�0�i �1; 2; 3; 4� � d
�0�
i �2; 1; 3; 4� � d

�0�
i �2; 3; 1; 4� � 0

dual Ward identity;
(26)

so that at Born level for fixed helicities there are only two
independent amplitudes. Explicit expressions for the he-
licity amplitudes can be found, for example, in
Refs. [3,14]. The former reference also contains explicit
results for the amplitude squared. Equations (24) and (25)
continue to be valid beyond leading order [17].
III. HIGHER ORDER PROCESSES

In order to control the divergences which will occur at
higher order, we will continue the dimensionality of space-
time,D � 4� 2�. Within the context of dimensional regu-
larization there remain choices of the dimensionality of
internal and external gluons which are needed to com-
pletely specify the scheme. The most commonly adopted
choices are the conventional dimensional regularization,
(CDR), the ’t Hooft-Veltman scheme, (HV) [18], and the
four-dimensional helicity scheme, (FDH) [19,20]. In the
CDR scheme one uniformly continues all momenta and
polarization vectors to D dimensions. The HV scheme
differs in the treatment of the external states, which remain
four-dimensional. Finally in the FDH scheme all states are
four-dimensional, and only the internal loop momenta are
continued to D dimensions.

Since we are interested in a numerical evaluation of
helicity amplitudes, it is preferable to consider the external
quarks and gluons in four dimensions, with two physical
helicity states. We choose to work in the ’t Hooft-Veltman
scheme. The relationship of the CDR, HV and FDH regu-
larization schemes has been presented in Refs. [21,22]. It is
therefore straightforward to translate our results to another
scheme. The details of the translation between the HV and
FDH schemes are provided in Sec. IV.

A. Distinct quarks

At next-to-leading order in the perturbative expansion,
30 virtual diagrams contribute to the amplitude given in
Eq. (8). At one-loop level the amplitude can be decom-
posed into two independent color structures,

MA
1 �k1; k2; k3; k4� �

�
�i1i4�

i3
i2
�

1

Nc
�i1i2�

i3
i4

�
a�1�1 �1; 2; 3; 4�

� �i1i2�
i3
i4
a�1�2 �1; 2; 3; 4�: (27)

The color subamplitude a�1�2 does not contribute at next-to-
leading order because the interference with the color struc-
ture of the Born amplitude vanishes.
-3



R. K. ELLIS, W. T. GIELE, AND G. ZANDERIGHI PHYSICAL REVIEW D 72, 054018 (2005)
Before renormalization we find for the squared matrix element, summed over spin and colors of the final state

A1�k1; k2; k3; k4� �
X
�jMA

0 �M
A
1 j

2 � jMA
1 j

2�

� A0�k1; k2; k3; k4�

�
1�

g2

8�2 Y
A�k1; k2; k3; k4�

�
� A2V

g6

8�2 �X
A�k1; k2; k3; k4�

� XA�k3; k4; k1; k2� � X
A�k2; k1; k4; k3� � X

A�k4; k3; k2; k1�
 �O���: (28)

All ultraviolet and infrared singularities are in the functions Y�k1; k2; k3; k4� given by

YA�k1; k2; k3; k4� � �Nc
c��

2�

�2 ���s14�
�� � ��s23�

��
 �
1

Nc

c��
2�

�2 ���s12�
�� � ��s34�

�� � 2��s13�
�� � 2��s14�

��

� 2��s23�
�� � 2��s24�

���
 �
c��2�

�
�3Cf � b0
���s12�

�� � ��s34�
��
 �

20

9
nf �

152

9
Nc � 16Cf

�
1

Nc
�Ls2me

�1 �s134; s234; s34;M
2
H� � Ls2me

�1 �s123; s124; s12;M
2
H�
 �

2

Nc
�Ls2me
�1 �s123; s134; s13;M

2
H�

� Ls2me
�1 �s124; s234; s24;M

2
H�
 �

�
Nc �

2

Nc

�
�Ls2me

�1 �s124; s134; s14;M
2
H� � Ls2me

�1 �s123; s234; s23;M
2
H�
;

(29)

where

c� � �4���
��1� ���2�1� ��

��1� 2��
�
�4���

��1� ��
�O��3�; (30)

and

b0 �

�
11Nc

3
�

2nf
3

�
: (31)

As usual nf is the number of light flavors and � is the scale introduced to keep the coupling constant dimensionless in D
dimensions.

