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Nucleon form factors from generalized parton distributions
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We discuss the links between generalized parton distributions (GPDs) and elastic nucleon form factors.
These links, in the form of sum rules, represent powerful constraints on parametrizations of GPDs. A
Regge parametrization for GPDs at small momentum transfer, is extended to the large momentum transfer
region and it is found to describe the basic features of proton and neutron electromagnetic form factor
data. This parametrization is used to estimate the quark contribution to the nucleon spin.
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I. INTRODUCTION

Generalized parton distributions (GPDs) [1–3] are uni-
versal nonperturbative objects entering the description of
hard exclusive electroproduction processes (see Refs. [4–
8] for reviews and references). These GPDs, which are
defined for each quark flavor (u, d, s), parametrize non-
forward matrix elements of light-cone operators. They
depend upon the longitudinal momentum fractions of the
initial and final quarks and upon the overall momentum
transfer t to the nucleon. When the momentum fractions
x� �; x� � of initial and final quarks are different (�
being the longitudinal momentum asymmetry, or skew-
ness), one accesses quark momentum correlations in the
nucleon. Furthermore, if one of the quark momentum
fractions is negative, GPDs reflect an antiquark contribu-
tion, and consequently one can investigate q �q configura-
tions in the nucleon. Therefore, these functions contain a
wealth of new nucleon structure information, generalizing
that obtained from inclusive deep inelastic scattering.

In hard exclusive processes, such as deeply virtual
Compton scattering, GPDs enter in most observables
through convolution integrals. Hence, to access GPDs,
the most realistic strategy to date seems through judicial
parametrizations. Building self-consistent models of GPDs
is, however, a rather difficult problem, because one needs
to satisfy many physical principles and constraints which
should be obeyed by GPDs. They include spectral proper-
ties, polynomiality condition, positivity, relations to parton
densities and form factors [1–4].

In this paper, we elaborate on the t-dependence of the
� � 0 generalized parton distributions, and its interplay
with the x-dependence. This subject has attracted a con-
siderable interest. In particular, it has been shown [9–11]
that by a Fourier transform of the t-dependence of GPDs, it
is conceivable to access the spatial distribution of partons
in the transverse plane, and to provide a 3-dimensional
05=72(5)=054013(12)$23.00 054013
picture of the nucleon [12,13]. The t-dependence of mo-
ments of GPDs has also become amenable to lattice QCD
calculations [14] recently. As the lattice calculations ma-
ture further, they may eventually provide additional con-
straints on moments of generalized parton distributions.
Phenomenological estimates of the t-dependence and
t-dependent parametrizations of GPDs have already been
discussed in Refs. [10,13,15–19], and more recently, in
Ref. [20]. Some results of the present paper were reported
in Refs. [21,22].

We give here several parametrizations of the
t-dependence of the GPDs, both at small and large values
of �t (with t < 0, i.e. in the spacelike region). We start in
Sec. II by reviewing the relevant sum rules which link
GPDs to form factors. Subsequently, we discuss in
Sec. III a Gaussian ansatz for the t-dependence of GPDs
(at large �t) which has been introduced and used in
Refs. [15,16]. Such a Gaussian ansatz, however, is not
able to describe the small �t behavior of GPDs, and, in
particular, gives divergent rms radii for the nucleon elec-
tromagnetic form factors. We therefore proceed in Sec. IV
to describe a Regge parametrization [6,21] which provides
a physically consistent behavior of form factors at small
�t. We extend this model then in Sec. V to large �t so as
to yield the observed power behavior of the electromag-
netic form factors at large (spacelike) momentum transfers.
We found a quite economical parametrization that allows
for a description of both proton and neutron electromag-
netic form factors with only 3 parameters: the universal
Regge slope �0 and two parameters �u; �d governing the
x! 1 behavior of the splin-flip GPDs Eu�x; t �
0�; Ed�x; t � 0� relative to that of the usual parton densities
u�x�; d�x�. We discuss the comparison of our results with
the data in Sec. VI, and use our parametrization to estimate
the quark contribution to the nucleon spin. In Sec. VII, we
discuss the positivity constraints on GPDs in the impact
parameter b? representation. To extend the region in x and
-1 © 2005 The American Physical Society
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b? where the positivity constraints are satisfied, we pro-
pose a model in which the parameters �u and �d are equal.
It provides (with just two parameters) almost the same
quality description of the four form factors as the 3-
parameter model. Our conclusions are presented in
Sec. VIII.
II. FORM FACTORS AND GPDS

The nucleon Dirac and Pauli form factors F1�t� andF2�t�

Fi�t� �
X
q

eqF
q
i �t� (1)

can be calculated from the valence quark GPDs H and E
through the following sum rules for their flavor compo-
nents (q � u; d)

Fq1 �t� �
Z �1

�1
dxHq�x; �; t�; (2)

Fq2 �t� �
Z �1

�1
dxEq�x; �; t�: (3)

Since the result of the integration does not depend on the
skewness �, one can choose � � 0 in the previous equa-
tions. Furthermore, the integration region can be reduced to
the 0< x< 1 interval, introducing the nonforward parton
densities [15]:

H q�x; t� � Hq�x; 0; t� �Hq��x; 0; t�; (4)

E q�x; t� � Eq�x; 0; t� � Eq��x; 0; t�; (5)

obeying the conditions
Z 1

0
dxH q�x; t� � Fq1 �t�; (6)

Z 1

0
dxEq�x; t� � Fq2 �t�; (7)

that follow from the sum rules (2) and (3). The H q�x; t�
functions also satisfy the t! 0 reduction relations

H u�x; t � 0� � uv�x�; H d�x; t � 0� � dv�x�;

(8)

connecting them with the usual valence quark densities in
the proton. The t � 0 limit of the Eq�x; t� distributions
exists, but the ‘‘magnetic’’ densities Eq�x; 0� � Eq�x� can-
not be directly expressed in terms of any known parton
distribution: they contain new information about the nu-
cleon structure. However, the normalization integrals

