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Nonuniversality of transverse Coulomb exchange at small x
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Within an explicit scalar QED model we compare, at fixed x� 1, the leading-twist K?-dependent
‘‘quark’’ distribution fq�x;K?� probed in deep inelastic scattering and Drell-Yan production and show that
the model is consistent with the universality of fq�x;K?�. The extension of the model from the aligned jet
to the symmetric kinematical regime reveals interesting properties of the physics of Coulomb rescatterings
when comparing DIS and DY processes. At small x the transverse momentum hk2

?i induced by multiple
scattering on a single center is process dependent, as well as the transverse momentum broadening
occurring in collisions on a finite size nuclear target.
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I. INTRODUCTION

A significant modification of the quark and gluon dis-
tribution functions in heavy nuclei—as compared to light
targets such as a proton or deuterium—is observed in deep
inelastic scattering (DIS) experiments on nuclei (for a
review, see [1,2]). Although such effects manifest them-
selves on a wide range in the light-cone momentum frac-
tion x carried by the parton struck in the target, it is useful
to discuss separately two relevant kinematical regimes at
work. In the target rest frame, the typical lifetime for the
hadronic fluctuation of the virtual photon of energy � is
given by the coherence length lc � 2�=Q2 � 1=�Mx�
(where M is the mass of one scattering center in the target,
here a nucleon in the nucleus). At large x the coherence
length remains small compared to the typical distance d
between two centers, lc & d. This is the incoherent regime
for which one expects factorization between the hard pro-
duction process on a given center and the subsequent final
state interaction of the hadronic (or partonic) fluctuation.
Conversely, at small x� 1, the fluctuation scatters coher-
ently on several scattering centers. In this regime, rescat-
terings actually affect the hard process. Taking the average
distance d ’ 2 fm between two nucleons in heavy nuclei,
one expects the onset of coherence effects such as shadow-
ing below x ’ 0:1. This is indeed seen in the small
x measurements of nuclear structure functions performed
at CERN and Fermilab by the NMC and E665 experi-
ments, respectively [3]. In addition to DIS, evidence for
shadowing corrections also comes from Drell-Yan (DY)
data at small x2 � x measured by the fixed-target experi-
ments E772 and E866/NuSea [4]. More data are expected
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at smaller x from the relativistic heavy ion collider
facility and in a few years from the large hadron collider.

Although the nuclear parton densities probed in DIS or
through the DY mechanism appear to be similar within
experimental errors, other (intrinsically nonperturbative)
observables depend significantly on the considered hard
process. In particular, the transverse momentum nuclear
broadening of the DY pair [4,5] is found to be a factor of 5
or more1 smaller than what is measured in dijet photo- or
hadro-production [6]. Note that a similar discrepancy be-
tween DY pair and heavy quarkonium transverse momen-
tum broadening has also been reported [4,5,7].

In the incoherent regime, one would expect the broad-
ening for large nuclei to be proportional to the path length
covered by the parton produced in the hard process,
hp2
?i � �2A1=3, coming from the diffusion in transverse

momentum space due to multiple scattering [8]. Moreover
the factorization between the hard process and the rescat-
terings should make the strength of the nuclear broadening
� a universal quantity (up to trivial geometrical and color
factors). Yet the smallness of nuclear broadening in the DY
process seems to contradict universality, which remains so
far not fully understood [7,9–11]. Given the fact that most
of the data lie at the borderline between the incoherent and
coherent regimes, we may wonder whether coherent ef-
fects could be at the origin of this observation.

Since rescattering affects the hard process as soon as
lc * d, there is a priori no reason to expect transverse
momentum broadening to be universal at small x.
However, when comparing two different processes, it is
difficult to foresee in which process the broadening will be
the largest.
1Given the various incident reaction energies and depending
on the precise definition adopted for the nuclear broadening,
telling precisely how big the discrepancy is turns out to be
somewhat delicate although it is statistically significant.
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In this paper those questions are addressed by studying
in parallel DIS and DY within an explicit scalar QED
(SQED) model in the small x limit. In this limit we will
consider two kinematical regimes, namely, the aligned-jet
region where the largest component 2� of the incoming
light-cone momentum is mostly transferred to a single final
state particle, and the symmetric region where it is trans-
ferred to two final state particles. In the aligned-jet region
(where soft rescatterings contribute to the total cross sec-
tion to leading twist), the model is shown to be consistent
with the universality of the K?-dependent distribution
fq=T�x;K?� of the target quark participating to the hard
subprocess, for an arbitrary number of scattering centers in
the target, i.e., fDIS

q=T�x; K?� � fDY
q=T�x;K?�. In the symmet-

ric region (where soft rescatterings contribute to higher
twist to the DIS cross section), the distribution in the
Coulomb transfer k? to the outgoing two-particle system
is different in DIS and DY (for x� 1). This nonuniversal-
ity appears both for a pointlike or finite size target. In
particular, in the symmetric kinematics the nuclear k?
broadening is driven by monopole rescattering in DY
production and by dipole rescattering in DIS.

The paper is organized as follows: In Sec. II we recall
the models of Refs. [12,13] for the leading-twist quark
distributions probed in DIS and DY production on a point-
like heavy target, which we extend to the case of a finite
size target in Sec. II B. Section III is devoted to the exten-
sion of the model to the symmetric kinematical regime. A
summary of our results is given in Sec. IV.
2We use the light-cone variables k� � k0 � kz to define a
momentum k � �k�; k�; ~k?�.
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II. MODEL FOR LEADING-TWIST DIS AND DY
QUARK DISTRIBUTIONS: ALIGNED-JET

KINEMATICS

A. Single scattering center

1. Perturbative model for DIS

The leading-twist K?-dependent quark distributions
fq=T�x;K?� in DIS and DY are modeled within a scalar
QED model. Let us start by briefly recalling the features of
the model for DIS [12]. The contribution to the DIS cross
section �DIS (or to the forward DIS amplitude) studied in
[12] is obtained by squaring the DIS production amplitude
shown in Fig. 1(a). The target T is chosen to be a scalar
‘‘heavy quark’’ of momentum p and mass M. The incom-
ing virtual photon of momentum q couples to scalar ‘‘light
quarks’’ of mass m, which appear with on shell momenta
p1 and p2 in the final state. The ‘‘electromagnetic’’ charge
of the light quarks is denoted by e and the light and heavy
quarks interact with ‘‘strong’’ coupling g. We work in a
target rest frame where2 q � ��MxB; q�; ~0?�, xB being
fixed and q� � 2� � Q2=MxB ! 1 in the Bjorken limit.
In this limit the contribution to the cross section of trans-
verse virtual photons is subleading (in SQED), and we take
the photon to be longitudinally polarized in the following.