The finite function XA�k1; k2; k3; k4� is given by

XA�k1; k2; k3; k4� � Ls�1�s12; s13; s123�
2

Nc
f1�k2; k1; k3; k4� � Ls�1�s12; s23; s123�

�
Nc �

2

Nc

�
f1�k1; k2; k3; k4�

�

�
1

Nc
� Nc

�
L1

�
�s123

�s12

�
f2�k1; k2; k3; k4� � NcL0

�
�s123

�s12

�
f3�k1; k2; k3; k4�

�
1

Nc
L0

�
�s123

�s12

�
f4�k1; k2; k3; k4� �

�
�
Nc
2
�

1

Nc

�
L0

�
�s123

�s12

�
f5�k1; k2; k3; k4�

�
1

Nc
L0

�
�s123

�s13

�
f5�k1; k2; k4; k3� � Nc ln

�
�s123

�s12

�
f6�k1; k2; k3; k4� � Nc ln

�
�s123

�s23

�
f7�k1; k2; k3; k4�

� Nc ln
�
�s12

�s14

�
f8�k1; k2; k3; k4� �

1

Nc
ln
�
�s123

�s12

�
f9�k1; k2; k3; k4� �

1

Nc
ln
�
�s123

�s13

�
f10�k1; k2; k3; k4�

�
1

Nc
ln
�
�s12

�s13

�
f11�k1; k2; k3; k4� �

1

Nc
ln
�
�s123

�s23

�
f10�k2; k1; k3; k4� �

1

Nc
ln
�
�s12

�s13

�
f11�k2; k1; k3; k4�

�

�
Nc �

1

Nc

�
f12�k1; k2; k3; k4�: (32)
The special functions coming from the loop integrals,
L0; L1;Ls�1 and Ls2me

�1 are given in Appendix A. The
explicit expression for the kinematic functions fi are given
in Appendix B. We note that the line-reversal symmetry
054018
(1$ 2 and 3$ 4) and the renaming property (1$ 3 and
2$ 4) are manifest in Eq. (28).

The ultraviolet divergences are removed in the
MS-scheme by adding a counterterm Act given by
-4
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Act�k1;k2;k3;k4���2
c�

�
b0

g2

16�2A0�k1;k2;k3;k4�: (33)

Additionally, there is a finite contribution, Afin, coming
from the effective Lagrangian, Eq. (1), which is

Afin�k1; k2; k3; k4� � �A0�k1; k2; k3; k4�; (34)

where � is given in Eq. (3).

B. Identical quarks

In the case of identical quarks, 60 diagrams contribute
the next-to-leading order process, Eq. (13). Before renor-
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malization we find for the squared amplitude, summed
over colors and spins,

B1�k1; k2; k3; k4� �
X
�jMB

0 �M
B
1 j

2 � jMB
1 j

2� (35)

� A1�k1; k2; k3; k4� � A1�k1; k4; k3; k2� � B01�k1; k2; k3; k4�;

(36)

with A1 given in (A1). The result for the interference term
can be written as,
B01�k1; k2; k3; k4� � B00�k1; k2; k3; k4�

�
1�

g2

8�2 Y
B�k1; k2; k3; k4�

�
� A2V

g6

8�2 �X
B�k1; k2; k3; k4� � XB�k3; k2; k1; k4�

� XB�k1; k4; k3; k2� � XB�k3; k4; k1; k2� � XB�k4; k3; k2; k1� � XB�k2; k3; k4; k1�

� XB�k4; k1; k2; k3� � XB�k2; k1; k4; k3�
 �O���; (37)