�q �
Z 1

0
dxEq�x� (9)

are constrained by the requirement that the values Fp2 �t �
0� and Fn2 �t � 0� are equal to the anomalous magnetic
moments of the proton and neutron. This gives
054013
�u � 2�p � �n � �1:673; (10)

�d � �p � 2�n � �2:033: (11)

For comparison, the normalization integrals for the
H u�x� � uv�x� and H d�x� � dv�x� distributions are
given by 2 and 1, respectively, the number of u and d
valence quarks in the proton.
III. GAUSSIAN ANSATZ

The simplest model for the proton’s H q�x; t� is to
separate the x and t-dependencies and express it as the
product

H q�x; t� � qv�x�F1�t� (12)

of the parton density qv�x� and the F1�t� form factor of the
proton. It trivially reproduces qv�x� in the forward limit
and gives the correct result for Fp1 �t�. However, such a
complete factorization of the x and t dependencies seems
rather unrealistic. In particular, the form factor formula
[23]

F�q2
?� �

X1
n�1

Z Yn
i�1

d2ki?dxi
X
a

ea��P0 �x1; . . . ; xn; k1?

� x1q?; . . . ; ka? � �1� xa�q?; . . . ; kn? � xnq?�

	�P�x1; . . . ; xn; k1? ; . . . ; ka? ; . . . ; kn?�

	 ��2�
�Xn
i�1

ki?

�
�
�
1�

Xn
i�1

xi

�
; (13)

of the light-cone formalism is a convolution of the light-
cone wave functions containing nonfactorizable combina-
tions ki? � xiq?. Furthermore, the n-body Fock compo-
nent �P�x1; . . . ; xn; k1? ; . . . ; kn?� of the light-cone wave
function usually depends on the transverse momenta
fki?g through the

P
ik

2
i?
=xi combination involving both

ki? and the fractions xi of the hadron longitudinal momen-
tum carried by the quarks. If the dependence on this
combination has a Gaussian form, the k? integration can
be performed analytically providing an example of the
interplay between the x and t dependencies. The result of
integration can be most easily illustrated on the simplest
example of a two parton system (n � 2). In this case

F�2��q2
?� �

Z 1

0
dxd2k?���x; k? � �1� x�q?���x; k?�:

(14)

Assuming the Gaussian ansatz

��x; k?� 
 exp
�
�

k2
?

2x�2 �
k2
?

2�1� x��2

�

� exp
�
�

k2
?

2x�1� x��2

�
; (15)
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we obtain

F�2��q2
?� �

Z 1

0
dxq�2��x�e��1�x�q

2
?
=4x�2

; (16)

where q�2��x� has the meaning of the two-body part of the
quark density q�x�. This suggests the Gaussian (G) pa-
rametrization [15,24] for the nonforward parton densities

H q
G�x; t� � qv�x�e�1�x�t=4x�2

; (17)

containing a nontrivial interplay between x and t depen-
dencies. The scale �2 characterizes the average transverse
momentum of the valence quarks in the nucleon. The best
agreement (within 10%) between experimental data for
Fp1 �t� in the moderately large t region 1 GeV2 <�t <
10 GeV2 and calculations based on Eqs. (1), (6), and
(17) is obtained for �2 
 0:7 GeV2. This value corre-
sponds to an average transverse momentum of about
300 MeV [15], which is close to the inverse of the proton
size. The latter can also be estimated by calculating the
mean squared radius

r2
1;p � 6

dFp1 �t�
dt

��������t�0
: (18)

The Gaussian model for H q�x; t� then gives the expression

r2
1;p � 6

Z 1

0
dxfeuuv�x� � eddv�x�g

1� x
x

: (19)

If one assumes the standard Regge-type behavior
qv�x�jx!0 
 x�0:5 of the parton densities at small x, the
integral in (19) diverges. To get a finite slope we should
modify the model for H q�x; t� in the region of small x.
IV. SMALL T BEHAVIOR AND REGGE
PARAMETRIZATION (R1)

The Regge picture suggests a x���t� behavior at small x
or the

H q�x; t� � qv�x�x
����t����0�� (20)

model for the nonforward densities H q�x; t�. Assuming a
linear Regge trajectory with the slope �0, we get

H q
R1�x; t� � qv�x�x

��0t: (21)

This ansatz was already discussed in Ref. [6]. The u and d
flavor components of the Dirac form factor are then given
by

Fu1 �t� �
Z 1

0
dxuv�x�e�t�

0 lnx;

Fd1 �t� �
Z 1

0
dxdv�x�e

�t�0 lnx:
(22)

The proton and neutron Dirac form factors follow from

Fp1 �t� � euFu1 �t� � edF
d
1 �t�; (23)
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Fn1 �t� � euF
d
1 �t� � edF

u
1 �t�: (24)

By construction Fp1 �0� � 1, and Fn1�0� � 0. The Dirac
mean squared radii of proton and neutron in this model
are given by

r2
1;p � �6�0

Z 1

0
dxfeuuv�x� � eddv�x�g lnx; (25)

r2
1;n � �6�0

Z 1

0
dxfeudv�x� � eduv�x�g lnx: (26)

Instead of the 1=x factor present in the Gaussian model, we
have now a much softer logarithmic singularity at small x,
and the integrals for r2

1 converge. To calculate F2, we need
an ansatz for the nonforward parton densities Eq�x; t�. We
assume the same Regge-type structure

E q
R1�x; t� � Eq�x�x��

0t (27)

as for H q�x; t�. The next step is to model the forward
magnetic densities Eq�x�. The simplest idea is to take them
proportional to the H q�x� densities. Choosing

E u�x� �
�u
2
uv�x� and Ed�x� � �ddv�x�; (28)

we satisfy the normalization conditions (9) which, in their
turn, guarantee that Fp2 �0� � �p, and Fn2 �0� � �n. As we
will show in Sec. VI, the Regge model R1 fits Fp1 �t� and
Fp2 �t� data for small momentum transfers �t & 0:5 GeV2.
However, the suppression at larger �t in the R1 model is
too strong, and it consequently falls considerably short of
the data for �t > 1 GeV2.