Studying the effect of Coulomb soft rescatterings be-
tween the light and heavy quarks at leading-twist3 requires
concentrating on the aligned-jet region [2], where most of
the photon energy � is transferred to the struck quark, i.e.,
p�1 ’ q

� � p�2 (see Fig. 1). Working moreover in the
xB � 1 limit as in [12], our leading-twist kinematics is
defined by the following hierarchy of scales,
Q2; �! 1� p�2 � M� ki?; pi?; k
�
i ; m� k�i ; p

�
2 	MxB � p�1 / 1=�

p�2 fixed, y �
p�2
2�
! 0: (1)
In the first line the first and last inequalities arise from the
Bjorken limit and the aligned-jet kinematics (the latter
being stressed in the second line). The other inequalities
arise from the limit xB � 1. All scales other than � are
soft, i.e., intrinsic to the target system. Note that taking a
relatively large target mass M is not essential to our analy-
sis but will simplify the expressions of cross sections.

The kinematics (1) allows the following physical inter-
pretation:
(i) S
ince the hard scale � does not flow in the internal
propagators of the lower part of Fig. 1(a), the hard
vertex �
q! q is taken at zeroth order in g. The
square of the DIS production amplitude describes
the soft dynamics which can be directly interpreted
3In S
kinemat
p�2 =�2�

-2
(apart from a trivial factor / e2Q2) as a contribu-
tion to the light quark distribution in the target
fq=T�x;K?�.
(ii) T
he momentum K corresponds to the quark probed
in the target and reads K � k� p2, where k �P
ki is the total Coulomb momentum transfer be-

tween the light and heavy quarks. In Fig. 1(a) we
haveK � p1 � q, and the quark distribution is thus
probed at x � K�=p� ’ �q�=p� � xB. (Since
K� > 0, it is easy to realize, for instance in a
light-cone time-ordered formulation, that the hard
subprocess in Fig. 1(a) is indeed �
q! q, as in the
infinite momentum frame.)
ec. III we will extend the model to a higher-twist
ical domain, where p�2 scales with �, i.e., the ratio y �
� is fixed.



FIG. 1. (a) The DIS production amplitude in the model of
Ref. [12]. Coulomb rescatterings are resummed. (b) The DY
production amplitude obtained from (a) by crossing [13].
Diagrams where the heavy photon is emitted from an internal
quark line are suppressed (in covariant gauges) in the limit
xB � 1.
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(iii) T
he diagrams contributing to the Q2 evolution of
fq=T being excluded, the model thus describes fq=T
at an initial soft scale Q0.
4We have for instance lim�!0W�~r?; ~R?� �
1

2� log�j
~R?�~r?j
R?
�.
The DIS amplitude of Fig. 1(a), including any number of
Coulomb rescatterings, has been calculated in [12] in the
kinematical domain defined by (1). It incorporates leading-
twist shadowing effects and reads in transverse coordinate
space,

M̂ DIS�~r?; ~R?� �
�������
4�
p

 �r?�Tq�q�~r?; ~R?�; (2)

where we define normalized scattering amplitudes M̂ in
terms of Feynman amplitudes M by

M̂ �
1

4M�
M: (3)

In Eq. (2) the factor  �r?� denotes the �
 ! q�q dipole
wave function:

 �r?� � y
����
�
p

QV�mjjr?�; (4)

where � � e2=�4��, y is the light-cone momentum frac-
tion carried away by the ‘‘antiquark’’ p2,

y �
p�2
2�
� 1; (5)

and the function V is given by

V�mjjr?� �
Z d2 ~p?
�2��2

ei~r?� ~p?

p2
? �m

2
jj

�
K0�mjjr?�

2�
: (6)

Here r? denotes the dipole size and

m2
jj
� p�2 MxB �m

2 � yQ2 �m2: (7)

The q�q dipole scattering amplitude Tq�q appearing in (2)
reads
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Tq�q� ~r?; ~R?� � �i�1� e�ig
2W�~r?; ~R?��; (8)

where ~R? is the impact parameter of the outgoing quark
and W is the dipole single scattering amplitude:

W�~r?; ~R?� �
Z d2 ~k?
�2��2

1� ei~r?� ~k?

k2
? � �

2 ei ~R?� ~k?

�
K0��R?� � K0��j ~R? � ~r?j�

2�
: (9)

We have introduced a finite photon mass �. Indeed, while
the amplitudes W and T are infrared safe in the �! 0
limit,4 some other quantities are not, such as the dipole
scattering cross section �q�q�r?� defined below in Eq. (11).
Since �q�q�r?� is a basic quantity which will enter our main
equations, we choose to use the infrared regulator � from
now on. This provides a mathematically well-defined
framework and will moreover allow to compare unambig-
uously DIS with DY production, for which the infrared
sensitivity appears at the amplitude level [see Eq. (16)].

We stress that

jTq�q�~r?; ~R?�j
2 � �2 ImTq�q�~r?; ~R?�; (10)

a unitarity relation which is satisfied by Tq�q since the latter
resums Coulomb rescatterings. For later use, we give the
scattering cross section of a q�q dipole of size r?,

�q�q�r?� �
Z
d2 ~R?jTq�q�~r?; ~R?�j

2

� 2i
Z
d2 ~R?Tq�q� ~r?; ~R?�; (11)

where the second equality follows from (10) and

Z
d2 ~R? ReTq�q� ~r?; ~R?� � 0: (12)

We give the explicit form of the dipole cross section in our
model,

�q�q�r?� � 4
Z
d2 ~R?sin2

�
g2

4�
�K0��R?�

� K0��j ~R? � ~r?j��
�
: (13)

Finally, cross sections will be given in the following by
(use dpz2=p

0
2 � dp�2 =p

�
2 and y� 1):

d�
d logy

�
1

4�

Z d2 ~p2?

�2��2
d2 ~k?
�2��2

jM̂� ~p2?; ~k?�j2; (14)
-3
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where the Fourier transform is defined as

M̂� ~p2?; ~k?� �
Z
d2 ~r?d

2 ~R?M̂� ~r?; ~R?�e
�i~r?� ~p2?�i ~R?� ~k? :

(15)

2. Model for DY production

In order to obtain a model for the quark distribution
probed in DY production, the first step is simply to ex-
change the virtual photon and the struck quark lines in
Fig. 1(a) and to replace q2 � �Q2 < 0 by q2 � Q2 > 0.
The momentum of the DY pair has now q� > 0 and reads
q � �MxB; q

�; ~q?�, and the incoming antiquark is chosen
with ~p1? � ~0?. We keep the same notation for k, p2 [see
Fig. 1(a)], and K � k� p2, implying that ~K? � ~q? in DY
instead of ~K? � ~p1? in DIS. In coordinate space the DY
production amplitude pictured in Fig. 1(b) is simply related
to the DIS amplitude by a phase factor [13],

M̂ DY� ~r?; ~R?� � �e
ig2G�R?�M̂DIS�~r?; ~R?�; (16)

G�R?� �
Z d2 ~k?
�2��2

ei ~R?� ~k?

k2
? � �

2

�
K0��R?�

2�
’
�!0

1

2�
log

�
1

�R?