where the function YB contains all divergent terms

YB�k1; k2; k3; k4� � �
c�Nc�2�

�2 ���s24�
�� � ��s13�

��� �
c��2�

Nc�
2 ���s12�

�� � ��s34�
�� � ��s14�

�� � ��s23�
��

� ��s24�
�� � ��s13�

��
 �
c��

2�

4�
��6Cf � 2b0����s12�

�� � ��s14�
�� � ��s23�

�� � ��s34�
��


�
20nf

9
�

80Nc
9
�

8

Nc
�

1

Nc
�Ls2me

�1 �s134; s234; s34;M
2
H� � Ls2me

�1 �s123; s234; s23;M
2
H�

� Ls2me
�1 �s124; s134; s14;M2

H� � Ls2me
�1 �s123; s124; s12;M2

H�
 � �Nc �
1

Nc
��Ls2me

�1 �s123; s134; s13;M2
H�

� Ls2me
�1 �s124; s234; s24;M

2
H�
: (38)

The finite function XB is given by

XB�k1; k2; k3; k4� � �Ls�1�s12; s13;s123�g1�s12; s13; s14; s23; s24; s34�

�
1�

1

N2
c

�

�Ls�1�s12; s23;s123�g2�s12; s13; s14; s23; s24; s34�
1

N2
c
�L1

�
�s123

�s12

�
g3�s12; s13; s14; s23; s24; s34�

�
1�

1

N2
c

�

�L0

�
�s123

�s12

�
g4�s12; s13; s14; s23; s24; s34��L0

�
�s123

�s12

�
g5�s12; s13; s14; s23; s24; s34�

1

N2
c

� ln
�
�s123

�s12

�
g6�s12; s13; s14; s23; s24; s34�� ln

�
�s123

�s12

�
g7�s12; s13; s14; s23; s24; s34�

1

N2
c

�g8�s12; s13; s14; s23; s24; s34�

�
1�

1

N2
c

�
; (39)
where the functions gi are given in Appendix C. We note
that the result in Eq. (35) is symmetric under the exchange
of �1$ 3� or �2$ 4�.

The counterterm renormalizing the ultraviolet divergen-
ces in the case of identical quarks reads

Bct�k1; k2; k3; k4� � �2
c�

�
b0

g2

16�2B0�k1; k2; k3; k4�; (40)

while the finite contribution coming from the effective
Lagrangian is

Bfin�k1; k2; k3; k4� � �B0�k1; k2; k3; k4�: (41)
C. H! q �qgg

At one loop the full amplitude is calculated from 191
Feynman diagrams, which can be decomposed into the
three color-ordered subamplitudes,
-5



R. K. ELLIS, W. T. GIELE, AND G. ZANDERIGHI PHYSICAL REVIEW D 72, 054018 (2005)
MC
1 � �T

a3Ta4�i1i2c
�1�
1 �1; 2; 3; 4�

� �Ta4Ta3�i1i2c
�1�
2 �1; 2; 3; 4�

� �a3a4�i1i2c
�1�
3 �1; 2; 3; 4�: (42)

Bose symmetry requires that c�1�2 �1;2;3;4��c
�1�
1 �1;2;4;3�.

The divergent parts of these one-loop amplitudes are
given by

c�1�1 �1; 2; 3; 4� ! c�
g2�2�

16�2

�
�
Nc
�2 ���s24�

�� � ��s13�
��

� ��s34�
��� �

1

Nc�
2 ��s12�

��

�
3Cf
�
�
b0

�

�
c�0�1 �1; 2; 3; 4� (43)

c�1�3 �1; 2; 3; 4� ! c�
g2�2�

16�2

�
1

2�2 c
�0�
1 �1; 2; 3; 4����s14�

��

� ��s23�
�� � ��s12�

�� � ��s34�
���

�
1

2�2 c
�0�
2 �1; 2; 3; 4����s13�

��

� ��s24�
�� � ��s12�

�� � ��s34�
���

�
:

(44)

The interference between the Born and the NLO ampli-
tude is given by

2Re�MC
1M

C?
0 � �

VNc
2

Re�c�1�1 c
�0�?
1 � c�1�2 c

�0�?
2 


�
V

2Nc
Re��c�1�1 � c

�1�
2 ��c

�0�
1 � c

�0�
2 �

?


� VRe�c�1�3 �c
�0�
1 � c

�0�
2 �

?
; (45)

with ci � ci�1; 2; 3; 4�. Counterterms, analogous to those
in Eqs. (33) and (34) need to be included to obtain the full
renormalized result.

