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Diquark-diquark correlations in the1S0�� potential
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We derive a �� potential from a chiral constituent quark model that has been successful in describing
one, two, and three nonstrange baryon systems. The resulting interaction at low energy is attractive at all
distances due to the � exchange term. The attraction allows for a slightly bound state just below the ��
threshold. No short-range repulsive core is found. We extract the diquark-diquark contribution that turns
out to be the most attractive and probable at small distances. At large distances the asymptotic behavior of
the �� interaction provides a prediction for the ��� coupling constant.
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The �� interaction has been the object of extensive
consideration. On the one hand the knowledge of the ��
altogether with the N� interaction is a necessary ingre-
dient to obtain a physical description of hypernuclei for
which binding energies have been measured [1]. On the
other hand the ��1S0 channel has the quantum numbers of
the H-dibaryon, theoretically predicted almost 30 years
ago with a mass below the �� threshold [2] and not
experimentally identified until now [3].

Since � targets are not available there is not direct
measurement of the �� scattering process. Indirect infor-
mation can be extracted from the scarce old �p scattering
data [4] and from measured binding energies of �� hyper-
nuclei [1]. Approaches to the �� interaction potential
have been pursued at the baryon and quark levels. At the
baryon level, phenomenological (in the sense of reproduc-
ing some indirect experimental information) meson-
exchange (� and !� potentials have been constructed [5–
7]. At the quark level, gluon dominant (only one-gluon
exchange between quarks), pure chiral (only meson ex-
changes between quarks), and chiral constituent quark
(gluon plus meson exchanges) models have been used
[8]. Finally, hybrid models where some pieces of the
interaction (usually the gluon and pion exchanges) are
considered at the quark level while others (usually the
one-sigma exchange) are parametrized at the baryonic
level [9], with several free parameters fitted differently
for different observables (deuteron binding energy, NN
singlet S-wave phase shifts, NN P-wave phase shifts,
and hyperon-nucleon interaction), have been also efficient
to describe data.

A quite general conclusion arising from the quark ap-
proaches until now is that the interaction between two �0s
presents a repulsive core [8]. Though this conclusion is
easily understood in a gluon dominant model by compari-
son to the NN case (the interaction generated at short
distances by the one-gluon exchange is repulsive) it seems
more controversial in chiral constituent quark models in-
corporating the �-meson exchange, responsible for the
05=72(5)=054008(7)$23.00 054008
correct medium range behavior in the NN system and
attractive at all distances, where it may be dominant.

Comparatively phenomenological baryonic interactions
can be very precise when a sufficient amount of data are at
disposal (the interaction parameters depending on the spe-
cific case under consideration), however quark treatments
can be fully predictive since the same potential parameters
(fixed once for all, for instance, in the well-known non-
strange sector) could be applied to any other baryon-
baryon system. To this respect we should first realize that
at the quark level only a chiral constituent quark model can
provide a realistic description of nonstrange two-baryon
systems. The gluon dominant model is not able to repro-
duce the long-distance behavior of the NN interaction. The
pure chiral models lack, when applied to the NN interac-
tion, the necessary medium range attraction [10]. Then we
are left with chiral constituent quark models where the
appearance or not of a repulsive core in the �� interaction
will depend on the interplay between gluon and meson
exchanges, i.e., on the relative intensity of the one-gluon
and the meson-exchange terms in the potential. This rela-
tive intensity can be fixed, once a chiral realization of QCD
at low energy is chosen, by the requirement of having the
most accurate description of one and two-body systems.

In this paper we revise the conclusions obtained about
the �� system by means of a chiral constituent quark
model tightly constrained by the description of the non-
strange sector and the strange meson and baryon spectra.
Actually, in the last years, a high degree of precision has
been reached in the description of the nonstrange one, two,
and three baryon systems by means of a SU�2� � SU�2�
chiral constituent quark model (as originally named in
Ref. [11]) containing � and � exchanges plus a residual
one-gluon exchange interaction [12]. We shall call this
model henceforth CCM [11]. This strong interaction model
corresponds to a nonrelativistic approach to an effective
theory incorporating quarks, gluons, and Goldstone bosons
[13], the effectiveness of the CCM parameters hopefully
giving account, in an effective manner, of effects out of the
-1 © 2005 The American Physical Society
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scope of our approach. A main difference with other mod-
els with a similar content [14] is the consistent treatment, at
the level of the wave function, of the baryon-baryon inter-
action and the baryon spectra. Another basic difference
comes from the requirement to describe a wide number of
observables, restricting very much the possible values of
the parameters. The predictive power of the CCM has been
tested in its successful application to the NN; N�, tritium
and nonstrange baryon spectra. The model has a reduced
relative intensity of the gluon against meson exchanges, as
compared to the other models. Gluon and pion contribute
both about half of the �� N mass difference and the short-
range NN repulsion in the S-wave comes mainly from the
pion term at difference with other models where the gluon,
through configuration mixing, provides the major contri-
bution. This shows that similar models, in the sense of
using a similar form of the interaction, may give rise to
very different physical descriptions.