�
: (17)

As already mentioned, in the case of DY production the
infrared sensitivity shows up at the amplitude level through
the phase shift g2G�R?�. This is a direct consequence of
the fact that the DY production amplitude of Fig. 1(b)
involves the scattering of a charge instead of a dipole in
DIS.

Since the phase factor in (16) has no effect on the total
DY cross section, the present model for DIS and DY is
consistent with the universality of the K?-integrated quark
distribution. In Ref. [13] it was shown that the nontrivial
crossing (16) between DIS and DY has nevertheless inter-
esting consequences. In particular the distribution
d�=d2 ~k? in the Coulomb transfer ~k? ( ~k? � ~K?) is differ-
ent in DIS and DY, i.e., nonuniversal, as we will recall in
Sec. III B.

This result is not in contradiction with the universality of
the quark distribution fq=T�x;K?� since in the aligned-jet
kinematics (1) k? is a variable internal to the target struc-
ture, integrated out in fq=T�x;K?�. Indeed, we show now
that fq=T�x;K?� is universal within the model of Fig. 1, in
agreement with factorization theorems [14,15]. The differ-
ential DY cross section at fixed K? is obtained from (14),

�2��2
d�DY

d logy d2 ~K?
�

1

4�

Z d2 ~p2?

�2��2

 jM̂DY� ~p2?; ~k? � ~p2? � ~K?�j
2:

(18)
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Going to transverse coordinate space and using (16) we
obtain

�2��2
d�DY

d logy d2 ~K?
�

1

4�

Z
d2 ~r?d2 ~R?d2 ~r0?d

2 ~R0?

 ��2�� ~r? � ~R? � ~r0? � ~R0?�

 e�i� ~R?� ~R0?�� ~K?eig
2�G�R?��G�R0?��

 M̂DIS�~r?; ~R?�M̂


DIS� ~r

0
?; ~R

0
?�:

(19)

Using the constraint from the delta function, we can rewrite
the phase difference as

G�R?� �G�R
0
?� � G�R?� �G�j ~R? � ~r?j�

� �G�R0?� �G�j ~R
0
? � ~r0?j��

� W�~r?; ~R?� �W�~r
0
?; ~R

0
?�; (20)

since W�~r?; ~R?� � G�R?� �G�j ~R? � ~r?j�. It is easy to
see that in (19), the phase difference (20) can be absorbed
in the expression of the DIS amplitude given by (2) and (8).
After the change of variables r$ r0, R$ R0 we obtain

�2��2
d�DY

d logy d2 ~K?
�

1

4�

Z
d2 ~r?d

2 ~R?d
2 ~r0?d

2 ~R0?

 ��2�� ~r? � ~R? � ~r0? � ~R0?�

 e�i� ~R
0
?�

~R?�� ~K?M̂DIS� ~r?; ~R?�

 M̂

DIS�~r

0
?; ~R

0
?�: (21)

Interpreting the differential cross sections as fq=T�x; ~K?�
we thus write

fDY
q=T�x; ~K?� � fDIS

q=T�x;�
~K?� � fDIS

q=T�x;
~K?�; (22)

where we used the fact that fq=T�x; ~K?� is a function of
K? � j ~K?j only. We stress that the universality found in
(22) directly translates into observable quantities. Indeed,
in DIS ~K? � ~p1? [Fig. 1(a)] and in DY ~K? � ~q?
[Fig. 1(b)]. Thus in the present model the leading-twist
DIS struck quark p1? distribution and the DY q? distri-
bution are identical. We stress that in DY the target quark
distribution is probed at x2 � K�=p� ’ q�=p� � xB, i.e.,
x2 � 1 in our model. As already mentioned in the intro-
duction, we expect the coherent rescattering physics to
come into play at x2 & 0:1, where nuclear shadowing
becomes quantitatively important.

One might ask whether the universality (22) would be
preserved in a more realistic model for DY production with
a composite projectile. The role of spectators in our model
for DY production is studied in Appendix A. We find that
spectator rescatterings do not affect the DY distribution
d�DY=d2 ~q? [see the right-hand side of Eq. (A12) which
only depends on the DIS amplitude]. The main conse-
quence of using a composite projectile is to replace the
-4



FIG. 2. Model for the DIS (a) and DY (b) nuclear quark
distribution functions fDIS

q=A�x;
~K?� and fDY

q=A�x;
~K?�. In DIS we

have ~K? � ~k? � ~p2? � ~p1? and in the DY case ~K? � ~k? �
~p2? � ~q?. The model takes into account any number of
Coulomb rescatterings on every center. In the total coherence
limit (26) the A centers only differ by their relative transverse
positions.
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infrared cutoff � (the finite photon mass) by the inverse
size � of the projectile. We also show that the model with a
composite projectile is consistent with factorization (see
(A14) and Ref. [15]). Since spectator rescatterings do not
lead to any breaking of universality between the DIS and
DY K? distributions (at least in our SQED model), we will
neglect (projectile) spectators in the following and use for
DY production the model with a pointlike scalar projectile
presented above.

It is worth recalling that the K? distribution5 can be
expressed in terms of the q�q dipole cross section (see for
instance [16]). From (21) and (2) we obtain

�2��2
d�

d logyd2 ~K?
�
Z
d2 ~r?d2 ~r0?e

�i� ~r?�~r
0
?
�� ~K? �r?� �r0?�


Z
d2 ~R?Tq�q� ~r?; ~R?�

T
q�q�~r
0
?; ~R?� ~r?� ~r

0
?�: (23)

With the identity

Tq�q�~r?; ~R?�T
q�q�~r
0
?; ~R? � ~r? � ~r0?�

� iTq�q�~r?; ~R?� � iT
q�q�~r
0
?; ~R? � ~r? � ~r0?�

� iTq�q� ~r? � ~r0?; ~R?�; (24)

the expression (23) becomes [using (11)]

�2��2
d�

d logyd2 ~K?
�
Z
d2 ~r?d

2 ~r0?e
�i� ~r?�~r0?��

~K? �r?� �r
0
?�



�
1

2
�q�q�r?��

1

2
�q�q�r

0
?�

�
1

2
�q�q�j~r?� ~r0?j�

�
: (25)

The latter expression can be found in [16] (in the more
general case of finite y).