Numerical results, which are given in the following
section, were generated using an extension of the method
suggested in Ref. [23]. Analytic expressions for the
Feynman graphs are generated using Qgraf [24] and
Form [25]. The scalar and tensor integrals appearing in
the amplitudes are reduced numerically using the
Davydychev reduction for the tensor integrals [26] and a
recursive procedure similar to the one proposed in
Ref. [23] to reduce all scalar integrals to a small number
of analytically known basis integrals. These are then eval-
uated numerically as a Laurent series in the � parameter.2

The key point of this method is that a record is kept of all
previously computed integrals, so that each scalar integral
2The numerical Laurent expansion technique was first used in
Ref. [27]. In a more general analytic context it was used by many
authors before.
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is computed only once. The result of our procedure is a
numerical expression for the scalar and tensor integrals
component by component each of which has a Laurent
expansion in �. This method will be described in detail in a
later paper [28]. Numerical or seminumerical methods
have also been described in Refs. [27,29–36].

D. H! gggg

At NLO the amplitude for process Eq. (21) requires the
calculation of 739 Feynman diagrams, which can be ex-
panded in nine color subamplitudes

MD
1 �

X
�2S4=Z4

tr�Ta��1�Ta��2�Ta��3�Ta��4� �

	 d�1�1 ���1�; ��2�; ��3�; ��4��

�
1

Nc
tr�Ta1Ta2� tr�Ta3Ta4�d�1�2 �1; 2; 3; 4�

�
1

Nc
tr�Ta1Ta3� tr�Ta2Ta4�d�1�2 �1; 3; 2; 4�

�
1

Nc
tr�Ta1Ta4� tr�Ta2Ta3�d�1�2 �1; 4; 2; 3�: (46)

If we discard diagrams with internal quark loops we
have the decoupling identity [17]

d�1�2 �1; 2; 3; 4� �
X

�2S4=Z4

d�1�1 ���1�; ��2�; ��3�; ��4��: (47)

However, at NLO the d2 terms in Eq. (46) do not receive
contributions from internal fermion loops. This can be
easily shown by explicitly examining the diagrams with
internal fermionic bubbles, triangles, and boxes. The gen-
eral expansion can thus be simplified as a consequence of
Eq. (47) so that

MD
1 �

X
�2S4=Z4

tr�Ta��1�Ta��2�Ta��3�Ta��4� �

	 d�1�1 ���1�; ��2�; ��3�; ��4��

�
1

Nc
�tr�Ta1Ta2�tr�Ta3Ta4� � tr�Ta1Ta3�tr�Ta2Ta4�

� tr�Ta1Ta4�tr�Ta2Ta3�
d�1�2 �1; 2; 3; 4�: (48)

Using Eq. (48) it can be shown that the result for the matrix
element squared is

jMD
0 �M

D
1 j

2�jMD
1 j

2�
N2
c�N

2
c�1�

16

X
�2S4=Z4

	fjd�0�1 ���1�;��2�;��3�;��4��j
2

�2Re�d�0�1 ���1�;��2�;��3�;��4��
?

	d�1�1 ���1�;��2�;��3�;��4��
g:

(49)

Counterterms, analogous to those in Eqs. (33) and (34)
need to be included to obtain the full renormalized result.
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Numerical results for this matrix element squared were
generated using the method described above. The pole
structure for the color subamplitude d1 has the simple form

d�1�1 �1; 2; 3; 4� !
c�g

2�2�

16�2

�
�
Nc
�2 ���s12�

�� � ��s23�
��

� ��s34�
�� � ��s14�

���

�
d�0�1 �1; 2; 3; 4�:

(50)
TABLE I. Numerical results for the Born amplitude squared (XB)
XV;A) to the four processes A, B, C, D, Eqs. (4)–(7).

c�=�
2

AB 0
AV;N �68:886 911 046 606 3 �11
AV;A �68:886 911 046 606 4 �11
BB 0
BV;N �4580:567 558 170 94 �43
BV;A �4580:567 558 170 99 �43
CB 0
CV;N �8394:448 055 169 30 �19
CV;A �8394:448 055 169 42 �19
DB 0
DV;N �4:292 389 535 530 22	 107 �1:044
DV;A �4:292 389 535 530 22	 107 �1:044
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IV. NUMERICAL RESULTS