V. LARGE T BEHAVIOR AND MODIFIED REGGE
PARAMETRIZATION (R2)

To improve the agreement with the data at large �t, we
need to modify our models. Note, that both the Gaussian
(G) and the Regge-type model (R1) discussed above have
the structure

H �x; t� � qv�x� exp�tg�x��;

with g�x� 
 �1� x�=x and g�x� 
 � lnx, respectively.
Hence, at large t, the form factors are dominated by
integration over regions where tg�x� 
 1 or g�x� 
 1=t!
0. In both cases, g�x� vanishes only for x! 1, and the
large-t asymptotics of Fi�t� is governed by the x! 1
region. Given g�x� 
 1� x as x! 1, one derives that if
qv�x� 
 �1� x�

� for x close to 1, then the form factors
drop like 1=t��1 at large t. Experimentally, � is close to 3,
thus the models G and R1 correspond to the 
1=t4 behav-
ior for the form factors. This seems to be in contradiction
with the experimentally established 1=t2 behavior of Fp1 �t�,
so one may be tempted to conclude that these models have
no chance to describe the data. A trivial but important
remark is that the model curves for Fp1 �t� are more com-
plicated functions than just a pure power behavior 
1=t4.
-3
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In fact, up to 10 GeV2, the Gaussian model reproduces the
data for Fp1 within 10% [15]. For higher t, the Gaussian
model prediction for Fp1 drops faster than 1=t2 and goes
below the data. However, the nominal 1=t4 asymptotics is
achieved only at very large values �t
 500 GeV2. As we
show in Sec. VI, the Regge-type model R1 result visibly
underestimates the data for Fp1 already for �t
 1 GeV2

though one should wait till �t
 100 GeV2 to see that the
1=t4 behavior really settles. Thus, the conclusions made on
the basis of asymptotic relations might be of little impor-
tance in the experimentally accessible region: a curve with
a ‘‘wrong’’ large-t behavior might be quite successful
phenomenologically in a rather wide range of t. The short-
comings of the G and R1 models are more of a theoretical
nature. Namely, they do not satisfy the Drell-Yan (DY)
relation [23,25] between the x! 1 behavior of the struc-
ture functions and the t-dependence of elastic form factors.
According to DY, if the parton density behaves like �1�
x��, then the relevant form factor should decrease as
1=t���1�=2 for large t. Such a relation does not hold if
g�x� 
 1� x but it holds if g�x� 
 �1� x�2. Thus, the
simplest idea is to attach an extra �1� x� factor to the
original g�x� functions. To preserve the Regge structure at
small x and twe take the modified Regge ansatz R2 [10,26]

H q
R2�x; t� � qv�x�x��

0�1�x�t: (29)

The inability of the G parametrization to satisfy the DY
relation may seem rather surprizing in view of the fact that
the original derivation of the relation by Drell and Yan [23]
is based on the analysis of the large-q? limit of the general
formula (13) of which the G ansatz is a specific case
corresponding to n � 2 and the ��x; k?� 

exp��k2

?=2x�1� x��2� wave function. Note, that if the
wave function ��x; k?� depends on k? through the combi-
nation k2

?=x� k
2
?=�1� x�, then the restriction on the x!

1 integration region should be jk? � �1� x�q?j2=�1�
x� & �2 which results in the 1� x & �2=q2

? constraint
on the x integration. Also, from the explicit form of the
Gaussian parametrization (17), it is clear that the essential
region for the xa integration is 1� xa 
 �2=��t� which
gives the 1=t��1 result, that differs from the canonical
1=t���1�=2 DY prediction. The resolution of this discrep-
ancy is rather simple. In fact, in the derivation given by
Drell and Yan, it was implied that the wave function
depends on k? through the combination �k2

? �m
2
q�=x�1�

x�, withmq being the (constituent) quark mass. Then, in the
Gaussian case, after the k?-integration, one would have the
structure 
 expf���1� x�q2

? �m
2
q=�1� x��=�2�g in the

x
 1 region, and at large q2
? the dominant contribution

comes from the region 1� x
mq=q?. This agrees with
the argumentation of Ref. [23], that the leading contribu-
tion to the form factor is due to integration over the region
1� xa < mq=q? where the longitudinal momentum frac-
tion xa of the active quark is close to 1 and those of the
054013
passive quarks are close to 0, so that jka? � �1� xa�q?j
and all jki? � xiq?j are bounded by O���. Integration over
all ki?’s and xi’s of passive quarks gives q�xa�. If q�xa� 

�1� xa��, then the final integration over the region xa 

1� �=q? gives F�q?� 
 1=q��1

? 
 1=t���1�=2. Turning
back to the Gaussian model with zero quark mass, it is
easy to realize that the factor �1� x�t=x�2 in the exponent
of the G parametrization may be viewed as ��1�
x�q?�

2=x�1� x��2 with 1=x�1� x� coming from the
exp��k2

?=2x�1� x��2� structure of the k?-dependence
of the wave function. As we have seen, to get the Regge-
type behavior at small x, one should soften the 1=x factor in
the exponential substituting it by lnx. Since the limit xa !
1 for the active quark corresponds to the Regge limit xs !
0 for the spectators, one may expect by analogy that the
1=�1� x� singularity is also softened after inclusion of
higher Fock components. The R2 ansatz corresponds to
substitution of the 1=�1� x� factor by a constant. Other
arguments in favor of the R2 model can be found in
Ref. [26].