B. Nuclear target

The model for DIS and DY production on a pointlike
target described in the previous section can be directly
generalized to the case of several scattering centers.
Since the DIS and DY amplitudes off a single center have
been derived in the limit xB � 1, they also should describe
the production off a ‘‘nuclear target’’ in the limit where the
nuclear radius RA is kept smaller than the coherence length
lc,

RA � lc �
1

MxB
: (26)

In this limit the production amplitudes are simply obtained
from (2) and (16) by replacing the scattering potential on a
5From now on we suppress the subscript DIS or DY for this
universal distribution.
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single center G�R?� given in (17) by the scattering poten-
tial on A centers located at transverse6 positions ~xi?,

G�R?� �
Z d2 ~k?
�2��2

ei ~R?� ~k?

k2
? � �

2
���!

GA� ~R?� �
XA
i�1

G�j ~R? � ~xi?j�: (27)

Denoting

WA�~r?; ~R?� � GA� ~R?� �GA� ~R? � ~r?�; (28)

TAq�q� ~r?; ~R?� � �i�1� e
�ig2WA� ~r?; ~R?��; (29)

we obtain for the DIS and DY amplitudes on the nuclear
target A

M̂ A
DIS� ~r?; ~R?� �

�������
4�
p

 �r?�T
A
q�q�~r?; ~R?�; (30)

M̂ A
DY� ~r?; ~R?� � �e

ig2GA� ~R?�M̂A
DIS� ~r?; ~R?�: (31)

We can repeat the steps leading from (18) to (22) to
realize that M̂A

DIS and M̂A
DY provide a model for the

‘‘nuclear’’ quark distribution function which is consistent
with the universality of the K?-dependent distribution

fDY
q=A�x; ~K?� � fDIS

q=A�x;�
~K?�: (32)

The physical content of fDIS
q=A � fDY

q=A in terms of Coulomb
rescatterings on the A static centers is depicted in Fig. 2.

We now evaluate the universal distribution d�A=d2 ~K?
by averaging over the positions of the scattering centers.
6In the total coherence limit (26) the longitudinal positions of
the centers are irrelevant and only the thickness function T of the
target enters (see below).

-5
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For our purpose it is sufficient to average with a uniform
distribution,

h iA �
Z YA

i�1

�
d2 ~xi?
S

�
; (33)

where S �
R
d2 ~x is the transverse area of the target.

Inserting (30) in (21) we find

�2��2
d�A

d logyd2 ~K?
�
Z
d2 ~r?d

2 ~r0?e
�i� ~r?�~r0?��

~K? �r?� �r
0
?�


Z
d2 ~R?hiTAq�q�~r?; ~R?�

� iTAq�q� ~r
0
?; ~R

0
?�



� iTAq�q� ~r?� ~r
0
?; ~R?�iA;� (34)

where ~R0? � ~R? � ~r? � ~r0?. Using WA�~r?; ~R?� �PA
i�1 W� ~r?; ~R? � ~xi?� and the approximation7�q�q�r?� �

S (valid when the nuclear radius is much larger than the
interaction range ��1), we show using (11) that

h1� iTAq�q� ~r?; ~R?�iA � 0 (35)

for ~R? outside the nucleus, and

h1� iTAq�q� ~r?; ~R?�iA � he
�ig2WA� ~r?; ~R?�iA

�

�
1�

T
A

Z
d2 ~xiTq�q�~r?; ~R? � ~x�

�
A

!
A!1

e�T
R
d2 ~xiTq�q� ~r?; ~R?� ~x�

� e�T�q�q�r?�=2; (36)

for ~R? inside the nucleus, where T � A=S is the target
‘‘thickness.’’ We used the formal A; S! 1 limit at fixed T.
7With this approximation and the uniform distribution (33), we
can derive Glauber-like expressions without resorting to the full
formalism of [17].
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The average (33) of the q�q dipole matrix element Sq�q �

1� iTq�q resulting in the form (36) allows to interpret the
rescattering process as a random walk in the transverse
plane (see Ref. [11]).

The Eq. (34) becomes

�2��2
d�A

d logy d2 ~K?
� S

Z
d2 ~r?d

2 ~r0?e
�i� ~r?� ~r0?��

~K? �r?�

  �r0?�f1� e
�T�q�q�r?�=2

� e�T�q�q�r0?�=2 � e�T�q�q�j~r?�~r0?j�=2g:

(37)

This corresponds to an ‘‘eikonalization’’ of the distribution
off a single scattering center (25) (see also [16]). In the
limit of vanishing thickness T ! 0, (37) reproduces (25)
up to the factor A. Since d�A=d2 ~K? is universal, we see
that the DY q?-distribution (and a fortiori the total DY
cross section) can be expressed in terms of the q�q dipole
scattering cross section, as is the case for DIS [18].
III. EXTENSION OF THE MODEL TO THE
SYMMETRIC KINEMATICAL REGIME

A. Symmetric kinematics and interpretation

In the preceding section we have focused on leading-
twist contributions to the DIS and DY cross sections,
arising from the aligned-jet region defined in (1). We
would like to stress however that the validity of our calcu-
lations so far is not restricted to the aligned-jet domain.
Since we only used p�2 � �, they remain correct even
when p�2 scales with � (i.e., in the ‘‘symmetric’’ kinemati-
cal region), provided the ratio y � p�2 =�2�� is fixed to a
small finite value, i.e., in the region
p�1 	 �! 1� p�2 � M� ki?; pi?; k
�
i ; m� k�i 	MxB � p�1 ; p

�
2 / 1=�

fixed y �
p�2
2�
� 1, p�2 scales as �: (38)
In fact our results can easily be extended to the domain
where y is not small as compared to 1. For simplicity we
concentrate on the y� 1 limit, but expect our following
considerations to apply also to situations where y	 1, such
as quarkonium (y ’ 1=2) and dijet leptoproduction.

