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We discuss in detail the photon spectrum of radiative ��1S� decays taking into account a number of
results that have recently appeared in the literature. In particular, we show how to consistently combine
expressions which are valid in the upper end point region, where NRQCD factorization breaks down, with
those of the central region, where NRQCD factorization holds. An excellent description of data is
achieved, but theoretical errors are large.
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I. INTRODUCTION

Semi-inclusive radiative decays of heavy quarkonium
systems (see [1] for a review) to light hadrons have been a
subject of investigation since the early days of QCD [2,3].
It was thought for some time that a reliable extraction of �s

was possible from the photon spectrum normalized, for
instance, to the decay into muon pairs. However, the upper
end point region of the spectrum (namely z! 1, z being
the fraction of the maximum energy the photon may have)
appeared to be poorly described by the theory even when
Sudakov resummations were carried out [4]. This led to
some authors to claim that a nonvanishing gluon mass was
necessary in order to describe the data [5], even when
relativistic corrections were taken into account [6]. Later
on, with the advent of Non-Relativistic QCD (NRQCD)
[7], these decays could be analyzed in a framework where
short distance effects, at the scale of the heavy quark mass
m or larger, could be separated in a systematic manner [8].
These short distance effects are calculated perturbatively in
�s�m� and encoded in matching coefficients whereas long
distance effects are parameterized by matrix elements of
local NRQCD operators. Even within this framework, a
finite gluon mass seemed to be necessary to describe data
[9]. However, about the same time it was pointed out that in
the upper end point region the NRQCD factorization ap-
proach breaks down and shape functions, namely, matrix
elements of nonlocal operators, rather than NRQCD matrix
elements, must be introduced [10]. Early attempts to mod-
eling color octet shape functions produced results in com-
plete disagreement with data [11], and hence later authors
did not include them in their phenomenological analysis
[12,13]. Notwithstanding this region has received consid-
erable attention lately, as it was recognized that the so
called Soft-Collinear Effective Theory (SCET)[14,15]
may help in organizing the calculation and in performing
resummations of large (Sudakov) logs [12,13,16,17]. In
fact, the early resummation of Sudakov logarithms [4]
of CER Astrophysics, Particle Physics and
ssociated with Institut de Ciències de l’Espai-
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has been recently corrected [17] within this framework,
and statements about the absence of Sudakov suppression
in the color singlet channel [18] have been clarified [13].
For the ��1S� state, the bound state dynamics is amenable
of a weak coupling analysis, at least as far as the soft scale
(mv, v� �s�mv�<<1, the typical velocity of the heavy
quark in the quarkonium rest frame) is concerned [19–24].
These calculations can most conveniently be done in the
framework of potential NRQCD (pNRQCD), a further
effective theory where the contributions due to the soft
and ultrasoft (�mv2) scales are factorized [25–27] (see
[28] for a review). Recently a calculation of the color octet
shape functions, which combines SCET and pNRQCD, has
become available [29].

It is the aim of this work to put together all known
theoretical ingredients for these decays in order to see if
a good description of data is achieved in the whole range
of z, without the introduction of a finite gluon mass [30].
The theoretical calculation of the so called direct contri-
butions is under good parametric control in the central
region and in most of the upper end point region. Indeed,
if one uses the original NRQCD velocity counting rules
[7], namely �s�m� � v

2 and �s�mv� � v, together with
existing calculations at weak coupling, a complete NLO
expression can be put forward in the central region. For the
upper end point region a complete LO expression, which
includes color octet contributions and takes into account
both Sudakov and Coulomb resummations, is also avail-
able. The merging of the central and the upper end point
regions will be discussed in detail. The fragmentation
contributions, i.e. those for which the photon originates
from the decay products of the heavy quarks, are para-
metrically of the same order as the direct photon contribu-
tions in the central region [31] and overweight the direct
photon contributions in the lower end point region (z! 0).
They play a minor, but non-negligible, role in our analysis
and are subject to large theoretical uncertainties.

We distribute the paper as follows. In the next section we
separate the contributions to the decay width into direct
and fragmentation. Sections III and IVare devoted to either
contributions, respectively. In Sec. V we carry out the
-1 © 2005 The American Physical Society
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phenomenological analysis, and Sec. VI is devoted to the
conclusions.

II. THE PHOTON SPECTRUM

The contributions to the decay width can be split into
direct �dir� and fragmentation �frag�

d�

dz
�
d�dir

dz
�
d�frag

dz
(1)

We will call direct contributions to those in which the
observed photon is emitted from the heavy quarks and
fragmentation contributions to those in which it is emitted
from the decay products (light quarks). This splitting is
correct at the order we are working but should be refined at
higher orders. z 2 �0; 1� is defined as z � 2E�=M (M is the
mass of the heavy quarkonium state), namely, the fraction
of the maximum energy the photon may have in the heavy
quarkonium rest frame.

III. DIRECT CONTRIBUTIONS

The starting point is the QCD formula [10]

d�dir

dz
� z

M

16�2 ImT�z�

T�z���i
Z
d4xe�iq	xhVQ�nS�jTfJ��x�J��0�gjVQ�nS�i�

��
?

(2)

where J��x� is the electromagnetic current for heavy
quarks in QCD and we have restricted ourselves to 3S1
states. q is the photon momentum, which in the rest frame
of the heavy quarkonium is q � �q�; q�; q?� � �zM; 0; 0�.
We have used light cone coordinates q
 � q0 
 q3. The
approximations required to calculate (2) are different in the
lower end point region (z! 0), in the central region (z�
0:5) and in the upper end point region (z! 1). We will
denote �dir by �c and �e in the central and upper end point
regions, respectively, (the expressions for the lower end
point region will not be necessary).

A. The central region

For z away from the lower and upper end points (0 and 1,
respectively), no further scale is introduced beyond those
inherent of the nonrelativistic system. The integration of
1In the strong coupling regime of pNRQCD an additional contrib
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the scale m in the time ordered product of currents in (2)
leads to local NRQCD operators with matching coeffi-
cients which depend on m and z. At leading order one
obtains

1

�0

d�cLO

dz
�

2� z
z
�
z�1� z�

�2� z�2
� 2

1� z

z2 ln�1� z�

� 2
�1� z�2

�2� z�3
ln�1� z�; (3)

where

�0 �
32

27
��2

se
2
Q

hVQ�nS�jO1�
3S1�jVQ�nS�i

m2 ; (4)

and eQ is the charge of the heavy quark. The �s correction
to this rate was calculated numerically in Ref. [32]. The
expression corresponding to (4) in pNRQCD is obtained at
lowest order in any of the possible regimes by just making
the substitution

hVQ�nS�jO1�
3S1�jVQ�nS�i � 2Ncj n0�0�j2; (5)

where  n0�0� is the wave function at the origin. The final
result coincides with the one of the early QCD calculations
[2,3]. We will take the Coulomb form  10�0� � �3=� for
the LO analysis of ��1S� (� is defined in (A13)).