The correlation between the power behavior of form
factors and the behavior of inclusive structure functions
W�xB� of deeply inelastic scattering at large Bjorken vari-
able xB is a rather popular subject (‘‘inclusive-exclusive
connection’’). The basic idea behind the possibility of such
a correlation is that, for sufficiently large xB, one ap-
proaches the exclusive single-hadron pole. The invariant
mass W2 � �p� q�2 of the hadronic system produced in
deep inelastic scattering is related to the Bjorken variable
xB by

1� xB � xB
W2 �M2

h

Q2 ; (30)

and the single-hadron contribution to cross section is given
by the form factor squared multiplied by ��W2 �m2

h�. The
Bloom-Gilman duality idea [27] is that the W2-integral of
the hadron contribution is equal to the x-integral of the
structure function W1�x� over a duality region with fixed
boundaries in the variable W2. This gives a relation be-
tween the power � specifying the �1� x�� behavior of the
structure function W1�x� in the x! 1 region and the
power-law behavior of the squared elastic form factor:
F2�t� 
 �1=jtj���1. In the proton case, with usually adopted
value � � 3, one obtains a dipole behavior for the Dirac
F1�t� form factor.

We would like to strongly emphasize here that one
should not confuse the Bloom-Gilman duality with the
Drell-Yan relation [23]. As we discussed above, the latter
connects some integral of a nonforward parton density
H q�x; t� over the interval x > 1� �=

������
�t
p

with the first
power of the form factor. It is worth to repeat and stress the
statement: the Bloom-Gilman relation connects an x inte-
gral of the structure function with the square of the form
factor, while the DY relation expresses an(other) x integral
-4
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of the structure function in terms of the first power of the
form factor. Moreover, the dominance of the region x >
1� �=

������
�t
p

implied by the DY relation is a consequence of
a specific structure of the density H q�x; t�, the interplay
between its x and t dependence. As we have seen, the
Drell-Yan relation does not work for the Gaussian model,
but it holds for the modified Regge model R2.

One should also realize that both relations were formu-
lated before the QCD era, and in absolutely nonperturba-
tive terms. Their authors did not assume that the shape of
the structure function F1�x� or that of the nonforward
parton densities H q�x; t� are generated by perturbative
QCD dynamics based on hard gluon exchanges. Their
prescription was that knowing the x! 1 behavior of the
structure functions, one can use Bloom-Gilman or Drell-
Yan relations to get predictions for form factors. Both
relations have a common feature: if one changes the power
� in the �1� x�� behavior of the structure function, this
would result in a change of the 1=��t����1�=2 power be-
havior of the form factor, i.e., the powers themselves are
not fixed, what is fixed is the relation(s) between them.
Accidentally, both relations give the same correlation be-
tween the two powers, and that is why they are confused
sometimes.

In distinction to the Bloom-Gilman (BG) and Drell-Yan
(DY) relations, perturbative QCD predicts definite powers
for the asymptotic behavior of form factors and the x! 1
behavior of parton distributions. For example, it gives
��s=jtj�n�1 for a spin-averaged form factor of an n-quark
hadron, and it also predicts fixed powers �2n�2

s �1� x�2n�3

for the x! 1 behavior of its valence quark distributions
(see [28])1. The basic difference between the pQCD for-
mulas and BG and DY relations is that a particular power
behavior of a hadronic form factor in pQCD is not a
consequence of a particular limiting power behavior of
the respective parton distribution in the region x! 1.
The fixed powers predicted by pQCD are correlated simply
because of similarity of the relevant diagrams, but there is
no causal connection between them. Also, though the
powers predicted by pQCD for the nucleon are in agree-
ment with BG and DY relations, it was never demonstrated
that there is a fundamental reason behind this fact.

Formally, the relevant powers of �1� x�, 1=jtj, and �s
for the proton are correlated in pQCD just like in the
Bloom-Gilman relation. However, a direct calculation of
pQCD diagrams for W1�x� gives expressions which have
more complicated structure than the squares of form fac-
tors (see e.g., [29], where the x! 1 behavior of GPDs is
also discussed). Thus, it is not clear yet if the Bloom-
Gilman relation works in pQCD.
1We would like to comment here that all existing phenome-
nological parametrizations of parton densities based on fits to
data ascribe a larger power of �1� x� for the d quark distribution
compared to the u one, uniformly accepting a 
�1� x�4 behav-
ior rather than pQCD’s �1� x�3 form for d quarks.
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With the Drell-Yan relation, the situation is simpler. The
whole logic of the hard-rescattering pQCD mechanism is
orthogonal to the Feynman-Drell-Yan approach. In the
pioneering paper by Lepage and Brodsky [28], it was
emphasized in the Introduction of that paper that the
Drell-Yan relation is invalid in pQCD. It was stressed, in
particular, that the correlation between the powers of �s in
pQCD predictions disagrees with the Drell-Yan relation.
For instance, the leading �1� x�3 term in W1�x� for the
nucleon is attributed in pQCD to diagrams involving four
hard gluon exchanges, and is accompanied hence by the �4

s
factor. Integrating it over the region x > 1� �=Q, one
would get a contribution 
�4

s=t2 that has the same 1=t2

power as the pQCD prediction for the nucleon form factor,
but has two extra powers of �s.

Our models imply the dominating role of the Feynman-
Drell-Yan mechanism for the hadronic form factors, and
we assume that the x! 1 behavior of the parton distribu-
tions is generated by nonperturbative dynamics. In this
scenario, the observed behavior of hadronic form factors
is also due to the nonperturbative dynamics, and we treat as
negligible the pQCD contributions to the nucleon form
factors, which have ��s=	�2 suppression compared to the
nonperturbative terms.