With the symmetric kinematics (38) the interpretation of
the contributions to the DIS and DY cross sections we
evaluated is modified.
(i) T
he antiquark of final momentum p2 is now part of
the hard subprocess, which reads �
g! q�q in DIS
[Fig. 1(a)] and �qg! �q�
 in DY [Fig. 1(b)]. The DIS
-6
and DY processes are now interpreted, respectively,
as dijet leptoproduction and the associated produc-
tion of a DY pair and a jet.
(ii) T
he transverse momentum transfer to the hard sys-
tem now corresponds to the Coulomb k? exchange,
i.e., not to ~K? � ~k? � ~p2? any longer. In the case
of DIS, ~k? � ~p1? � ~p2? is the momentum imbal-
ance between the jets. In DY, ~k? � ~q? � ~p2? is the
imbalance between the DY pair and the associated
produced jet.
In the following we concentrate, in the region (38), on
the DIS and DY k? distributions, and show that those are
different.

In Sec. III B we show that the k? distribution on a single
scattering center becomes nonuniversal beyond leading
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order in g2. In particular higher order corrections to
d�DY=d

2 ~k? vanish in the �! 0 limit (at fixed k?), con-
trary to DIS. In Sec. III C we use the model for a nuclear
target presented in Sec. II B to investigate the target size
dependence of d�A=d2 ~k? and find that the strength of k?
broadening depends on the process.

B. Production off a single center: nonuniversality of the
k?-dependent distribution

In this section we show that in the symmetric kinematics
(38) the DIS (dijet) and DY (� jet) k? distributions are
different. We first consider the DIS model presented in
Sec. II A. From (14) the differential DIS cross section at
fixed k? reads

�2��2
d�DIS

d logy d2 ~k?
�

1

4�

Z d2 ~p2?

�2��2
jM̂DIS� ~p2?; ~k?�j

2

�
1

4�

Z
d2 ~r?jM̂DIS� ~r?; ~k?�j2; (39)

where

M̂ DIS�~r?; ~k?� �
Z
d2 ~R?e

�i ~R?� ~k?M̂DIS�~r?; ~R?�: (40)

From (2) we obtain

d�DIS

d logy d2 ~k?
�
Z
d2 ~r?j �r?�j2

d�q�q�~r?; ~k?�

d2 ~k?
; (41)

where we defined

d�q�q�~r?; ~k?�

d2 ~k?
�
jTq�q� ~r?; ~k?�j2

�2��2
: (42)

Let us turn to the case of the DY process,

�2��2
d�DY

d logy d2 ~k?
�

1

4�

Z
d2 ~r?jM̂DY�~r?; ~k?�j2; (43)

where M̂DY�~r?; ~k?� can be shown using (2) and (16) to be
proportional to its own Born value,

M̂ DY�~r?; ~k?���
Z
d2 ~R?e�i

~R?� ~k?eig
2G�R?�M̂DIS� ~r?; ~R?�

(44)

� C�k2
?�M̂

Born
DY �~r?; ~k?�; (45)

where we define

C�k2
?� �

k2
? � �

2

ig2

Z
d2 ~R?eig

2G�R?�e�i ~R?� ~k? ; (46)

M̂ Born
DY � ~r?; ~k?� � �

�������
4�
p

 �r?�TBorn
q�q � ~r?; ~k?�; (47)
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TBorn
q�q �~r?; ~k?� � �2ig2 sin� ~r? � ~k?=2�

k2
? � �

2 ei~r?� ~k?=2: (48)

Using (45) and (47), and (42) we find

d�DY

d logy d2 ~k?
� jC�k2

?�j
2
Z
d2 ~r?j �r?�j2

d�Born
q�q � ~r?; ~k?�

d2 ~k?
:

(49)

This can be reexpressed as

�2��2
d�DY

d logy d2 ~k?
�
Z
d2 ~r?j �r?�j24sin2

�
~r? � ~k?

2

�


Z
d2 ~bei ~b� ~k?

�
�

1

2
�q�q�b�

�

(50)

by using (46) and the identity���������
Z
d2 ~R?e

ig2G�R?�e�i ~R?� ~k?
���������

2

�
Z
d2 ~bei ~b� ~k?

Z
d2 ~R?�iT



q�q�
~b; ~R?� � 1�: (51)

Using (49) and (50) we also obtain

jC�k2
?�j

2 �

R
d2 ~bei ~b� ~k?�q�q�b�R
d2 ~bei ~b� ~k?�Born

q�q �b�
: (52)

Comparing (41) and (49) it is clear that the k? distribution
is process dependent. We can stress this point by noting
that for k? � �, the DY distribution (49) equals the Born
distribution, contrary to the DIS distribution. Let us con-
sider the k? ! 1 limit at fixed �. In the expression of
jC�k2

?�j
2 given in (52), the phase factor ei ~b� ~k? rapidly

oscillates, except if b & 1=k? ! 0. When b! 0 the di-
pole cross section can be approximated by its Born value
[see (13)]. Thus when k? � � we have jC�k2

?�j
2 ’ 1,

yielding

d�DY

d logy d2 ~k?

��������k?��
�
Z
d2 ~r?j �r?�j

2
d�Born

q�q � ~r?; ~k?�

d2 ~k?

�
d�Born

DY

d logy d2 ~k?
: (53)

We can obtain this latter equation more rigorously by using
(49) and calculating C�k2

?� given in (46) for �! 0, the
other scales being fixed. UsingG�R?� ’ � log��R?�=�2��
we get

C�k2
?� 	�!0

�
��� ig2

4��

��ig
2

4��
e�ig

2=2���log�
k?
� �����1�O����

) jC�k2
?�j � 1: (54)

Thus C�k2
? � �2� is a pure phase factor, leading to (53),
-7
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which confirms to all orders the result shown in [13] at
next-to-leading order in g2.

Since the k?-integrated DIS and DY cross sections are
identical (and different from their Born value), the result
(53) implies that in the �! 0 limit and in the DY case,
only vanishing k? 	 �! 0 contributes to �� � �tot �
�Born. This difference observed between the k?-dependent
DIS and DY cross sections is similar to what Bethe and
Maximon found in the case of high energy pair production
and bremsstrahlung [19]. In the present context the effect
clearly arises from the infrared divergent Coulomb phase
(for �! 0) in the DY production amplitude, and suggests
that in collisions on a proton, the k? exchange in DY �jet
production might be smaller than in dijet leptoproduction,
and thus not ‘‘intrinsic’’ to the target.

In a realistic situation, when the projectile and target are
composite and neutral, the DY production amplitude is
infrared finite. Effectively, the role of the infrared cutoff
� is played by the largest infrared momentum cutoff at
disposal, given by the inverse size � of the smallest incom-
ing hadron, projectile, or target. We expect the typical
transverse momentum contributing to ��DY to be k2

? 	

�2 instead of k2
? 	 �

2, as discussed in the end of
Appendix A.

In the next section, we investigate the nonuniversality of
the k? distribution in the case of a nuclear target.