The NLO contribution in the original NRQCD counting
[7] is v2 suppressed with respect to (3). It reads

d�cNLO

dz
� C01�

3S1�
hVQ�nS�jP 1�

3S1�jVQ�nS�i

m4 : (6)

In the original NRQCD counting or in the weak coupling
regime of pNRQCD the new matrix element above can be
written in terms of the original one [33]1

hVQ�nS�jP 1�
3S1�jVQ�nS�i

m4 �

�
M� 2m

m

�

�
hVQ�nS�jO1�

3S1�jVQ�nS�i

m2

� �1�O�v2��: (7)

The matching coefficient can be extracted from an early
calculation [6] (see also [35]). It reads

C01�
3S1� � �

16

27
��2

se2
Q

�
FB�z� �

1

2
FW�z�

�
; (8)

where (� � 1� z)
FB�z� �
2� 16�� 10�2 � 48�3 � 10�4 � 64�5 � 2�6 � �1� 3�� 14�2 � 106�3 � 17�4 � 51�5� ln�

2�1� ��3�1� ��4

FW�z� �
�26� 14�� 210�2 � 134�3 � 274�4 � 150�5 � 38�6 � 2�7

3�1� ��3�1� ��5

�
�27� 50�� 257�2 � 292�3 � 205�4 � 78�5 � 41�6� ln�

3�1� ��3�1� ��5
:

(9)
ution appears [34].
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The contributions of color octet operators start at order
v4. Furthermore, away of the upper end point region, the
lowest order color octet contribution identically vanishes
[8]. Hence there is no 1=�s enhancement in the central
region and we can safely neglect these contributions here.

If we use the counting �s��h� � v2, �s��s� � v (�h �
m and �s �mv are the hard and the soft scales, respec-
tively) for the ��1S�, the complete result up to NLO
(including v2 suppressed contributions) can be written as

d�c

dz
�
d�cLO

dz
�
d�cNLO

dz
�
d�cLO;�s

dz
: (10)
2The matching coefficients provided in this reference become
imaginary for extremely small values of z� 1, a region where
our results do not hold anyway. We have just cut off this region
in the convolutions.
The first term consist of the expression (3) with the
Coulomb wave function at the origin (5) including correc-
tions up to O���s��s��

2� [36,37], the second term is given
in (6), and the third term consists of the radiative
O��s��h�� corrections to (3) which have been calculated
numerically in [32]. Let us mention at this point that the
O���s��s��

2� corrections to the wave function at the origin
turn out to be as large as the leading order term. This will
be important for our final results. Note that the standard
NRQCD counting we use does not coincide with the usual
counting of pNRQCD in weak coupling calculations,
where �s��h� � �s��s� � �s�mv

2�. The latter is neces-
sary in order to get factorization scale independent results
beyond NNLO for the spectrum and beyond NLO for
creation and annihilation currents. However, for the
��1S� system (and the remaining heavy quarkonium
states) the ultrasoft scale mv2 is rather low, which suggests
that perturbation theory should better be avoided at this
scale [20]. This leads us to standard NRQCD counting. The
factorization scale dependences that this counting induces
can in principle be avoided using renormalization group
techniques [38–42]. In practice, however, only partial
NNLL results exists for the creation and annihilation cur-
rents [43,44] (see [45] for the complete NLL results),
which would fix the scale dependence of the wave function
at the origin at O��2

s �mv��. We will not use them and will
just set the factorization scale to m.

B. The lower end point region

For z! 0, the emitted low energy photon can only
produce transitions within the nonrelativistic bound state
without destroying it. Hence the direct low energy photon
emission takes place in two steps: (i) the photon is emitted
(dominantly by dipole electric and magnetic transitions)
and (ii) the remaining (off-shell) bound state is annihilated
into light hadrons. It has a suppression�z3 with respect to
�0 (see [46,47] for a recent analysis of this region in QED).
Hence, at some point the direct photon emission is over-
taken by the fragmentation contributions [8,31]. In practice
this happens about z� 0:4, namely, much before than the
054014
z3 behavior of the low energy direct photon emission can
be observed, and hence we shall neglect the latter in the
following.

C. The upper end point region

In this region the standard NRQCD factorization is not
applicable [10]. This is due to the fact that small scales
induced by the kinematics enter the problem and have an
interplay with the bound state dynamics. In order to study
this region, one has to take into account collinear degrees
of freedom in addition to those of NRQCD. This can be
done using SCET as it has been described in [13,16]. In this
region, the color octet contributions are only suppressed by
v2 or by 1� z. Since their matching coefficients are en-
hanced by 1=�s��h�, they become as important as the color
singlet contributions if we count �s��h� � v

2 � 1� z. We
will write

d�e

dz
�
d�eCS

dz
�
d�eCO

dz
; (11)

where CS and CO stand for color singlet and color octet
contributions, respectively.

1. Color singlet contributions

For the color singlet contribution we shall use the ex-
pression with the Sudakov resummed coefficient in
Ref. [17]

1

�0

d�eCS

dz
� ��M� 2mz�

8z
9

X
n odd

�
1

f�n�5=2

���n�� r��c�
2��n�� =	0

� ��n�� r��c�
2��n�� =	0�2 �

3f�n�3=2

8�f�n�5=2�
2

��n�2gq

�2

� �r��c�
2��n�� =	0 � r��c�

2��n�� =	0�2
�
; (12)

where the definitions for the different functions appearing
in (12) are collected in the Appendix A.