In the following estimates we take the unpolarized par-
ton distributions at input scale 
2 � 1 GeV2 from the
MRST2002 global NNLO fit [30] as

uv � 0:262x�0:69�1� x�3:50�1� 3:83x0:5 � 37:65x�;

(31)

dv � 0:061x�0:65�1� x�4:03�1� 49:05x0:5 � 8:65x�:

(32)

One sees that �u � 3:50 and �d � 4:03 at a scale 
2 �
1 GeV2. Hence, the asymptotic behavior of Fp1 �t� in the R2
model is 1=t2:25, generating a slightly faster decrease than
the ‘‘canonical’’ 1=t2. Again, this asymptotic limit sets in
for very large t values. At small t, the modifications com-
pared to the R1 model are not very significant numerically.
The Dirac mean squared radii of proton and neutron in the
R2 model are finite and given by

r2
1;p � �6�0

Z 1

0
dxfeuuv�x� � eddv�x�g�1� x� lnx; (33)

r2
1;n � �6�0

Z 1

0
dxfeudv�x� � eduv�x�g�1� x� lnx: (34)

In case of the Pauli form factor F2, we perform the same
modification of the ansatz for the Eq�x; t� densities taking

E q�x; t� � Eq�x�x��
0�1�x�t: (35)

Experimentally, the proton helicity flip form factor F2�t�
has a faster power falloff at large t than F1�t�. Within all
our models, this means that the x
 1 behavior of the
functions E�x� and H �x� should be different. To produce
-5
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a faster decrease with t, the x
 1 limit of the density Eq�x�
should have extra powers of 1� x compared to that of
H q�x� (in case of the G model, such a modeling was
originally incorporated in Ref. [17]). Aiming to avoid
introducing too many free parameters, we try the simplest
ansatz for Eq�x� in which we get them by just multiplying
the valence quark distributions by an additional factor �1�
x��q , i.e., we take

E u�x� �
�u
Nu
�1� x��uuv�x� and

Ed�x� �
�d
Nd
�1� x��ddv�x�;

(36)

where the normalization factors Nu and Nd

Nu �
Z 1

0
dx�1� x��uuv�x�; (37)

Nd �
Z 1

0
dx�1� x��ddv�x� (38)

guarantee the conditions (9). The flavor components of the
Pauli form factors are now given by

Fu2 �t� �
Z 1

0
dx
�u
Nu
�1� x��uuv�x�x

��0�1�x�t; (39)

Fd2 �t� �
Z 1

0
dx
�d
Nd
�1� x��ddv�x�x��

0�1�x�t: (40)

The powers�u and�d are to be determined from a fit to the
nucleon form factor data. Note that the value �q � 2
corresponds to a 1=t asymptotic behavior of the ratio
Fq2 �t�=F

q
1 �t� at large t. We also tried an even simpler 2-

parameter version of the R2 model, with �u; �d restricted
to be equal to each other �u � �d.

VI. RESULTS

In this section, we show the results for the proton and
neutron electric and magnetic form factors based on the
Regge and modified Regge parametrizations discussed in
this work. In recent years, a lot of high accuracy data have
become available for the nucleon electromagnetic form
factors in the spacelike region, which put stringent con-
straints on our parametrizations of GPDs. The parametri-
zation R1 of Eqs. (21) and (28) depends on only one
parameter: �0, which can only be varied within a narrow
range if it is to be interpreted as a slope of the Regge
trajectory. The modified Regge parametrization R2 of
Eqs. (29) and (35) depends on three parameters. Besides
�0, it also depends on �u and �d, which govern the x! 1
behavior of the GPD E, that in turn is determined from the
behavior of Fp2 =F

p
1 at large �t. In determining these

parameters, we perform a best fit to the Sachs electric
and magnetic form factors, as they are the usual form
factors extracted from experiment. The Sachs electric
and magnetic form factors are determined from F1 and
054013
F2 as

GE�t� � F1�t� � �F2�t�; (41)

GM�t� � F1�t� � F2�t�; (42)

where � � �t=4M2
N . The Regge slope parameter �0 can in

principle be directly fitted from the knowledge of the
electromagnetic radii of proton and neutron. In particular,
the electric mean squared radii of proton and neutron are
given by

r2
E;p � r2

1;p �
3

2

�p
M2
N

; (43)

r2
E;n � r2

1;n �
3

2

�n
M2
N

; (44)

where the first term on the right-hand side is the Dirac
radius squared r2

1, whereas the second term is the Foldy
term. The Dirac radii are calculated through the integrals of
Eqs. (25) and (26) for the R1 model, and through Eqs. (33)
and (34) for the R2 model. In Fig. 1, we show the proton
and neutron rms radii as the functions of the Regge slope
�0 for both R1 and R2 models. One notes that the neutron
-6
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rms radius is dominated by the Foldy term, which gives
r2
E;n � �0:126 fm2. Therefore, a relatively wide range of

values �0 are compatible with the neutron data. However
for the proton, a rather narrow range of values around �0 �
1:0� 1:1 GeV�2 are favored. Such value is close to the
expectation from the near universal Regge slopes for me-
son trajectories, therefore supporting our Regge-type pa-
rametrizations. In Figs. 2 and 3, we show the proton and
neutron Sachs electric and magnetic form factors. One
observes from Figs. 2 and 3 that the modified Regge model
R2 gives a rather good description of all available form
factor data for both proton and neutron in the whole t range
using the parameter for the Regge trajectory �0 �
1:105 GeV�2, and the following values for the coefficients
governing the x! 1 behavior of the E-type GPDs: �u �
1:713 and �d � 0:566. The 2-parameter version of the R2
model gives a description of similar quality if we take �0 �
1:09 GeV�2 and �u � �d � 1:34. In Figs. 2 and 3, we
also show the results of the initial Regge model R1, with
the above value �0 � 1:105 GeV�2 of �0. One sees from
Figs. 2 and 3 that the Regge model R1 is able to reproduce
the main trends of both proton and neutron electromagnetic
form factor data for �t 
 0:5 GeV2. For higher values of
0
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FIG. 3 (color online). Neutron magnetic form factor relative to
the dipole form (upper panel), and neutron electric form factor
(lower panel), with curve conventions as in Fig. 2. The data for
the neutron magnetic form factor Gn

M are from [55] (open
circles), [56] (solid circles), [57] (open triangles), [58] (solid
triangles), [59] (open squares), and [60] (solid squares). The data
for the neutron electric form factor Gn

E are from different double
polarization experiments at MAMI (triangles [61–64]), NIKHEF
(solid square [65]) and JLab (solid circles [66–68]). The open
squares are the Gn

E extraction from the deuteron quadrupole form
factor according to the analysis of Ref. [69].