In order to apply the CCM to the �� case, an extension
to deal with strange baryons is required. Besides confine-
ment and gluon terms the minimal chiral extension used in
the literature comprises the exchange of a singlet scalar
meson, the � (mediating light-strange and strange-strange
as well as light-light quark interactions) and a pseudoscalar
octet involving pions, kaons, and eta. The motivation for
this systematic is the following. From existing baryonic
analysis the � and ! exchanges seem to be the most
relevant ones. At the quark level one expects that quark
antisymmetrization effects play a similar role to the bar-
yonic ! exchange. Indeed at the baryon level the ! pro-
vides the short-range repulsion in the NN interaction while
at the quark level antisymmetrization effects on the gluon
and � terms provide to a great extent the same effect. The
consideration of a SU�3� � SU�3� chiral model would
incorporate an octet of scalar mesons as well. However,
the scalar masses, with the exception of the singlet �
�f0�600��, are significantly higher than the pseudoscalar
octet ones, which makes their contributions to be less
important. This way of proceeding results in an extended
model that fits well the strange hadron spectra [15] while
keeping the successful description for the nonstrange
systems.

Explicitly the quark-quark interaction reads

Vqq�~rij� � VCON� ~rij� � VOGE� ~rij� � V�� ~rij� � V��~rij�

� VK�~rij� � V��~rij�; (1)

where the i and j indices are associated with i and j quarks,
respectively, and ~rij stands for the interquark distance.

The confinement potential is chosen to be linear,

VCON� ~rij� � �ac ~�i � ~�jrij; (2)

where ac is the confinement strength, the ~�’s are the SU(3)
color matrices, and the color structure prevents one from
having confining interaction between color singlets.
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From the nonrelativistic reduction of the one-gluon-
exchange diagram in QCD for pointlike quarks one gets
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where �s is an effective strong coupling constant and mi is
the mass of the quark i. ~�i stands for the Pauli spin
operator. Let us realize that the contact term involving a
Dirac �� ~r� that comes out in the deduction of the potential
has been regularized in the form

��~r� !
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r
; (4)

giving rise to the second term of Eq. (3) (r0 is a regulari-
zation parameter). This avoids getting an unbound baryon
spectrum from below when solving the Schrödinger equa-
tion [16].

The static pion and sigma exchange potentials are given
by
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where gch is the chiral coupling constant, �� is a cutoff
parameter and the ~�’s are the isospin quark Pauli matrices.
m� and m� are the masses of the pseudoscalar and scalar
Goldstone bosons, respectively. Y�x� is the standard
Yukawa function defined by Y�x� � e�x=x. The new
kaon and eta potentials read
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where the angle 	p appears as a consequence of consider-
ing the physical � instead the octet one.

Let us keep in mind that the values of the parameters for
confinement, gluon, pion, and sigma exchanges are fixed
from the nonstrange sector [12]. For kaon and eta ex-
changes the parameters are fixed from a fit to the strange
meson spectra [15]. In Table I we compile the values used.
Let us note that our cutoff parameter for the kaon and the
eta is different than for sigma and pion. This comes from a
fine tune to the strange meson spectra but it will not be
quantitatively relevant for the �� interaction.