2. Color octet contributions

For the color octet contributions we use

d�eCO

dz
� �s��u��s��h�

�
16M�

81m4

�Z M=2m

z
C�x� z�

� SS�P�x�dx: (13)

�u is the ultrasoft (US) scale (see Sec. V for the expression
we use). C�x� z� contains the Sudakov resummations of
Ref. [16],2
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C�x� z� � �
d
dz

�

�x� z�

exp�‘g1��s	0‘=�4��� � g2��s	0‘=�4����
��1� g1��s	0‘=�4��� � �s	0‘=�4��g01��s	0‘=�4����

�
: (14)
The (tree level) matching coefficients (up to a global
factor) and the various shape functions are encoded in
SS�P�x�,

SS�P�z� :� z
�
�

�
4�s��u�

3�Nc

�
cF
2m

�
2
�
�1
SS�M�1� z��

�

�
�s��u�

6�Nc

�
�1
�3SP1�M�1� z��

� SP2�M�1� z���
�

(15)

The definitions of all the functions appearing in (14) and
(15) are collected in the Appendix A. The shape functions
SS, SP1 and SP2 may become SMSS , SMSP1 and SMSP2 or SsubS ,
SsubP1 and Ssub

P2 depending on the subtraction scheme em-
ployed. The procedure used to renormalize the shape
functions is explained in the Appendix B. In Fig. 1 we
plot the end point contribution (11) with the shape func-
tions renormalized in an MS scheme (dashed line) and in
the sub scheme, which makes additional subtractions
(solid line), together with the experimental data [48] (we
have convoluted the theoretical curves with the experimen-
tal efficiency, the overall normalization of each curve is
taken as a free parameter. For the details of the scale setting
see Sec. V). We see that both schemes are equally good for
the description of the shape of the experimental data in the
end point region.

Note (from Appendix A) that we use the octet shape
functions calculated in Ref. [29], which are crucial in order
to have a good description of data in the upper end point
region. We would like to comment on the validity of those
formulas. This is limited by the perturbative treatment of
the US gluons. The typical momentum of these gluons in
0.75 0.8 0.85 0.9 0.95
z

100

200

300

400

500

Nγ

FIG. 1 (color online). End point contribution of the spectrum,
d�e=dz, with the shape functions renormalized in an MS scheme
(dashed line) and in the sub scheme (solid line). The points are
the CLEO data [48]
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light cone coordinates turns out to be:

�k�; k?; k�� �
�
M�1� z�;

����������������������������������������������������������
2M�1� z�

�
M�1� z�

2
� E1

�s
;

M�1� z� � 2E1

�
(16)

Note that the typical k? is not fixed by the bound state
dynamics only but by a combination of the latter and the
end point kinematics. Hence, the calculation is reliable
provided that k? * 1 GeV:, which means z < 0:92. Note
also that the typical three momentum of the heavy quarks
in the shape function is given by

p�

�����������������������������������������
m
�
M
2
�1� z� � E1

�s
(17)

This means that the multipole expansion always holds in
the end point region, regardless that M�1� z� is bigger or
smaller thanm�2

s . This important point was not sufficiently
emphasized in [29] and it is the ultimate reason why such a
good description of data was obtained there for z 2
�0:7; 1�. Recall that at z < 0:7 or so we are at the border
of the end point region and the standard NRQCD factori-
zation formulas should hold. This means that the contribu-
tions of the octet shape functions should merge suitable
contributions of the NRQCD factorization formulas, as we
discuss below.

D. Merging the central and upper end point regions

As we have seen, different approximations are necessary
in the central and upper end point regions. It is then not
obvious how the results for the central and for the upper
end point regions must be combined in order to get a
reliable description of the whole spectrum. When the re-
sults of the central region are used in the upper end point
region, one misses certain Sudakov and Coulomb resum-
mations which are necessary because the softer scales
M

������������
1� z
p

and M�1� z� become relevant. Conversely,
when results for the end point region are used in the central
region, one misses nontrivial functions of z, which are
approximated by their end point (z� 1) behavior.

One way to proceed is the following. If we assume that
the expressions for the end point contain the ones of the
central region up to a certain order in �1� z�, we could just
subtract from the expressions in the central region the
behavior when z! 1 at the desired order and add the
expressions in the end point region. Indeed, when z! 1
this procedure would improve on the central region ex-
pressions up to a given order in �1� z�, and when z
belongs to the central region, they would reduce to the
central region expressions up to higher orders in �s. This
-4



SEMI-INCLUSIVE RADIATIVE DECAYS OF ��1S� PHYSICAL REVIEW D 72, 054014 (2005)
method was used in Ref. [13] and in Ref. [49]. In Ref. [13]
only color singlet contributions were considered and the
end point expressions trivially contained the central region
expressions in the limit z! 1. In Ref. [49] color octet
contributions were included, which contain terms propor-
tional to �1� z�. Hence, the following formula was used

1

�0

d�dir

dz
�

1

�0

d�cLO

dz
�

�
1

�0

d�eCS

dz
� z

�

�

�
1

�0

d�eCO

dz
� z�4� 2 log�1� z���1� z�

�
(18)

Even though a remarkable description of data was achieved
with this formula (upon using a suitable subtraction
scheme described below), this method suffers from the
following shortcoming. The hypothesis that the expres-
sions for the end point contain the ones for the central
region up to a given order in �1� z� is in general not
fulfilled. As we will see below, typically, they only contain
part of the expressions for the central region. This is due to
the fact that some �s��h� in the central region may soften
as �s�M�1� z��, others as �s�M

������������
1� z
p

� and others may
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stay at �s��h� when approaching the end point region. In a
LO approximation at the end point region, only the terms
with the �s at low scales would be kept and the rest
neglected, producing the above mentioned mismatch. We
shall not pursue this procedure any further.

Let us look for an alternative. Recall first that the ex-
pressions we have obtained for the upper end point region
are nontrivial functions of M�1� z�, M

������������
1� z
p

, m�s�mv�
and m�2

s �mv�, which involve �s at all these scales. They
take into account both Sudakov and Coulomb resumma-
tions. When z approaches the central region, we can ex-
pand them in �s�M