C. Nuclear target: nonuniversality of k? broadening

The nuclear target model of Sec. II B is now used to
derive the target size dependence of the DIS and DY k?
distributions, where k? is the total transverse Coulomb
exchange. We have shown that the distribution in ~K? �
~k? � ~p2? is universal [see (32)], and this holds in the two
kinematical domains (1) and (38).

On the contrary, we now explicitly show that the distri-
bution in the transverse Coulomb exchange d�A=d2 ~k? is
process dependent. Similarly to the case of a single scat-
8We neglect contributions 	��2�� ~k?� which do not contribute
to d�ADY=d

2 ~k? due to the factor sin2�~r? � ~k?=2� in (60).
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tering center, this can easily be guessed from Eq. (31). The
DIS and DY amplitudes differ by a pure phase factor in R?
space, but there is no reason to expect this to hold in the
space of the conjugate variable k?.

Inserting (30) in (39) we get

d�ADIS

d logy d2 ~k?
�
Z
d2 ~r?j �r?�j

2
d�Aq�q�~r?; ~k?�

d2 ~k?
; (55)

with

d�Aq�q

d2 ~k?
�

1

�2��2
Z
d2 ~R?d

2 ~R0?e
�i� ~R?� ~R0?�� ~k?

 h1� e�ig
2WA� ~r?; ~R?� � eig

2WA�~r?; ~R
0
?�

� e�ig
2�WA� ~r?; ~R?��WA�~r?; ~R

0
?��iA (56)

representing the differential elastic scattering cross section
of a q�q dipole of size r? on a nuclear target. The form (55)
emphasizes the decoupling between production and rescat-
tering of the q�q dipole in the process. The average over the
positions of the scattering centers leads to

d�Aq�q

d2 ~k?
�

S

�2��2
Z
d2 ~bei ~b� ~k?f1� 2e�T�q�q�r?�=2

� e�T�q�q�r?�eT
R
d2 ~xTq�q� ~r?; ~x�T



q�q�~r?; ~x�

~b�g: (57)

Using (42) we eventually obtain

�2��2
d�ADIS

d logy d2 ~k?
� S

Z
d2 ~r?j �r?�j2


Z
d2 ~bei ~b� ~k?f1� 2e�T�q�q�r?�=2

� e�T
R
d2 ~l�1�e�i ~b�~l��d�q�q�~r?; ~l�=d2 ~l�g: (58)

A similar calculation for DY production is performed
inserting the Fourier transform of (31) into (43),
�2��2
d�ADY

d logy d2 ~k?
�
Z
d2 ~r?j �r?�j2

���������
Z
d2 ~R?�eig

2GA�R?� � eig
2GA�j ~R?�~r?j��e�i ~R?� ~k?

��������
2
	
A

�
Z
d2 ~r?j �r?�j

2

����������1� ei ~k?� ~r?�
Z
d2 ~R?e

ig2GA�R?��i ~R?� ~k?

��������
2
	
A
; (59)
giving

d�ADY

d logy d2 ~k?
�
d�Aq

d2 ~k?

Z
d2 ~r?j �r?�j24sin2

�
~r? � ~k?

2

�
;

(60)

where d�Aq=d2 ~k? is the differential elastic scattering cross
section of a quark on a nuclear target in our model, i.e.:8
d�Aq

d2 ~k?

��������k?�0
�

1

�2��2
Z
d2 ~R?d

2 ~R0?e
�i� ~R?� ~R0?�� ~k?

 he�ig
2�GA�R0?��GA�R?��iA: (61)

We perform the average using GA�R
0
?� �GA�R?� �

WA� ~R? � ~R0?; ~R
0
?� and (36):

d�Aq

d2 ~k?

��������k?�0
�

S

�2��2
Z
d2 ~bei ~b� ~k?e�T�q�q�b�=2; (62)
-8
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finally leading to

�2��2
d�ADY

d logy d2 ~k?
� S

Z
d2 ~r?j �r?�j24sin2

�
~r? � ~k?

2

�


Z
d2 ~bei ~b� ~k?e�T�q�q�b�=2: (63)

In line with the above discussion for DIS, (63) exhibits
some decoupling between production and rescattering, up
to the factor 4sin2� ~r? � ~k?=2� specific to DY production.
Notice that despite the formal appearance of �q�q�b� in its

expression (62), d�Aq=d2 ~k? represents monopole elastic
scattering,9 in contradistinction with the dipole scattering
cross section (57) appearing in DIS.

Comparing (55) and (60) we interpret the nonuniversal-
ity of d�A=d2 ~k? in our model as a direct consequence of
the type of object which interacts with the nuclear target. In
the r? integral giving d�ADIS=d

2 ~k?, the dipole wave func-
tion  selects r? & 1=mjj in d�Aq�q=d

2 ~k?. Therefore, the
hard scale10 mjj enters the physics of rescattering and is
expected to play a major role for k? broadening.
Conversely, in (60) the scale mjj enters d�ADY=d

2 ~k? only
through a target-independent factor and is therefore not
expected to govern k? broadening.

In order to display the differences between DIS and DY
we investigate the ratio

R�k?� �
1

A
d�A

d2 ~k?



d�p

d2 ~k?
; (64)

where �p and �A denote the DIS or DY cross sections off a
single scattering center and on A centers, to leading order
in g2 and next-to-leading order in the target thickness11

T � A=S. By expanding (58) and (63) we get, for ��
k? � mjj and keeping only the leading logarithms:

RDIS�k?� � 1�
4g4T

5�m2
jj

log
mjj
k?
�O�T2�; (65)

RDY�k?� � 1�
2g4T

�k2
?

log
k?
�
�O�T2�: (66)

The latter results explicitly demonstrate the nonuniver-
sality of the k?-dependent distributions which was already
apparent when comparing the full expressions (55) and
(60). As compared to the production on a single center,
and in the region under consideration �� k? � mjj,
9This point is discussed in detail in [11].
10In the symmetric kinematics (38) we have m2

jj
� yQ2 �m2 ’

yQ2.
11Note that the limit of small target thickness T / A1=3 is

consistent with the total coherence limit RA � lc [see (26)] in
which our DIS and DY amplitudes (30) and (31) have been
derived.
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d�A=d2 ~k? is slightly reduced in DIS and strongly en-
hanced in DY production. In the DY case, we recall that
for a single scattering center (see Sec. III B), the k? dis-
tribution for k? � � equals that at Born level, i.e., in the
absence of rescattering [see Eq. (53)]. This might have
suggested k? broadening to be reduced in DY as compared
to DIS. The explicit calculation with a finite size target of
thickness T shows that this does not happen: the deviation
from unity of the ratio RDY�k?� survives the �! 0 limit.