-t (GeV2)

FIG. 2 (color online). Proton magnetic (upper panel) and elec-
tric (middle panel) form factors relative to the dipole form
GD�t� � 1=�1� t=0:71�2, as well as the ratio of both form
factors (lower panel). The dotted curves correspond to the
Regge parametrization R1, with �0 � 1:105 GeV�2. The solid
and dashed curves correspond to two fits using the modified
Regge parametrization R2. The solid curves are for the 3
parameter fit: �0 � 1:105 GeV�2, �u � 1:713, and �d �
0:566. The dashed curves are for the 2 parameter fit: �0 �
1:09 GeV�2, �u � �d � 1:34. Data for the proton magnetic
form factor Gp

M are from [48] (open squares), [49] (open circles),
[50] (solid stars), [51] (open stars), [52] (solid circles), [53]
(solid squares), according to the recent reanalysis of Ref. [54].
Data for the ratio Gp

E=G
p
M are from [31] (solid circles), [32]

(open triangles), and [33] (solid triangles).
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�t, however, it falls short of the data, since as we dis-
cussed, it predicts faster power falloff than that correspond-
ing to the DY relation. The modified Regge model R2
reproduces the DY powers for the form factors at large
�t, and is able to accurately describe existing data. The
two additional parameters �u and �d in the R2 model, in
particular, allow to describe the decreasing ratio ofGp

E=G
p
M

with increasing momentum transfer, as follows from the
recent JLab polarization experiments [31–33]. Our pa-
rametrization leads to a zero for Gp

E at a momentum trans-
fer of �t ’ 8 GeV2, which will be within the range
covered by an upcoming JLab experiment [34]. To study
the large �t behavior of our GPD parametrizations, it is
instructive to plot the Dirac and Pauli form factors. In this
way, one separates the large�t behavior of both the GPDs
-7
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H and E. In Fig. 4, we show this large�t behavior for Fp1 ,
and for the ratio of Fp2 =F

p
1 . One observes from Fig. 4 that

for Fp1 , the Regge parametrization R2 settles to an approxi-
mate 
1=t2 power behavior around �t ’ 10 GeV2.

The ratio Fp2 =F
p
1 was also discussed within the context

of perturbative QCD (pQCD), where the asymptotic large-t
behavior of the nucleon form factors is dominated by
diagrams with two hard gluon exchanges [35,36]. In any
model with dimensionless quark-gluon coupling constant,
these diagrams give Fp1 
 1=t2 [35]. Furthermore, for vec-
tor gluons, the quark helicity conservation at the gluon
vertex and dimensional counting suggest the extra m2=t
suppression for the Fp2 form factor [35,37], with m being
the quark mass or a nonperturbative parameter coming
from the baryon wave function corresponding to extra
unit of orbital angular momentum [38]. Thus, one should
expect that F2=F1 
 1=t in pQCD. Direct calculation [38],
however, shows that the integrals over the quark momen-
tum fractions xi; yj in the pQCD formula contain terms like
’�xi; . . .�’�yj; . . .�=x2

i y
2
j that diverge even if the nucleon

distribution amplitudes ’�xi; . . .�; ’�yj; . . .� linearly vanish
at small xi; yj. Strictly speaking, this means that pQCD
factorization is not applicable to calculating Fp2 �t� even
in the asymptotic �t! 1 limit, the fact well known
since the pioneering papers [28,37]. The authors of
Ref. [38] substituted the logarithmic divergences
by log��t=�2

QCD� factors, and obtained FpQCD
2 =FpQCD
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data for Fp1 are from [53] (solid squares). Data for the ratio
Fp2 =F

p
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log2��t=�2
QCD�=��t�. This result was found to be in sur-

prisingly good agreement with the JLab data. In this con-
nection, we want to emphasize that our results for F2�t� and
F1�t� correspond to the Feynman mechanism, i.e., to over-
lap of soft wave functions. The pQCD terms correspond to
two iterations of the soft wave functions with hard gluon
exchange kernels. As is well known, there is O��s=	�
suppression for each extra loop of a Feynman diagram in
QCD. Thus, from our point of view, pQCD terms are
O���s=	�2� or, at most, a few per cent corrections to the
Feynman mechanism contributions to F1 and F2. For this
reason, we neglect them in our analysis. In our parametri-
zation R2, the good description found for the ratio Fp2 =F

p
1

can be directly assigned to the extra suppressing factor of
�1� x�� contained in the GPD E�x; t�. The question, how
this suppression is related to the quark orbital angular
momentum, deserves further investigation. It is interesting
to note that the extra �1� x� factor for Eu�x� function
compared to H u�x� appears in the starting term of the
QCD sum rule calculation of these functions [39]. Also, the
dominant x! 1 perturbative QCD term for the GPD E
(given by �4

s diagrams) involves two additional powers in
�1� x� compared with the pQCD expression for the lead-
ing x! 1 term in the GPDH [29]. Since the GPD E enters
the sum rule for the total angular momentum Jq carried by
a quark of flavor q in the proton as [2]

2Jq �
Z 1

�1
dxxfHq�x; 0; 0� � Eq�x; 0; 0�g; (45)

our parametrization R2, in which the x! 1 limit of E is
determined from the Fp2 =F

p
1 form factor ratio, allows to

evaluate the above sum rule. The first term in the sum rule
of Eq. (45) is already known from the forward parton
distributions and is equal to the total fraction of the proton
momentum carried by a quark of flavor q �q � u; d; s�:

Mq
2 �

Z 1

�1
dxxHq�x; 0; 0� �

Z 1

0
dxx�qv�x� � 2 �q�x��;

(46)

with �q�x� the antiquark distribution. For the ‘‘nontrivial’’
TABLE I. Estimate of 2Jq (second column) for the different
quark flavors at the scale 
2 � 2 GeV2 according to Eqs. (47)–
(49), using the R2 parametrization (with 3 parameters) for the
GPD E. For the forward parton distributions, the MRST2002
NNLO parametrization [30] is used, yielding the total quark
momentum contributions Mq

2 (first column). For comparison, the
third column shows the quenched lattice QCD results of [40],
extrapolated to the physical pion mass, for 2Ju and 2Jd.