In this section we present numerical results for the Born
amplitude squared and for its interference with the one-
loop matrix element for the four processes of interest,
A, B, C, and D. We use the following arbitrarily chosen,
momentum configuration, where a Higgs boson of unit
mass decays into four well separated partons,
�E; px; py; pz�:
pH � ��1:000 000 000 00; 0:000 000 000 00; 0:000 000 000 00; 0:000 000 000 00�;

k1 � ��0:306 740 378 67;�0:177 386 946 93;�0:016 644 720 21;�0:249 692 779 74�;

k2 � ��0:344 450 322 81;�0:146 352 828 00;�0:107 077 623 97;�0:292 850 229 75�;

k3 � ��0:220 916 676 41;�0:089 119 159 38;�0:197 339 018 56;�0:043 809 417 93�;

k4 � ��0:127 892 622 11;�0:058 085 040 45;�0:073 616 674 38;�0:086 966 867 95�:

(51)
For each process, fA;B;C;Dg, we introduce the quantities

XB �
1

g4A2 X0�k1; k2; k3; k4�;

XV �
8�2

g6A2
�X1�k1; k2; k3; k4� � X0�k1; k2; k3; k4�
;

with X � A;B;C;D;

(52)

which are independent of the value of the coupling con-
stant. Thus XB is the matrix element squared evaluated
using the Born amplitude. XV;N and XV;A denote the con-
tributions of the interference between the virtual amplitude
and the lowest order, as calculated from the numerical and
analytical formulas. The unrenormalized results are given
in Table I for the scale choice� � MH and the momenta of
Eq. (51).

The explicit results show that far from exceptional mo-
mentum configurations, where divergent inverse Gram
determinants are known to spoil the accuracy of the nu-
merical procedure, a relative accuracy of O�10�13� can be
achieved. For processes C and D, where a full analytical
result is not available, we verified that the answer satisfies
the Ward identities to a similar relative accuracy. For
process D we checked numerically that for nf � 0, the
color amplitudes satisfy the decoupling identity, Eq. (47).
Close to exceptional momentum configurations, it is still
possible to use a numerical approach [28,37].

We have also checked numerically that our results sat-
isfy the following relationship between the HV and FDH
regularization schemes,
and the numerical and analytic one-loop corrections (XV;N and

c�=� 1

0 12.916 295 821 238 7
4:642 248 172 519 120.018 444 115 458
4:642 248 172 523 120.018 444 115 429

0 858.856 417 157 052
6:142 317 955 208 26 470.960 897 835 0
6:142 317 955 660 26 470.960 897 834 6

0 968.590 160 211 857
808:039 633 135 4 �1287:905 749 491 12
808:039 633 136 3 not known

0 3 576 991.279 60852
363 726 555 80	 108 �6:798 309 114 716 04	 107

363 726 555 80	 108 not known
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a�1�FDH
1 �1; 2; 3; 4� � a�1�HV

1 �1; 2; 3; 4� �
g2

16�2

�
Nc
3
�

1

Nc

�
a�0��1; 2; 3; 4�; a�1�FDH

2 �1; 2; 3; 4� � a�1�HV
2 �1; 2; 3; 4� � 0;

c�1�FDH
1 �1; 2; 3; 4� � c�1�HV

1 �1; 2; 3; 4� �
g2

16�2

�
Nc
6
�

1

2Nc

�
c�0�1 �1; 2; 3; 4�; c�1�FDH

3 �1; 2; 3; 4� � c�1�HV
3 �1; 2; 3; 4� � 0;

d�1�FDH
1 �1; 2; 3; 4� � d�1�HV

1 �1; 2; 3; 4� � 0:

(53)
Applying the finite renormalization which compensates for
the difference between the ultraviolet regularization in the
two schemes [21], we recover the expected difference
between the two schemes due to the differing infrared
regularization,

a�1�FDH
1 �1;2;3;4��a�1�HV

1 �1;2;3;4�

�
g2

4�2
~�qa�0��1;2;3;4�;c

�1�FDH
1 �1;2;3;4��c�1�HV

1 �1;2;3;4�

�
g2

8�2 �~�q� ~�g�c
�0�
1 �1;2;3;4�;d

�1�FDH
1 �1;2;3;4�

�d�1�HV
1 �1;2;3;4�

�
g2

4�2
~�gd

�0�
1 �1;2;3;4�; (54)

where

~� q �
Cf
2

and ~�g �
Nc
6
: (55)

The other two relations in Eq. (53) are unchanged.
V. OUTLOOK

In this paper we presented results obtained using a
general, seminumerical calculation of one-loop correc-
tions. In order to establish the feasibility of the seminu-
merical method, we computed all the one-loop corrections
to Higgs plus four parton processes using an effective
Lagrangian. We presented explicit results for a specific,
nonexceptional phase space point. For practical applica-
tions of this method, one has to be able to treat exceptional
momentum configurations also. The method of this paper
can be extended to treat those regions. A detailed descrip-
tion of the algorithm is presented in a separate work [28].