������������
1� z
p

�, �s�M�1� z�� and the ratio
m�s�mv�=M

������������
1� z
p

. They should reduce to the form of the
expressions for the central region, since we are just un-
doing the Sudakov and (part of) the Coulomb resumma-
tions. Indeed, we obtain
d�eCS

dz
���! d�eCS

dz

��������c
� �0z

�
1�

�s
6�
�CA�2�2 � 17� � 2nf�

� log�1� z� �O��2
s�

�
(19)
d�eCO

dz
���! d�eCO

dz

��������c
� �z�2

s

�
16M�
81m4

�
2j 10�0�j2

�
m�s

������������
1� z
p

A�M�1� z�
�
�1� log

�
�2
c

M2�1� z�2

��

�M
�s
2�

�
�2CA

�
1

2
�1� z�log2�1� z�

�
log

�
�2
c

M2�1� z�2

�
� 1

	
�
Z 1

z
dx

log�x� z�
x� z

f�x; z�
�

�

�
23

6
CA �

nf
3

��
�1� z� log�1� z�

�
log

�
�2
c

M2�1� z�2

�
� 1

	
�
Z 1

z
dx

1

x� z
f�x; z�

��

�
�2

m
2
�

log
�

�2
c

M2�1� z�2

�
� 1

�
�O

�
m�2

s ; �s
�2

m
;
�4

m3

��
; (20)
where

f�x; z� � �1� x� log
�

�2
c

M2�1� x�2

�
� �1� z�

� log
�

�2
c

M2�1� z�2

�
� x� z: (21)

A � �Nc � 136Cf�2� ��=9 (in an MS scheme; it be-
comes A � �64Cf�2� ��=9 in the sub scheme described
in Appendix B). The details of this derivation are given in
the Appendix C. The color singlet contribution reproduces
the full LO expression for the central region in the limit
z! 1. The color octet shape functions SP1 and SP2 give
contributions to the relativistic corrections (6), and SP2 to
terms proportional to �1� z� in the limit z! 1 of (3) as
well. We have checked that, in the z! 1 limit, both the
�1� z� ln�1� z� of (3) and the ln�1� z� of the relativistic
correction (6) are correctly reproduced if �c �M

������������
1� z
p

,
as it should. All the color octet shape functions contribute
to the O��s��h�� correction in the first line of (20). There
are additional O��s��h�� contributions coming from the
expansion of the (Sudakov) resummed matching coeffi-
cients of the color singlet contribution and of the SP2 color
octet shape function. The �s log�1� z� in (19) reproduces
the logarithm in d�cLO;�s

=dz.
We propose the following formula

1

�0

d�dir

dz
�

1

�0

d�c

dz
�

�
1

�0

d�eCS

dz
�

1

�0

d�eCS

dz

��������c

�

�

�
1

�0

d�eCO

dz
�

1

�0

d�eCO

dz

��������c

�
: (22)

This formula reduces to the NRQCD expression in the
central region. When we approach the upper end point
region the second terms in each of the parentheses are
expected to cancel corresponding terms in the z! 1 limit
of the expression for the central region up to higher order
terms (in the end point region counting). Thus, we are left
with the resummed expressions for the end point (up to
higher order terms).

There are of course other possibilities for the merging.
For instance, one may choose a z1 below which one trusts
-5
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FIG. 3 (color online). Direct contribution to the spectrum. The
solid line corresponds to the LO merging of Sec. III D 1 and the
dashed line corresponds to Eq. (18). The points are the CLEO
data [48].
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the calculation for the central region and a z2 above which
one trusts the end point region calculation, and use some
sort of interpolation between z1 and z2 (see for instance
[50]). This would have the advantage of keeping the right
approximation below z1 and beyond z2 unpolluted, at the
expense of introducing further theoretical ambiguities due
to the choice of z1 and z2, and, more important, due to the
choice of the interpolation between z1 and z2. We believe
that our formula (22) is superior because it does not
introduce the above mentioned theoretical ambiguities.
The price to be paid is that the expressions from the central
region have an influence in the end point region and vice-
versa. This influence can always be chosen to be para-
metrically subleading but large numerical factors may
make it noticeable in some cases, as we shall see below.

1. Merging at LO

If we wish to use only the LO expressions for the central
region, we should take (20) at LO, namely

1

�0

d�eCS

dz

��������c
� z;

1

�0

d�eCO

dz

��������c
� z

�
2� 4 log

�
�c

M�1� z�

��
�1� z�;

(23)

and substitute them in (22). Unexpectedly, the results
obtained with this formula in the central region deviate
considerably from those obtained with formula (3) (see
Fig. 2). This can be traced back to the fact that the
�s

������������
1� z
p

corrections in (20) are enhanced by large nu-
merical factors, which indicates that the merging should
better be done including �s��h� corrections in the central
region, as we discuss in the next section. Alternatively, we
0.2 0.4 0.6 0.8 1
z

1 10 -6

2 10 -6

3 10 -6

4 10 -6

5 10 -6

6 10 -6

dΓdir

dz

FIG. 2 (color online). Merging at LO. The solid line is the
NRQCD expression (3). The dot-dashed curves are obtained
using anMS scheme: the light curve is the end point contribution
(11) and the dark curve is the LO merging of Sec. III D 1. The
dashed curves are obtained using the sub scheme (explained in
the Appendix B): the light curve is the end point contribution
(11) and the dark curve is the LO merging of Sec. III D 1.
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may change our subtraction scheme in order to (partially)
get rid of these contributions, as discussed in the
Appendix B. With the new subtraction scheme (sub) the
situation improves, although it does not become fully
satisfactory (see Fig. 2). This is due to the fact that some
�s

������������
1� z
p

terms remain, which do not seem to be associ-
ated to the freedom of choosing a particular subtraction
scheme. In spite of this the description of data turns out to
be extremely good. In Fig. 3 we plot, using the sub scheme,
the merging at LO (solid line) and also, for comparison,
Eq. (18) (dashed line). We have convoluted the theoretical
curves with the experimental efficiency and the overall
normalization is taken as a free parameter.

2. Merging at NLO

If we wish to use the NLO expressions for the central
region (10), we should take all the terms displayed in (19)
and (20) and substitute them in (22). Unlike in the LO case,
for values of z in the central region the curve obtained from
(22) now approaches smoothly the expressions for the
central region (10) as it should. This is so no matter if we
include the �2

s ��s� corrections to the wave function at the
origin in d�cLO=dz, as we in principle should, or not (see
Figs. 4 and 5). However, since the above corrections are
very large, the behavior of the curve for z! 1, strongly
depends on whether we include them or not (see again
Figs. 4 and 5). We believe that the two possibilities are
legitimate. If one interprets the large �2

s ��s� corrections as
a sign that the asymptotic series starts exploding, one
should better stay at LO (or including �s��s� corrections).
However, if one believes that the large �2

s ��s� corrections
are an accident and that the �3

s ��s� ones (see [51,52] for
partial results) will again be small, one should use these
�2

s ��s� corrections. We consider below the two cases.
If we stay at LO (or including �s��s� corrections) for the

wave function at the origin, the curve we obtain for z! 1
-6
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FIG. 4 (color online). Merging at NLO (using an MS scheme
and the wave function at the origin at LO). The solid line is the
NRQCD result (10), the light dashed curve is the end point
contribution (11) and the dark dashed curve is the NLO merging
of Sec. III D 2.
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FIG. 6 (color online). Direct contribution to the spectrum
using the NLO merging of Sec. III D 2 (in an MS scheme and
the wave function at the origin with the �2

s ��s� corrections
included). The points are the CLEO data [48].
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differs considerably from the expressions for the end point
region (11) (see Fig. 4). This can be traced back to the
�s

������������
1� z
p

term in (20) again. This term is parametrically
suppressed in the end point region, but, since it is multi-
plied by a large numerical factor, its contribution turns out
to be overwhelming. This term might (largely) cancel out
against higher order contributions in the end point region,
in particular, against certain parts of the NLO expressions
for the color singlet contributions, which are unknown at
the moment.