Mq
2 (MRST2002) 2Jq (R2 model) 2Jq (lattice [40])

u 0.37 0.58 0:74� 0:12
d 0.20 �0:06 �0:08� 0:08
s 0.04 0.04
u� d� s 0.61 0.56 0:66� 0:14
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contribution to the sum rule, arising from the second mo-
ment of the GPD E, we use our modified Regge parame-
trization R2 of Eq. (36) for Eq�x�, which, neglecting the
antiquark contribution, yields for Eq. (45):

2Ju � Mu
2 �

�u

Nu

Z 1

0
dxx�1� x��uuv�x�; (47)

2Jd � Md
2 �

�d

Nd

Z 1

0
dxx�1� x��ddv�x�; (48)

2Js � Ms
2: (49)

In Table I, we show the values of the quark momentum
sum rule Mq

2 at the scale 
2 � 2 GeV2, using the
MRST2002 parametrization [30] for the forward parton
distributions. We also show the estimate for Ju, Jd, and Js

of Eqs. (47)–(49) at the same scale. As was already ob-
served in Ref. [6], based on a Regge model of the type R1,
our estimates lead to a large fraction (63%) of the total
angular momentum of the proton carried by the u-quarks
and a relatively small contribution carried by the d-quarks.
As the d-quark intrinsic spin contribution is known to be
relatively large and negative (�dv ’ �0:25), the small
total angular momentum contribution Jd of the d-quarks
which follows from our parametrization implies an inter-
esting cancellation between the intrinsic spin contribution
and the orbital contribution Ld (with 2Jq � �q� 2Lq),
which should therefore be of size 2Ld ’ 0:2. For the
u-quark on the other hand, the parametrization R2 yields
only a small value for 2Lu, as our estimate for 2Ju is quite
close to the intrinsic spin contribution �uv ’ 0:6. Such a
picture is also supported by a recent quenched lattice QCD
calculation [40] (see also [41] for an earlier calculation) for
the valence quark contributions to 2Ju and 2Jd. One indeed
sees from Table I (third column) that the quenched lattice
QCD calculation yields quite similar values for 2Ju and
2Jd as our parametrization R2. It remains to be seen how-
ever how large is the sea quark contribution to the GPD E
which can enter the spin sum rule of Eq. (45). This sea
quark contribution is only approximately included (i.e.
fermion loop contributions are neglected) in the quenched
lattice QCD calculations of Ref. [40]. An exploratory
investigation using unquenched QCD configurations has
been performed in Ref. [42]. The sea quark contribution is
also not constrained by the form factor sum rules consid-
ered in this paper, which only constrain the valence quark
distributions. Ongoing measurements of hard exclusive
processes, such as deeply virtual Compton scattering, pro-
vide a means to address this question in the near future.

Besides the electromagnetic form factors for proton and
neutron, the Regge parametrizations discussed in this work
can also be used to estimate N ! � transition form factors,
provided one can relate the N ! � transition GPDs to the
N ! N ones. First experiments which are sensitive to the
N ! � GPDs have recently been reported [43]. For the
054013
magnetic N ! � transition form factor G�M�t�, it was
shown in Ref. [44] that, in the large Nc limit, the relevant
N ! � GPD can be expressed in terms of the isovector
GPD Eu � Ed, yielding the sum rule

G�M�t� �
G�M�0�
�V

Z �1

�1
dxfEu�x; �; t� � Ed�x; �; t�g

�
G�M�0�
�V

fFp2 �t� � F
n
2 �t�g; (50)

where �V � �p � �n � 3:70. Within the large Nc ap-
proach used in Ref. [44], the value G�M�0� is given by
G�M�0� � �V=

���
3
p

[6], which is about 30% smaller than
the experimental number. In our calculations, we will
therefore use the phenomenological value G�M�0� � 3:02
[45]. We show our results forG�M using Eq. (50) in Fig. 5. It
is seen that both the Regge and modified Regge parame-
trizations yield a magnetic N ! � form factor which
decreases faster than a dipole, in qualitative good agree-
ment with the data.

The sum rule (50) was used earlier by P. Stoler [46], who
proposed a model [18,19] in which the Gaussian ansatz for
GPDs is modified at large�t by terms having a power-law
behavior.

VII. GPDS IN IMPACT PARAMETER SPACE AND
POSITIVITY CONSTRAINTS

The models for GPDs should satisfy many constraints.
In fact, such constraints as the reduction of GPDs to usual
parton densities in the forward limit and to form factors in
the local limit, are the key points for the models con-
structed in this paper. There are more complicated con-
-9
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straints imposed, e.g., by the polynomiality condition
which is extremely important for nonzero skewness.
Since the nonforward parton densities correspond to � �
0, they are not affected by these constraints. However, they
are affected by the positivity conditions which should be
taken into account both for nonzero and zero skewness
parameter. In particular, there exists a relation between the
E-type and H-type GPDs [47]. Since we are constructing
E-GPDs from H-GPDs by a simple modification of the
x-behavior of H by a power of �1� x�, we should check
that such a modification is consistent with the positivity
constraint of Ref. [47].