It is simple to realize that the k? broadening defined as

�hk2
?i � hk

2
?iA � hk

2
?ip; (67)

although different in DIS and DY, scales as g4T both in DIS
and DY. Evaluating �hk2

?i from (65) and (66) (and using
d�p=d2 ~k? / 1=k2

?) puts some light on the difference be-
tween DIS and DY. In DIS the small probability 	T=m2

jj

for the rescattering of a dipole of size 	1=mjj is compen-
sated by a large typical momentum transfer k2

? 	m
2
jj
. In

DY the hard scale mjj does not enter the expression of
R�k?�, and the relatively large (monopole) rescattering
probability 	T=k2

? is now compensated by a small typical
transfer k2

? � m2
jj
. As already discussed, the nonuniver-

sality of nuclear k? broadening in the coherent limit
studied in our model is a natural consequence of the type
of object (dipole or monopole) which interacts with the
target.
IV. SUMMARY AND OUTLOOK

Within an explicit scalar QED model, we have studied
transverse momentum distributions in the coherent limit
x� 1 for DIS and the DY process. In the aligned-jet
kinematics, where the leading quark or the DY pair carries
most of the projectile momentum, the distribution in the
transverse momentum K? of these particles is universal,
both for pointlike and extended targets. This is consistent
with the universality of the K?-dependent target quark
distribution. On the contrary, in the symmetric kinematical
region, the relevant transverse momentum k? (k? � K?)
is that of the hard subsystem, i.e., of the quark-antiquark
pair of the photon fluctuation in the case of DIS, and of the
DY virtual photon and the final antiquark in the case of DY.
The transverse momentum transfer k? between the target
and the hard subsystem is different in DIS and DY already
for pointlike targets. The extension to a finite size nuclear
target stresses the physical origin of this difference. In DIS
the q�q dipole rescatters with a small probability but under-
goes large k? kicks, whereas the DY k? distribution is
sensitive to monopole rescattering, more likely but involv-
ing smaller kicks.

We stress that our nuclear transverse momentum distri-
butions are expressed in terms of the dipole cross section
�q�q and of the thickness function T, and contain factors of
-9



FIG. 3. Model for DY production with a composite projectile.
The spectator is produced with final momentum p0.
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the type 1� e�T� which are expected for classical scat-
tering. This behavior is a consequence of the statistical
average we have performed on the positions of the scatter-
ing centers. Thus also in the coherent region rescattering
off an extended target turns out to have the nature of
stochastic multiple scattering [20]. Coherence is important
in that it fixes the nature of the object (dipole or monopole)
that rescatters.

The nonuniversality of the k? distribution found in our
scalar QED model in the coherent small x limit calls for a
systematic study of the nuclear k? broadening measured in
fixed-target experiments (x	 0:1) or at the relativistic
heavy ion collider (x	 0:01). Indeed, at the present stage
we cannot give a quantitative answer to the puzzling ob-
servation mentioned in the introduction, namely, the small-
ness of transverse momentum broadening in DY
production, as compared for instance to the broadening
of the dijet momentum imbalance in dijet photoproduction.
We however emphasize that with our notations the ob-
served transverse momentum is q? � K? in DY produc-
tion instead of k?
in dijet photoproduction (analogous to our DIS process
in the symmetric kinematics). We have shown that
d�DIS=d2 ~k? � d�DY=d2 ~k?, thus it is even more natural
to expect the distributions d�DIS=d2 ~k? and d�DY=d2 ~q?
with respect to distinct transverse momentum variables to
be different in the coherent regime. This actually can be
checked explicitly in our SQED model. The universal ratio

R�K?� �
1

A
d�A

d2 ~K?



d�p

d2 ~K?
(68)

can be obtained from (37) and (25), and reads at leading
order in g2 and for K? � mjj:

R�K?� � RDY�q?� � RDIS�p1?�

� 1�
2g4T

�m2
jj

log2

�
mjj
�

�
�O�T2�: (69)

We see that contrary to the ‘‘dijet’’ leptoproduction ratio
RDIS�k?� given in (65), the ratio RDY�q? � mjj� exceeds
unity. Small q?’s are favored in DY production off a
nucleus. Whether the latter result, obtained in our
Abelian model, can explain the observed smallness of q?
broadening in the hadronic world will be addressed in a
future work.

ACKNOWLEDGMENTS

We thank P. Hoyer and A. Smilga for interesting dis-
cussions and useful comments.

APPENDIX A: DY PRODUCTION WITH
COMPOSITE PROJECTILE

Here we study the role of spectators in DY production.
For this purpose we extend the model of Fig. 1(b) to the
054010
case of a composite projectile. The corresponding model is
depicted in Fig. 3.

The fluctuation of the ‘‘hadron’’ projectile of mass mh
and momentum Ph into the spectator quark (of final mo-
mentum p0) and the active antiquark (of final momentum
p2), is described by a scalar cubic coupling ig0. The
projectile is chosen to carry the electromagnetic charge e
but to be neutral with respect to the strong interaction of
coupling g. The spectator quark has no electric charge but
strong charge g. The large incoming light-cone momentum
P�h splits into the active antiquark and spectator momenta
with finite fractions z and 1� z. The different momenta
appearing in Fig. 3 read (we choose mh < 2m in order to
forbid the h! q�q decay):

Ph �
�
m2
h

2�
; 2�; ~0?

�
; p � �M;M; ~0?�;

p0 �

�
p2

0? �m
2

�1� z�2�
; �1� z�2�; ~p0?�;

p2 �

�
p2

2? �m
2

p�2
; p�2 ; ~p2?

�
;

q �
�
Q2 � q2

?

z2�
; z2�; ~q?

�
’ �MxB; z2�; ~q?�; (A1)

where now xB � Q2=�z2M��. We will use again the limit
xB � 1 as well as the kinematics defined in (1).

The DY virtual photon can be radiated either by the
projectile or by the active antiquark, both having electric
charge e. However, in the kinematics (1), the typical times
associated to the fluctuations h! q�q and �q! �
 �q are,
respectively, of order �=p2

0? ! 1 and 1=MxB. Thus the
photon is radiated after the h! q�q fluctuation. The dia-
grams where the virtual photon is emitted from the projec-
tile are suppressed (in Feynman gauge) by a factor
	p2

0?=��MxB� 	O�p�2 =�� according to (1).

1. Consistency with factorization

The covariant calculation of the DY production ampli-
tude of Fig. 3 is similar to the calculations performed in
Refs. [12,13]. The leading-twist contribution is obtained
for a virtual photon with longitudinal polarization
-10
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	L �
�
Q
z�
;�

Q
z�
; ~0?