The results presented in this paper generate two separate
lines of research. The first is clearly the completion of the
calculation of the Higgs boson plus two jet process at next-
to-leading order. As indicated in the text all of the needed
elements are now in place.

The second development is the extension of these meth-
ods to calculate other one-loop processes which currently
lie beyond the range of analytic calculation. Examples of
processes of current experimental interest are diboson plus
one jet (V1; V2; j), triboson production (V1; V2; V3) and
vector boson plus heavy quark pairs (VQ �Q).
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APPENDIX A: INTEGRAL FUNCTIONS
APPEARING IN AMPLITUDES

The integral functions appearing in the virtual correc-
tions are presented in this appendix. Following closely the
notation of Ref. [38] we define

L 0�r� �
ln�r�
1� r

; L1�r� �
L0�r� � 1

1� r
: (A1)

The above functions have the property that they are finite
as their denominators vanish. Furthermore we define

Ls�1�s; t;m2� � Li2

�
1�

s

m2

�
� Li2

�
1�

t

m2

�

� ln
�
�s

�m2

�
ln
�
�t

�m2

�
�
�2

6
; (A2)

where the dilogarithm is defined as usual as

L i2�x� � �
Z x

0
dz

ln�1� z�
z

: (A3)

The function Ls�1 is simply related to the scalar box
integral with one external mass evaluated in six space-
time dimensions, where it is infrared- and ultraviolet-finite.

The ‘‘easy’’ six-dimensional box function with two non-
adjacent external masses, m1; m3, is related to the function
Ls2me
�1

Ls 2me
�1 �s; t;m

2
1; m

2
3� � �Li2

�
1�

m2
1

s

�
� Li2

�
1�

m2
1

t

�

� Li2

�
1�

m2
3

s

�
� Li2

�
1�

m2
3

t

�

� Li2

�
1�

m2
1m

2
3

st

�
�

1

2
ln2

�
�s
�t

�
:

(A4)

This function has the property that it vanishes as s� t�
m2

1 �m
2
3 ! 0. The analytic continuation of these integrals

is obtained adding a small positive imaginary part to each
invariant, sij ! sij � i".
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APPENDIX B: FUNCTIONS FOR DISTINCT QUARKS

The kinematic functions for the virtual corrections to H ! q �qq0 �q0 appearing in Eq. (32) are given below:

f1�k1; k2; k3; k4� � �
s12s34

2s2
13

�
3s13s24 � s

2
23 � s14s23 � s

2
14 � s

2
13

s12s34
�

s2
14s

2
23

2s12s
2
13s34

�
s2

24

2s12s34

� 2
�s13s24 � s14s23�

2

s2
12s

2
34

�
s24

s13
�
s14s23

s2
13

� 2 (B1)

f2�k1; k2; k3; k4� �
s12s34�s12s34 � s23�s24 � 2s23 � s14�� � s2

23�s24 � s14�
2

2s3
12s34

(B2)
f3�k1; k2; k3; k4� �
s34

2s23
� s23�s24 � s14�

	
s24 � 4s23 � 3s14

2s2
12s34

�
3s24 � 4s23

2s12

(B3)

f4�k1; k2; k3; k4� � �2
s34

s23
� s23�s24 � s14�

	
s24 � 2s23 � 5s14

2s2
12s34

�
4s24 � 6s23 � 3s14

2s12
(B4)

f5�k1; k2; k3; k4� � �
s13

s14
�

2s23

s24
�
s24

s14
�
s23

s34
�
s14s2

23

s2
24s34

�
s13s23

s24s34
�
s13s24

s14s34
�
s34

s14
(B5)
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f6�k1;k2;k3;k4��
s12s34