The most convenient formulation of the positivity con-
straint relating the E and H GPDs is in the impact parame-
ter space. For � � 0, the impact parameter versions of
GPDs are obtained through a Fourier integral in transverse
momentum q?:

Hq�x;b?� �
Z d2q?
�2	�2

eib?�q?H q�x;�q2
?�; (51)

Eq�x;b?� �
Z d2q?
�2	�2

eib?�q?Eq�x;�q2
?�; (52)

These functions have the physical meaning of measuring
the probability to find a quark which carries longitudinal
momentum fraction x at a transverse position b? in a
nucleon, see Refs. [9,10].

It has been shown [47] that the GPDs H and E in the
impact parameter space satisfy the positivity bound:

1

2MN
jrb?E

q�x;b?�j 
 Hq�x;b?�: (53)

Translating the GPD parametrization R2 of Eqs. (29)
and (35), into the impact parameter space, we obtain

Hq�x;b?� � qv�x�
e�b?2=��4�0�1�x� lnx�

4	���0�1� x� lnx�
; (54)

Eq�x;b?� �
�q
Nq
�1� x��qqv�x�

e�b?2=��4�0�1�x� lnx�

4	���0�1� x� lnx�
;

(55)

from which it follows that

jrb?E
q�x;b?�j �

�q
Nq
�1� x��qqv�x�

jb?j
2

	
e�b?2=��4�0�1�x� lnx�

4	���0�1� x� lnx�2
; (56)

Within the R2 parametrization, the positivity bound of
Eq. (53) implies an upper bound on the value of jb?j:

jb?j 

Nq
j�qj

MN

�1� x��q
4���0�1� x� lnx�: (57)

In Fig. 6, we show the GPDs in the impact parameter space
054013
for the modified Regge parametrization R2 discussed
above. The parameters are taken from the best fit to the
form factors as discussed in the previous section. We see
from Fig. 6 that for the u-quark GPDs, the positivity bound
of Eq. (53) is satisfied over most of the x-region, consid-
ering that the GPDs are vanishingly small for values of b?
larger than the nucleon size (corresponding with about
4:4 GeV�1). For the d-quark GPDs on the other hand,
there is a violation in the present parametrization, which
becomes more pronounced at larger values of x and b?, as
is shown in Fig. 7 (left panel). We therefore tried to extend
the range of validity of the R2 parametrization by finding a
fit with a higher value of �d. This can be obtained by
imposing the constraint �u � �d. We have shown before
that the resulting two-parameter fit (�0 � 1:09 GeV�2,
�u � �d � 1:34) gives a nearly as satisfactory description
of the form factors. It is seen from the right panel in Fig. 7
that this 2-parameter fit extends the region in x and b? for
the d-quark where our parametrization satisfies the posi-
tivity condition.

It is clear, that with a somewhat more complicated
model, we can easily satisfy the positivity constraint.
However, given that the violation is rather small, we prefer
not to introduce extra parameters and to keep the parame-
trization as simple as possible.
-10
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Furthermore, it is clearly seen from these images that for
large values of x, our quark distributions are concentrated
at small values of b?, reflecting the distribution of valence
quarks in the core of the nucleon. On the other hand, at
small values of x, the distribution in transverse position
extends much further out. This expected correlation as-
sures that our model correctly reproduces the gross features
of the nucleon structure as expressed in terms of the quark
distributions.
VIII. CONCLUSIONS

Summarizing, we discussed in this work several parame-
trizations for the t-dependence of the nucleon GPDs in
view of the recent accurate data for the nucleon electro-
magnetic form factors in the spacelike region. Starting
from the low �t region, we discussed a Regge model in
which the x and t dependence of the GPDs are coupled in
the form x��

0t. This model has only one parameter which
physically corresponds to the slope �0 of the Regge trajec-
tory in the vector EM current channel. This parameter is
linearly related to the rms radii of F1 and F2 form factors,
and it was found that both radii are well deccribed by the
same universal Regge slope. Such a Regge model leads
however to faster power falloff of form factors in the large
�t region than that expected from the Drell-Yan relation.
To conform with this relation and the observed power
behavior at large �t, we used a modified Regge parame-
trization that gives slower decrease with �t. The modified
Regge parametrization displays approximately a 1=t2 be-
havior for Fp1 �t� data in the region �t � 10 GeV2. To
054013
describe Fp2 �t�, we need to introduce, in addition to �0,
two parameters that govern the x! 1 behavior of the GPD
E. They were adjusted to give an accurate description of
the recent polarization data for the ratio Fp2 =F

p
1 . Since this

behavior in our model is correlated with the x! 1 behav-
ior of the GPD E, it also allows us to evaluate the sum rule
for the total angular momentum carried by the quarks,
which involves the second moment of the GPD E. For
the quark contributions to the nucleon spin, we find an
intriguing flavor dependence, in which the valence u-quark
contributes about two-thirds of the proton’s spin (at a low
renormalization point), which is nearly entirely arising
from the u-quarks intrinsic spin contribution. For the va-
lence d-quark on the other hand, our parametrization im-
plies a near cancellation between its negative intrinsic spin
contribution and its orbital angular momentum contribu-
tion. Recent quenched lattice QCD calculations support
this observation. It remains to be seen by how much the sea
quarks affect this picture. Ongoing measurements of hard
exclusive processes, such as deeply virtual Compton scat-
tering, are a means to address this question. As the GPDs
mostly enter in hard exclusive observables through con-
volution integrals, our parametrization, which builds in the
constraint coming from the first moment through the nu-
cleon electromagnetic form factors, can be used as a first
step to unravel the information on GPDs from the observ-
ables. The present work also suggests several interesting
directions for future research. One of them is the extension
of this study to quantify the link between the nucleon
strangeness form factors and the s-quark distributions.
Furthermore, the study of the chiral corrections (pion
mass dependence) to the GPDs will allow to match onto
the corresponding known chiral behavior of the elastic
form factors at small momentum transfer.
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