The general nonrelativistic framework to obtain the ��
potential from the quark-quark interaction is the resonating
TABLE I. Quark-model parameters.

mu;d (MeV) 313 �s 0.54
ms (MeV) 555 r0(fm�1) 0.18
m� (fm�1) 0.7 ac(MeV fm�1) 185.0
m� (fm�1) 3.42 g2

ch=4� 0.54
mK (fm�1) 2.51 �� (fm�1) 4.2
m� (fm�1 2.77 �K � �� (fm�1) 5.2
	p�

o� �15
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group method (RGM). A much more simplified treatment,
the adiabatic or Born-Oppenheimer (BO) approximation,
can be suitable under the assumption that the quarks move
inside the baryonic clusters much faster than the clusters
relative to each other. Since applications of RGM and BO
to the nonstrange systems do not show any relevant differ-
ence [17] we shall adhere henceforth to a BO approach.
The resulting potential can be obtained as

VB1B2�LST�!B3B4�L0S0T��R� � V L0S0T
LST �R� �V L0S0T

LST �1�; (7)

where
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h�L0S0T
B1B2
� ~R� j

P6
i<j�1 Vqq�~rij� j �LST

B3B4
� ~R�i������������������������������������������������

h�L0S0T
B1B2
� ~R� j �L0S0T

B1B2
� ~R�i

q ����������������������������������������������
h�LST

B3B4
� ~R� j �LST

B3B4
� ~R�i

q ; (8)

with �LST
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� ~R� given in general (Bi and Bj can be nonidentical baryons) by
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where f (even or odd) determines the baryon-baryon sym-
metry and S, T, and L correspond to the total spin, isospin,
and orbital angular momentum of the two-baryon system.
A is the six-quark antisymmetrizer written as [18]

A �

 
1�

X2

i�1

X5

j�4

Pij � P36

!
�1� P �; (10)

where we have identified quarks 3 and 6 as the strange ones
in each baryon. Pij is the operator that exchanges particles
i and j and P exchanges the two clusters. Pij can be
explicitly written as the product of permutation operators
in color (C), spin-flavor (SF), and orbital (O) spaces,

Pij � PCijP
SF
ij P

O
ij: (11)

The subtraction of V L0S0T
LST �1� assures that no internal

cluster energies enter in the baryon-baryon interacting
potential.

The total wave function of a single baryon cannot be in
the �� case, at difference with the NN one, separated in
orbital, spin, and color parts. Whereas one can isolate the
color part one has to maintain the orbital and flavor struc-
ture altogether due to the flavor (mass) dependence of the
orbital part. Hence the � wave function reads

��� ~r1; ~r2; ~r3; ~R=2� �
1���
2
p �
MS�MS �
MA�MA� 
 �;

(12)


, �, and � standing for the orbital-flavor, spin, and color
parts, respectively. The orbital wave function for a quark i
in a cluster at position ~R=2 is chosen as

’� ~ri; ~R=2� �
�

1

�b2
i

�
3=4

exp
�
�
� ~ri � ~R=2�2

2b2
i

�
: (13)

The dependence on the quark mass enters in the parameter
bi. We shall assume 1=�msb

2
s� � 1=�mu;db

2
u;d� in order to

have the same kinetic energy for all quarks in the baryon.
The result for the 1S0 potential is drawn in Fig. 1 where

the contributions from �, �, �, and gluon exchanges are
also depicted. Note that the kaon contribution vanishes due
to isospin conservation in the possible quark-kaon-quark
vertices. As can be seen the dominant contribution is
attractive and comes from the �. Actually it corresponds
to a pure � baryonic potential since no quark-exchanges
(related to the Pkl terms in the antisymmetrizer) contribute
either to the numerator or denominator in (8). Let us realize
that except for the small differences coming from the
exchange contribution in the NN case and the strange
quark mass in the �� one, this interaction should be, as
in fact it is, quantitatively very similar in the NN and ��
cases.
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FIG. 1. 1S0�� potential. The contribution of the different
terms in Eq. (1) has been depicted.
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FIG. 2. Fredholm determinant of the �� system with J � 0 as
a function of the nonrelativistic energy E.
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The gluon contribution comes only from quark ex-
changes; a color octet cannot directly connect two baryons
(color singlet states). Furthermore, the only surviving
gluonic contribution comes from the chromomagnetic
part being repulsive. The strength of this repulsion is
smaller (about one third for R � 0:01 fm) than the corre-
sponding one in NN. This is due, on the one hand, to the
fewer number of diagrams contributing (no exchanges
involving light-strange quarks are possible) and, on the
other hand, to the strange quark mass factors in the OGE
potential. Despite this we can immediately understand why
the �� interaction has a repulsive core in other chiral
constituent quark models where the gluon term is domi-
nant. As a matter of fact, if we multiply our gluon coupling
constant by a factor 2 and rearrange correspondingly the
chiral coupling constant, a repulsive core would be ob-
tained (at the price of destroying the good description of
many other observables).