2s13s23

�
4s23s24�2s14s24�3s13s24�3s14s23

2s12s34

�
s2

14s23

2s12s13s34
�
s14

s13
�

1

2
(B6)
f7�k1; k2; k3; k4� �
s2

14s
2
23 � s13s2

34s12 � s13s14s23s24

2s2
13s34s12

(B7)
f8�k1; k2; k3; k4� �
s14s23 � s13s24

2s12s34
(B8)
f9�k1; k2; k3; k4� �
s13s

2
24

s12s23s34
�
s12s34

s13s23
�

s2
14s23

s12s13s34
� 2

s24

s23
� 2

s14

s13
� 1

�
2s2

24 � 2s23s24 � 5s14s24 � 5s13s24 � 5s14s23

2s12s34
(B9)
f10�k1; k2; k3; k4� �
s12s23s2

34 � s
2
13s

2
24 � s13s14s23s24

s12s
2
23s34

(B10)
f11�k1; k2; k3; k4� �
2s13s24

s12s34
(B11)
f12�k1; k2; k3; k4� �
s13�s13�s14 � s24� � 2s14s23�

2s2
12s34

�
s14

2s12
:

(B12)
APPENDIX C: FUNCTIONS FOR IDENTICAL
QUARKS

The kinematic functions for the virtual corrections to
H ! q �qq �q appearing in Eq. (35) are given below:

g1�k1; k2; k3; k4� � �1�
s13s24�s

2
13 � s

2
24�

4s12s14s23s34

�
s2

13 � 2s14s23 � 2s13s24 � s2
24

4s12s34

�
s2

13 � 2s13s24 � s2
24 � 2s12s34

4s14s23

(C1)
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g2�k1; k2; k3; k4� �
1

4
�
s24

4s13
�

s2
14s

2
23

8s12s2
13s34

�
3s14s23s24

8s12s13s34
�
s13s24�s2

13 � s
2
24�

4s12s14s23s34
�

2s2
13 � 3s14s23 � 3s13s24 � 4s2

24

8s12s34

�
3s12s24s34

8s13s14s23
�

s2
12s

2
34

8s2
13s14s23

�
s14s23 � s12s34

8s2
13

�
2s2

13 � 3s13s24 � 4s2
24 � 3s12s34

8s14s23
(C2)
g3�k1; k2; k3; k4� �
s2

23s24

8s2
12s14

�
s23�s14 � s23 � s24�

8s2
12

�
s34

4s12
�
�s23 � s24�s34

8s12s14

�
s2

34

8s14s23
(C3)

g4�k1; k2; k3; k4� �
6s23 � 3s24

8s12
�
s24��s23 � 4s24�

8s12s14

�
s34

4s14
�

5s24s34

8s14s23
(C4)
054018
g5�k1;k2;k3;k4��
s14

4s12
�
s24

8s12
�

s2
24

4s12s14
�

3s23��2s14�s24�

8s12s14

�
s23�s14�s24�

2

4s2
12s34

�
s34

4s14
�
s34

4s23
�

3s24s34

8s14s23

�
s12s2

34

4s14s2
23

(C5)

g6�k1; k2; k3; k4� �
5

8
�
s24

4s14
�

3s13s24 � 4s2
24 � 3s12s34

8s14s23

(C6)

g7�k1; k2; k3; k4� � �
7

8
�
s14

4s13
�
s24

4s14
�

s2
14s23

4s12s13s34

�
s2

24

4s12s34
�
s12s34

4s13s23
�

s2
12s

2
34

4s13s14s
2
23

�
s13s24 � 2s2

24 � s12s34

8s14s23
(C7)
g8�k1; k2; k3; k4� �
s12

32s14
�

s14

32s12
�

s12

32s23
�
s13�s14 � 2s24�

64s12s23
�

s13s24

32s12s14
�
s13s24�s13 � s24�

64s12s14s23
�
s23�2s14 � s24�

64s12s14

�
s14 � s23

32s34
�
s13�s12 � s23 � 2s24�

64s14s34
�
�s12 � 2s13 � s14�s24

64s23s34
�
s13s24�s13 � s24�

64s12s14s34
�
s13s24�s13 � s24�

64s12s23s34

�
s13s24�s13 � s24�

64s14s23s34
�
�s13s14 � 2s12�s14 � s23� � s23s24�s34

64s12s14s23
: (C8)
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