If we use the wave function at the origin with the �2
s ��s�

corrections included, the curves we obtain for z! 1 be-
come much closer to the expressions for the end point
region (11) (see Fig. 5). Hence, a good description of
0.2 0.4 0.6 0.8 1
z

1 10 -6

2 10 -6

3 10 -6

4 10 -6

5 10 -6

6 10 -6

dγ dir

dz

FIG. 5 (color online). Merging at NLO (using an MS scheme
and the wave function at the origin with the �2

s ��s� corrections
included). The solid line is the NRQCD result (10), the light
dashed curve is the end point contribution (11) and the dark
dashed curve is the NLO merging of Sec. III D 2.
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data is obtained with no need of additional subtractions,
as shown in Fig. 6 (as usual experimental efficiency has
been taken into account and the overall normalization is a
free parameter).
IV. FRAGMENTATION CONTRIBUTIONS

The fragmentation contributions can be written as

d�frag

dz
�

X
a�q; �q;g

Z 1

z

dx
x
Ca�x�Da�

�
z
x
;M

�
; (24)

where Ca represents the partonic kernels and Da� repre-
sents the fragmentation functions. The partonic kernels can
again be expanded in powers of v [8]

Ca �
X
Q

Ca�Q� (25)

The leading order term in v is the color singlet rate to
produce three gluons

Cg�O1�
3S1�� �

40

81
�3
s

�
2� z
z
�
z�1� z�

�2� z�2
� 2

1� z

z2

� ln�1� z� � 2
�1� z�2

�2� z�3
ln�1� z�

�

�
hVQ�nS�jO1�

3S1�jVQ�nS�i

m2 : (26)

The color octet contributions start at order v4 but have a
-7
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1=�s enhancement with respect to (26)

Cg�O8�
1S0�� �

5��2
s

3
��1� z�

hVQ�nS�jO8�
1S0�jVQ�nS�i

m2

Cg�O8�
3PJ�� �

35��2
s

3
��1� z�

�
hVQ�nS�jO8�

3P0�jVQ�nS�i

m4

Cq�O8�
3S1�� �

��2
s

3
��1� z�

hVQ�nS�jO8�
3S1�jVQ�nS�i

m2 :

(27)

Then the color singlet fragmentation contribution is of
order �3

sDg!� and the color octet fragmentation are of
order v4�2

sDg!� (1S0 and 3PJ contributions) or v4�2
sDq!�

(3S1 contribution). We can use, as before, the counting
v2 � �s to compare the relative importance of the different
contributions together with the existing models for the
fragmentation functions [53]. The latter tell us that Dq!�

is much larger than Dg!�. This causes the O�v4�2
sDq!��

3S1 octet contribution to dominate in front of the singlet
O��3

sDg!�� and the octet O�v4�2
sDg!�� contributions. In

fact, �sDq!� is still larger thanDg!�, so we will include in
our plots the �s corrections to the color octet contributions
(27) proportional to Dq!�, which have been calculated in
[8]. In addition, the coefficients for the octet 3PJ contribu-
tions have large numerical factors, causing these terms to
be more important than the color singlet contributions. Let
us finally notice that the �s corrections to the singlet rate
will produce terms of O��4

sDq!��, which from the consid-
erations above are expected to be as important as the octet
3S1 contribution. These �s corrections to the singlet rate
are unknown, which results in a large theoretical uncer-
tainty in the fragmentation contributions.

For the quark fragmentation function we will use the
LEP measurement [54]

Dq��z; �� �
e2
q����

2�

�
Pq��z� ln

�
�2

�2
0�1� z�

2

�
� C

	
;

(28)

where

C � �1� ln
�
M2
Z

2�2
0

�
; Pq��z� �

1� �1� z�2

z
;

�0 � 0:14�0:43
�0:12 GeV;

(29)

and for the gluon fragmentation function the model [55].
These are the same choices as in [13]. However, for the
O8�

1S0� and O8�
3P0� matrix elements we will use our

estimates in [29]

h��1S�jO8�
1S0�j��1S�ij��M � 0:004 GeV3 (30)

h��1S�jO8�
3P0�j��1S�ij��M � 0:08 GeV5 (31)
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The above numbers are obtained in an MS scheme from
dimensionally regularized US loops only. The value we
assign to the S-wave matrix element is compatible with the
recent (quenched) lattice determination (hybrid algorithm)
[56]. Notice that we do not assume that a suitable combi-
nation of these matrix element is small, as it was done in
[13]. The O8�

3S1� matrix element can be extracted from a
lattice determination of the reference above [56]. Using the
wave function at the origin with the �2

s ��s� corrections
included, we obtain,

h��1S�jO8�
3
1S�j��1S�ij��M � 0:000 26 GeV3; (32)

which differs from the estimate using NRQCD v scaling by
more than 2 orders of magnitude:

h��1S�jO8�
3S1�j��1S�ij��M

� v4h��1S�jO1�
3S1�j��1S�ij��M � 0:02 GeV3 (33)

(we have taken v2 � 0:08), which was used in Ref. [13].
The description of data turns out to be better with the
estimate (33). However, this is not very significant, since,
as mentioned before, unknown NLO contributions are
expected to be sizable.