�
: (A2)

Going to transverse coordinate space,

M�~r?; ~R?; ~u?� �
Z d2 ~p2?d

2 ~k?d
2 ~p0?

�2��6
M� ~p2?; ~k?; ~p0?�

 ei� ~r?� ~p2?� ~R?� ~k?� ~u?� ~p0?�; (A3)

and resumming Coulomb scatterings yields the result

M DY�~r?; ~R?; ~u?��MDY� ~r?; ~R?�e
�ig2G�j ~R?� ~u?j�


�z;u?�
z

:

(A4)

Here MDY� ~r?; ~R?� is the DY production amplitude in the
absence of spectator obtained from (3) and (16), the func-
tion G is defined in (17) and 
�z; u?� is the h! q�q wave
function


�z; u?� � g0z�1� z�V��u?�; (A5)

�2 � m2 � z�1� z�m2
h; (A6)

which can be represented as


�z; u?� �
Z d2 ~p0?

�2��2

�z; p0?�e

i ~u?� ~p0? ; (A7)


�z; p0?� � g0
z�1� z�

p2
0? � �

2 : (A8)

NONUNIVERSALITY OF TRANSVERSE COULOMB . . .
12For the purposes of the present appendix we do not need to specif
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The phase factor in (A4) arises from Coulomb rescatter-
ings of the spectator quark. Those indeed contribute to the
DY production amplitude of Fig. 3, since vanishingly small
light-cone energies k�i / 1=� can be transferred to the
spectator without any cost. The finite energy k� �

P
k�i 	

O�MxB� is transferred to the active antiquark in order to
produce the final state invariant mass 	Q2. The phase in
(A4) is infrared divergent (the spectator carries the charge
g) but this divergence compensates that appearing in (16),
as expected for dipole rescattering

MDY�~r?; ~R?; ~u?� � �e
ig2W� ~u?; ~R?�


�z; u?�
z

MDIS� ~r?; ~R?�; (A9)

where we used G�R?� �G�j ~R? � ~u?j� � W� ~u?; ~R?�.
We now proceed as in Sec. II [see Eq. (18) and follow-

ing]. In the presence of the spectator the differential DY
cross section is of the form12

d�DY

d2 ~q?
/
Z d2 ~p2?

�2��2
d2 ~p0?

�2��2

 jMDY� ~p2?; ~k? � ~p2? � ~p0? � ~q?; ~p0?�j
2:

(A10)

Going to transverse coordinate space and using (A4) leads
to
d�DY

d2 ~q?
/
Z
d2 ~r?d2 ~R?d2 ~u?d2 ~r0?d

2 ~R0?d
2 ~u0?
�z; u?�



�z; u0?��
�2��~r? � ~R? � ~r0? � ~R0?��

�2�� ~u? � ~R? � ~u0? � ~R0?�

 eig
2�G�R?��G�R0?��e�i�G�j ~R?� ~u?j��G�j ~R

0
?� ~u

0
?
j��e�i� ~R?� ~R0?�� ~q?MDIS�~r?; ~R?�M



DIS�~r

0
?; ~R

0
?�: (A11)

From the � constraints the Coulomb phase associated to spectator rescattering cancels out, G�j ~R? � ~u?j� �G�j ~R
0
? �

~u0?j� ! 0, and the remaining phase differenceG�R?� �G�R0?� is absorbed in the expression of MDIS given by (2) and (8),
leading to

d�DY

d2 ~q?
/
Z
d2 ~r?d

2 ~R?d
2 ~r0?d

2 ~R0?�
�2��~r? � ~R? � ~r0? � ~R0?�e

�i� ~R0?� ~R?�� ~q?MDIS� ~r?; ~R?�M


DIS� ~r

0
?; ~R

0
?�


Z
d2 ~u?
�z; u?�



�z; j ~u? � ~R? � ~R0?j�: (A12)

Thus spectator Coulomb rescattering does not affect d�DY=d
2 ~q? (and a fortiori not the total leading-twist DY cross

section either), which is consistent with factorization, as we briefly see now.
From (A7) one gets

Z
d2 ~u?
�z; u?�

�z; j ~u? � ~R? � ~R0?j� �

Z d2 ~p0?

�2��2
j
�z; p0?�j

2e�i� ~R
0
?�

~R?�� ~p0? : (A13)
y the normalization of differential cross sections in the following.
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Inserting this into (A12) and identifying
R
d2 ~p0?j
�z; p0?�j

2 with the projectile antiquark distribution f�q=h�z;� ~p0?� we
obtain

d�DY

d2 ~q?
/
Z
d2 ~p0?f�q=h�z;� ~p0?�fq=T�xB; ~p0? � ~q?�: (A14)

The latter equation shows that our DY model with spectator is consistent with factorization theorems involving
K?-dependent parton distributions [15].

2. Nonuniversality of k? Coulomb exchange

Here we argue that the result found in Sec. III B, namely, that the typical k? contributing to ��DY � �tot
DY � �

Born
DY is

k? 	 �! 0, naturally translates to k? 	 � in the case of a composite projectile of size Rh 	 1=�.
The k? distribution reads

d�DY

d2 ~k?
/
Z d2 ~p2?

�2��2
d2 ~p0?

�2��2
jMDY� ~p2?; ~k?; ~p0?�j

2

/
Z
d2 ~u?j
�z; u?�j2

Z
d2 ~r?d2 ~R?d2 ~R0?e

�i� ~R?� ~R0?�� ~k?eig
2�W� ~u?; ~R?��W� ~u?; ~R

0
?��MDIS�~r?; ~R?�M


DIS�~r?; ~R
0
?�;

(A15)

where we used (A9). The integrand of (A15) depends on the scales mjj and �, the latter corresponding [see (A5)] to the
inverse transverse size of the projectile. When �! 0, u? 	 1=�! 1, and the (finite) Coulomb phase in (A15) becomes

W� ~u?; ~R?� �W� ~u?; ~R
0
?� � G�R?� �G�R0?� �

1

2�
log

�
j ~u? � ~R?j

j ~u? � ~R0?j

�
!

u?!1
G�R?� �G�R0?�: (A16)

We thus recover, in the �! 0 limit, the k? distribution (43) in the DY model without spectator, for which we have shown
that k? 	 �! 0. In other words, when the size of the projectile Rh 	 1=�! 1, the spectator plays no screening role any
longer. In practice � is nonzero, �	m [but still �� mjj ’

���
y
p
Q in the kinematical region (38)], and the typical k?

contributing to ��DY is of order �, the largest infrared cutoff at disposal.
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