In the z! 0 region soft radiation becomes dominant and
the fragmentation contributions completely dominate the
spectrum in contrast with the direct contributions [31].
Note that, since the fragmentation contributions have an
associated bremsstrahlung spectrum, they can not be safely
integrated down to z � 0; that is

R
1
0 dz�d�frag=dz� is not an

infrared safe observable. In any case we are not interested
in regularizing such divergence because the resolution of
the detector works as a physical cutoff.
V. SCALE SETTING AND ERROR ANALYSIS

Formula (22) requires d�e=dz for all values of z. The
color octet shape functions, however, were calculated in
the end point region under the assumption thatM

������������
1� z
p

�
�, and the scale of the �s was set accordingly. When z
approaches the central region M

������������
1� z
p

� �, and hence
some �s will depend on the scaleM

������������
1� z
p

and others on �
(we leave aside the global �s��u�, which will be discussed
below). In order to decide the scale we set for each �s let us
have a closer look at the formula (20). We see that all terms
have a common factor �3. This indicates that one should
extract �3 factors in the shape functions, the �s of which
should stay at the scale �s. This is achieved by extracting
�3=2 in IS and IP. If we set the remaining �s to the scale
�p �

��������������������������������������������
m�M�1� z�=2� E1�

p
, we will reproduce (20)

when approaching to the central region, except for the
relativistic correction, the �s of which will be at the scale
�p instead of at the right scale �s. We correct for this by
making the following substitution
-8
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SP1 ���! SP1 �
�s��u�

6�Nc

�3

�

�
log
k2
�

�2
c
� 1

�

�

�
4�2

3m
�
mC2

f�
2
s��p�

3

�
: (34)

Notice that the replacements above are irrelevant as far as
the end point region is concerned, but important for the
shape functions to actually (numerically) approach the
expressions (20) in the central region, as they should.

We use the following values of the masses for the plots:
m � 4:81 GeV and M � 9:46 GeV. The hard scale �h
is set to �h � M. The soft scale �s � mCf�s is to
be used for the �s participating in the bound state dynam-
ics, we have �s��s� � 0:28. The US scale �u, aris-

ing from the couplings of the US gluons, is set to �u ���������������������������������������������������������
2M�1� z��M2 �1� z� � E1�

q
(as discussed in Sec. III). We

have used the MATHEMATICA package RUNDEC [57] to
obtain the (one loop) values of �s at the different scales.

Our final plot in Fig. 7 is obtained by using the merging
formula (22) at NLO with the �2

s ��s� corrections to the
wave function at the origin included for the direct contri-
butions plus the fragmentation contributions in Sec. IV
including the first �s corrections in Cq and using the
estimate (33) for the h��1S�jO8�

3S1�j��1S�i matrix ele-
ment. The error band is obtained by replacing �c by��������

2
1
p

�c. Errors associated to the large �2
s ��s� corrections

to the wave function at the origin, to possible large NLO
color singlet contributions in the end point region and to
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FIG. 7 (color online). Photon spectrum. The points are the
CLEO data [48]. The solid lines are the NLO merging in
Sec. III D 2 plus the fragmentation contributions: the light line
and the dark line are obtained by using (33) and (32) for
h��1S�jO8�

3S1�j��1S�i respectively. The light shaded region is
obtained by varying �c by

��������
2
1
p

�c. The dark shaded region on
the right shows the zone where the calculation of the shape
functions is not reliable (see Sec. III C 2). The dashed line is the
result in [13], where only color singlet contributions were
included in the direct contributions.
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the fragmentation contributions are difficult to estimate
and not displayed (see the corresponding sections in the
text for discussions). The remaining error sources are
negligible. As usual experimental efficiency has been taken
into account and the overall normalization is a free
parameter.
VI. CONCLUSIONS

We have analyzed the photon spectrum in radiative
��1S� decays within an Effective Field Theory framework.
For the direct contributions, the merging of the results for
the central and upper end point regions has been discussed
in detail. We have shown how to consistently combine the
complete LO results for the upper end point region with the
complete NLO ones for the central region. We have seen
that the large�2

s ��s� corrections to the wave function at the
origin are important in order to get a good description of
data. Otherwise, parametrically subleading large contribu-
tions in the end point region would be necessary. We would
like to emphasize that our final results for the direct con-
tributions are essentially parameter free: only the mass of
the bottom quark m, the strong coupling constant �s, and
the proper choice of subtraction scales (which appear in
logarithms) are used as an input. For the fragmentation
contributions, we have pointed out that if the commonly
used model for the gluon fragmentation into a photon is
appropriated, �s corrections to the LO color singlet matrix
element giving rise to a light quark which fragments into a
photon may be as important as the LO results. Hence,
fragmentation contributions suffer from large theoretical
uncertainties. Nevertheless, if we put together the available
theoretical results for these contributions with the ones for
the direct contributions, an excellent description of data is
achieved for the whole part of the spectrum where experi-
mental errors are reasonable small. Clearly, our results
indicate that the introduction of a finite gluon mass [30]
is unnecessary. One should keep in mind, however, that in
order to have the theoretical errors under control higher
order calculations are necessary both in the direct (end
point) and fragmentation contributions.

Before closing, let us mention that the inclusion of color
octet contributions in the end point region together with the
merging with the central region expression described in
this work may be useful for production processes like
inclusive J= production in e�e� machines [50,58,59].
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APPENDIX A: DEFINITIONS

In this appendix we collect the definitions for the for-
mulas that appear in the paper.

CA � Nc Cf �
N2
c � 1

2Nc
	0 �

�11CA � 2nf�

3

	1 �
34C2

A � 10CAnf � 6Cfnf
3

:

Nc � 3 is the number of colors, nf � 4 is the number of
light flavors.

1. Definitions for formula (12)

f�n�5=2 �
n�n� 1��n� 2��n� 3�

9�n� 3=2�
;

f�n�3=2 �
�n� 1��n� 2�

n� 3=2

(A1)
054014
r��� �
�s���
�s�2m�

(A2)
��n�
 �
��n�gg � �

�n�


�
; ��n�
 �

1

2
���n�gg � �

�n�
q �q 
 ��;

� �
����������������������������������������������������
���n�gg � �

�n�
q �q �

2 � 4��n�gq�
�n�
qg

q
(A3)
��n�q �q � Cf

�
1

�n� 1��n� 2�
�

1

2
� 2

Xn�1

i�2

1

i

	

��n�gq �
1

3
Cf

n2 � 3n� 4

�n� 1��n� 2�

��n�qg � 3nf
n2 � 3n� 4

n�n� 1��n� 2��n� 3�

��n�gg � CA

�
2

n�n� 1�
�

2

�n� 2��n� 3�

�
1

6
� 2

Xn�1

i�2

1

i

	
�

1

3
nf:

(A4)
2. Definitions for formula (14)

‘ � � log�x� z� (A5)
g1��� � �
2�adj

1

	0�
��1� 2�� log�1� 2�� � 2�1� �� log�1� ���

g2��� � �
8�adj

2

	2
0

�� log�1� 2�� � 2 log�1� ��� �
2�adj

1 	1

	3
0

�
log�1� 2�� � 2 log�1� �� �

1

2
log2�1� 2��

� log2�1� ��
	
�

4�1

	0
log�1� �� �

2B1

	0
log�1� 2�� �

4�adj
1

	0
logn0�log�1� 2�� � log�1� ��� (A6)

�adj
1 � CA; �adj

2 � CA

�
CA

�
67

36
�
�2

12

�
�

5nf
18

	
; B1 � �CA; �1 � �

	0

4
; n0 � e��E: (A7)

3. Definitions for formula (15)

IS

�
k�
2
� x

�
� m

����
�
�

r
�sNc

2

1

1� z0

�
1�

2z0

1� z0 2F1

�
�
�
z0
; 1; 1�

�
z0
;
1� z0

1� z0

��
(A8)

IP

�
k�
2
� x

�
�

������
�3

�

s
8

3
�2� ��

1

4�1� z0�3

�
2�1� z0��2� z0� � �5� 3z0���1� �� � 2��1� ��2

�
1

�1� z0�2
�4z0�1� z0��z02 � �2�

�
�1�

��1� z0�
�1� z0��z0 � ��

� 2F1

�
�
�
z0
; 1; 1�

�
z0
;
1� z0

1� z0

����
(A9)

SS�k�� �
4�s��u�

3�Nc

�
cF
2m

�
2 Z 1

0
dx
�
2 10�0�IS

�
k�
2
� x

�
� I2

S

�
k�
2
� x

��
(A10)
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SP1�k�� �
�s��u�

6�Nc

Z 1
0
dx
�
2 10�0�IP

�
k�
2
� x

�

� I2
P

�
k�
2
� x

��
(A11)

SP2�k�� �
�s��u�

6�Nc

Z 1
0
dx

8k�x

�k� � 2x�2

�
 2

10�0�

� 2 10�0�IP

�
k�
2
� x

�
� I2

P

�
k�
2
� x

��
(A12)
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� �
mCf�s

2
z0 �


�

�
2

m
� E1 �

k�
2
� x

� � �
1

2NcCf
E1 � �

�2

m
:

(A13)

cF is the hard matching coefficient of the chromomagnetic
interaction in NRQCD, it will be taken to 1. The renor-
malized expressions (see Appendix B) in an MS scheme
read
SMSS �k�� �
4�s��u�

3�Nc

�
cF
2m

�
2
�
2 10�0�

�
m

����
�
�

r
�sNc

2

��Z 1
0

�
~IS

�
k�
2
� x

�
�

1

z0
� ��1� 2� ln2�

1

z02

�
dx� 2

�����
m
p

������������������
k�
2
�
�2

m

s �

�

�
m

����
�
�

r
�sNc

2

�
2
�Z 1

0

�
~I2
S

�
k�
2
� x

�
�

1

z02

�
dx
��
�
c2
F�s��u��

3C2
f�

2
s��p�

3�2Ncm
�1� ����2� ��2 ln2� 1��

�

�
ln
� �2

pc

m�k�2 �
�2

m�

��
(A14)

SMSP1 �k�� �
�s��u�

6�Nc

�
2 10�0�

� ������
�3

�

s
8

3
�2� ��

��Z 1
0
�~IP

�
k�
2
� x

�
�

1

2z0
�

�
�

3

4
� � ln2�

�
4

�
1

z02

�
dx�

�����
m
p

������������������
k�
2
�
�2

m

s �

�

� ������
�3

�

s
8

3
�2� ��

�
2
�Z 1

0

�
~I2
P

�
k�
2
� x

�
�

1

4z02

�
dx
��
�
�s��u��3mC2

f�
2
s��p�

9�2Nc

�
�

31

6
� �

�
4 ln2�

19

6

�

� �2

�
2 ln2�

1

6

��
ln
� �2

pc

m�k�2 �
�2

m�

�
�

2�s��u��5

9�2Ncm

�
� ln

�
�2
c

k2
�

��
(A15)
SMSP2 �k�� �
�s��u�

6�Nc

�
 2

10�0�k�
�
�2� 2 ln

�
�2
c

k2
�

��

�
Z 1

0
dx

8k�x

�k� � 2x�2
��2 10�0�IP

�
k�
2
� x

�

� I2
P

�
k�
2
� x

���
; (A16)

and in the scheme where additional subtractions are carried
out

SsubS �k�� � SMSS �k�� �
4�s��u�

3�Nc

�
cF
2m

�
2
2 10�0�

�

�
m

����
�
�

r
�sNc

2

�
2
�����
m
p

������
k�
2

s
(A17)

SsubP1 �k�� � SMSP1 �k�� �
�s��u�

6�Nc
2 10�0�

� ������
�3

�

s
8

3
�2� ��

�

�
�����
m
p

������
k�
2

s
(A18)

SsubP2 �k�� � SMSP2 �k��; (A19)
where

~I S

�
k�
2
� x

�
:�

�
m

����
�
�

r
�sNc

2

�
�1
IS

�
k�
2
� x

�

~IP

�
k�
2
� x

�
:�

� ������
�3

�

s
8

3
�2� ��

�
�1
IP

�
k�
2
� x

�
:

(A20)

APPENDIX B: REGULARIZATION AND
RENORMALIZATION

The shape functions (A10)–(A12) are ultraviolet (UV)
divergent and require regularization and renormalization.
In Ref. [29] it was pointed out that using dimensional
regularization (DR) for the US loop only was enough to
regulate them. In fact, the expressions (A10) and (A11)
implicitly assume that DR is used, otherwise linearly di-
vergent terms proportional to  2

10�0� would appear (which
make (A10) and (A11) formally positive definite quanti-
ties). In addition an MS scheme was used to subtract the
poles. Since it turns out that the final outcome strongly
depends on the details of this subtraction, let us spell out
the procedure carried out in Ref. [29]. In order to isolate the
1=" poles, IS and IP were expanded up to O�1=z02� . The
result was subtracted and added to the integrand of (A10)
-11
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and (A11) (for (A12) this is not necessary since the only
divergent piece is independent of IP). The subtracted part
makes the shape functions finite. The added part contains
linear and logarithmic UV divergencies. The 1=" (D �
4� 2�) poles displayed in formulas (16) of Ref. [29], and
eventually subtracted, were obtained by making dx!
dx�x=���" in (A10)–(A12). This was motivated by the
fact that x� k2

? (k? being the transverse momentum of
the US gluon) but differs from a standard MS scheme.
Linear divergences are set to zero as usual in DR.

We have used here a regularization and renormalization
scheme which is closer to the standard one in pNRQCD
3We assume that the correlation of scales advocated in [38]
(see [42] for the implementation in our framework) must also be
taken into account here.

054014
calculations. We have regulated both the US loop and the
potential loops (entering in the bound state dynamics) in
DR. We have identified US divergencies by taking the limit
D! 4 in the US loops while leaving the potential loops in
D dimensions [60]. Potential divergencies are identified by
taken D! 4 in the potential loops once the US divergen-
cies have been subtracted. It turns out that all divergencies
in SP2 are US and all divergencies in SS are potential. SP1

contains both US and potential divergencies. The potential
divergences related with the bound state dynamics can be
isolated using the methods of Ref. [61]. The formulas
corresponding to (16) of Ref. [29] in this scheme read
SS�k��j"!0 ’
c2
F�s��u��3C2

f�
2
s ��p�

3�2Ncm
�1� ����2� ��2 ln2� 1��

�
1

"
� ln

� �2
pc

m�k�2 �
�2

m�

�
� 	 	 	

�

SP1�k��j"!0 ’
�s��u��3mC2

f�
2
s��p�

9�2Nc

�
�

31

6
� �

�
4 ln2�

19

6

�
� �2

�
2 ln2�

1

6

�
�

�
1

2"
� ln

� �2
pc

m�k�2 �
�2

m �

�
� 	 	 	

�

�
2�s��u��5

9�2Ncm

�
�

1

"
� ln

�
�2
c

k2
�

�
� 	 	 	

�
(B1)
SP2�k��j"!0 ’
�s��u�k��

3

3�2Nc

�
1

"
� ln

�
�2
c

k2
�

�
� 	 	 	

�
: (B2)

For simplicity, we have setD � 4 everywhere except in the
momentum integrals. �p is defined in Sec. V. �c and �pc
are the subtraction points of the US and potential diver-
gencies, respectively. If we subtract the 1=" poles and set
�c � M

������������
1� z
p

and �pc �
����������
m�c
p

we obtain exactly the
same result as in Ref. [29] for what the potential divergen-
ces is concerned.3 For the US divergences there is a factor
ln��c=2k�� of difference with respect to the previous
scheme.

In Ref. [49] an additional subtraction related to linear
divergencies was made. This subtraction was necessary in
order to merge smoothly with the results in the central
region. We will also need this subtraction here when merg-
ing at LO, as discussed in subsection III D. We use

Z 1
0
dx

1

z0
���! �2

�����
m
p

� ������������������
k�
2
�
�2

m

s
�

������
k�
2

s 	
;

which differ from the MS scheme by the subtraction of the
second term in the square brackets.

APPENDIX C: THE SHAPE FUNCTIONS IN THE
CENTRAL REGION

When z approaches the central region from the upper
end point, the shape functions should reduce to matrix
elements of NRQCD operators multiplied by the corre-
sponding matching coefficients. We will see here that this
is indeed the case.

Let us first consider the S-wave octet shape function as
defined in [29]

IS

�
k�
2
� x

�
:�

Z
d3x 10�x�

�
1�

k�
2 � x

ho � E1 �
k�
2 � x

�
x;0

(C1)

ho � p2=m� Vo, Vo � �s=�2Ncjrj�. When z approaches
the central region, k� �M�1� z� � �E1 and the larger
three momentum scale is M

������������
1� z
p

� �, the typical three
momentum in the bound state. Therefore we can treat the
Coulomb potential in (C1) as a perturbation when it is
dominated by this scale. It is convenient to proceed in
two steps. First we write ho � hs � �Vo � Vs�, where hs �
p2=m� Vs, Vs � ��sCf=jrj, and expand Vo � Vs. This
allows to set hs � E1 to zero in the left-most propagator
and makes explicit the cancellation between the first term
in the series and the first term in (C1). It also makes explicit
that the leading term will be proportional to �s�M

������������
1� z
p

�.
Second, we expand Vs in hs � p2=m� Vs. In addition,
since M

������������
1� z
p

� �, the wave function can be expanded
about the origin. Only the first term in both expansion is
relevant in order to get (20).

Consider next the P-wave shape functions as defined in
[29]

IP

�
k�
2
� x

�
:� �

1

3

Z
d3xxi 10�x�

�

��
1�

k�
2 � x

ho � E1 �
k�
2 � x

�
ri
�

x;0
: (C2)
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In order to proceed analogously to the S-wave case, we
have first to move the xi away from the wave function

IP

�
k�
2
� x

�
�  10�0� �

k�
2 � x

3

Z
d3x 10�x�

�

�
1

ho � E1 �
k�
2 � x

xr

�
1

ho � E1 �
k�
2 � x

�
�

2ri

m

�

�
1

ho � E1 �
k�
2 � x

ri
�
: (C3)

For the left-most propagators we can now proceed as
before, namely, expanding Vo � Vs. Note that the leading
contribution in this expansion of the second term above
exactly cancels against the first term. Of the remaining
contributions of the second term only the next-to-leading
one (O��s�) is relevant to obtain (20). Consider next the
leading order contribution in this expansion of the last
054014
term. It reads

�
2

3m

Z
d3x 10�x�

�
ri

1

ho � E1 �
k�
2 � x

ri
�

� �
2

3m

Z
d3x 10�x�

��
1

ho � E1 �
k�
2 � x

ri

�
1

ho � E1 �
k�
2 � x

riVo
1

ho � E1 �
k�
2 � x

�
ri
�
:

(C4)

Now we proceed as before with the left-most propagators,
namely, expanding Vo � Vs. The leading order contribu-
tion of the first term above produces the relativistic cor-
rection O�v2� of (20). The next-to-leading contribution of
this term and the leading order one of the second term are
O��s� and also relevant to (20). The next-to-leading order
contribution of the last term in (C3) in the Vo � Vs expan-
sion of the left-most propagator is also O��s� and relevant
to (20).
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