Regarding the � term it is repulsive as in NN. However,
as for �� it only contributes, due to its isovector character,
through quark exchanges, the repulsion is much weaker
(about one fifth for R � 0:01 fm). Indeed, in the �� case
the pion contribution turns out to be less important than the
gluon one and much less important in absolute value than
the � one. Hence the attraction provided by the
�-exchange surpasses the gluon� pion repulsion. This
net attraction cannot be compensated by the small repul-
sive contribution from the �-exchange. To this respect it is
also interesting to look at the results for N�! N� (see
below).

Since the values of the parameters ms and ��;K are fitted
only from spectroscopy it is convenient to test the sensi-
tivity of our results to changes in them. As mentioned
before the effect of taking ��;K different from �� is small,
about 5% in the values of the potential at most. Regarding
054008
ms, a variation of 150 MeV around the chosen value gives
rise to a modification of the potential of a 15% at most.
This gives us confidence in the results we obtain whose
qualitative character is essentially determined by the well-
fitted SU�2� � SU�2� parameters.

Once we have determined the �� interacting potential,
we proceed to the study of bound states. For this purpose
the method of the Fredholm determinant is particularly
simple and trustable: starting from the Lippmann-
Schwinger equation for the �� system,

Z
d3k00

�
�� ~k0 � ~k00� �

h ~k0jVj ~k00i
E� Ek00

�
h ~k00jT�E�j ~ki � h ~k0jVj ~ki;

(14)

where j ~k> stands for a momentum state of ��, and
substituting the integral by a N-point quadrature we can
formally write

�T�E�	 �
�V	

�1� VG0�E�	
; (15)

where G0�E� � 1=�E� ~p2=2�� (� is the reduced mass of
the system) is the nonrelativistic propagator. Then a bound
state, corresponding to a pole of the T-matrix in the real
axis, leads to

det�1� VG0�E�	 � 0; (16)

whose solution determines the binding energy [19].
In Fig. 2 the value of the Fredholm determinant as a

function of energy is depicted. As we can see there appears
only one possible bound state very close to the �� thresh-
old (with a binding energy of 0.022 MeV). This is in
agreement with upper bounds extracted from �� hyper-
nuclei [1] but in contradiction with previous quark-model
-4
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FIG. 3. Diquark-diquark contributions to the 1S0�� potential.
We have shown separately the most important terms in Eq. (1).
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results obtaining much more binding than what was asso-
ciated to the presence of a tightly bound H-dibaryon [8].
Although to analyze the H-dibaryon a coupled channel
calculation should be performed, the probabilities of the
��, N�, and �� components do not differ much from the
initial flavor SU(3) Clebsch-Gordan coefficients [8,9]. This
comes from the fact that the coupling between the ��,
N�, and �� is very small, all the direct diagrams do not
contribute (except for the pion between �� and ��, but
giving a small contribution due to the different symmetry
of the spin wave function), the coupling mainly generated
by the exchange diagrams that are very short-ranged as to
give an important contribution to the binding. Therefore,
the binding is mainly driven by the sigma-meson-exchange
in each two-body channel separately. Therefore, we might
infer, from our one-channel calculation, that a tightly
bound H-dibaryon as obtained with similar quark models
may not be justified. According to our result the experi-
mental absence of such state could be related to the well-
known difficulty to disentangle in partial wave analysis the
existence of a resonance close to a threshold (this is nowa-
days very much discussed regarding the nature of some
mesons as could be, for example, the X�3872�, that it is
precisely in the D0D�

0
threshold).

On the theoretical side, it has been also suggested that
inner diquark structures could prevent, through Pauli re-
pulsion at very short distances, such a tight binding [20].
Then it may be instructive to perform an analysis of the
diquark contributions to our �� interaction. We can easily
isolate components containing diquark-diquark structures
from the �� wave function written above. In fact any �
wave function contains a diquark, say a pair of quarks in a
�1	spin � �3	flavor � �3	color configuration, through the term

MA�MA in Eq. (12). The contribution of these compo-
054008
nents to the �� potential is shown in Fig. 3. As can
be checked, it is attractive at all distances and strongly
attractive at short distances mainly due to the gluonic
Coulomb term and to a less extent to the � exchange.
This short-range attractive contribution (reduced by some
repulsion from the rest of the components) determines the
short-range attractive character of the �� potential.
Actually, the component containing diquark-diquark be-
comes the dominant one when reducing the interbaryon
distance. This can be seen by defining a diquark-diquark
probability depending on the interbaryon distance R as the
ratio
P�R� �
h�
MA�MA���


MA�MA��jAj�

MA�MA���


MA�MA��i
4h����jAj����i

; (17)
where we have used A2 �A. This probability appears in
Fig. 4 where it is clear that it is increasing from the non-
overlapping value 0.25 to almost 0.5 at very short interbar-
yonic distances as it corresponds to the bosonic diquark
character (as a counterpart the other non diquark-diquark
components show an opposite tendency). Therefore, we do
not see in our analysis any signature of a strong Pauli
diquark blocking at short distances. This stems from the
diquark-diquark structure we are dealing with. Since both
symmetric and antisymmetric color states are allowed no
restriction on the two identical diquark orbital angular
momentum comes out (quite a different situation one has
in the hypothetical pentaquark case where only the anti-
symmetric color state is allowed). Therefore, we conclude
that the bound state found does not owe its loose binding to
Pauli diquark repulsion at very short distances but instead
to the diquark-diquark dynamics. If combined with the
assumption that the three-diquark component is dominant
for the H-dibaryon such dynamics could explain its non-
appearance as a tightly bound state.

Finally, our results allow also for a direct determination
of the ��� coupling constant from the �qq one since at
long distances, where there is not any significant baryon
overlap, the �-exchange potential can be identified with a
�-exchange at the baryon level that can be parametrized as,

V��!��
� �R� � �

g2
���

4�

�2
�

�2
� �m

2
�

e�m�R

R
: (18)

In order to eliminate as much as possible the model de-
pendence and to do a meaningful comparison of our results
with others in the literature it is convenient to take the ratio
-5
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to the NN case [21]. Thus we get,

g���

g�NN
� 0:88: (19)

Let us emphasize that this ratio reflects precisely the differ-
ent wave function structure ofN and � as a consequence of
the SU(3) quark mass breaking. Our ratio is significantly
bigger than the one predicted by some baryonic models
[22] but in agreement with others [6,9,23,24]. Since all
baryonic models give a reasonable description of the scarce
N� data one cannot discriminate between them. This
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FIG. 5. 1S0N� potential.
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rather points out the need for more precise data. For the
sake of completeness we study the N� potential with our
model. The result is shown in Fig. 5. As can be checked, the
interaction becomes slightly repulsive at short distances
due to the dominance of the pion plus mainly gluon re-
pulsion against the sigma attraction. Actually, the pion and
gluon contributions are about twice those in �� whereas
the � contributions remain more or less the same. In Fig. 6
we compare our N� potential with the Nijmegen interac-
tionsF andD [25]. As can be seen they are quite similar for
R � 1:3 fm. In the �� case our results are definitely closer
to the predictions by Nijmegen interaction D.

In summary, by using a chiral constituent quark model
precisely fitted in the nonstrange sector to a bulk of baryon,
meson, and baryon-baryon data, we have shown that, con-
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FIG. 6. (a) Comparison of the quark-model based 1S0N�
potential to the Nijmegen model (crosses stand for model F
and circles for model D) of Ref. [25]. (b) Same as (a) for the
1S0�� potential.
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trary to what has been usually assumed in baryonic models
and calculated in previous quark models, the �� interac-
tion in the 1S0 partial wave is attractive at short distances.
In our CCM this attraction comes from the � exchange,
whose effect cannot be surmounted even at short distances
by the gluon� pion� eta repulsion. The different short-
range behavior as compared to the NN case is understood
from the very different quantitative role played by pion�
gluon exchanges against sigma exchange in both cases.
Actually in the intermediate N� case our model interac-
tion becomes repulsive at short distances in agreement with
previous treatments and suggestions from data. We predict
a slightly bound �� state whose energy fits well inside the
upper bounds imposed from �� hypernuclei data. This is
encouraging to try to obtain a microscopic description of
�� hypernuclei for which we have not at the current
moment a satisfactory explanation. To this respect to
have at disposal the ��, N�, and NN interactions ob-
tained on the same footing may be extremely valuable.

From the point of view of quark flavor-color configura-
tions the �� attraction is mainly related to a structure
containing two diquarks. The involved diquark-diquark
054008
dynamics giving rise to the loosely bound state could
also provide an explanation for the experimental absence
of a tightly bound H-dibaryon. We have also derived a
g��� coupling being almost 90% of g�NN as a reflection of
the assumed SU(3) breaking.

Certainly there are not at present precise data to check
the �� short-range character and consequently our model
against others. Despite this, we think it is worth it to pursue
a theoretical program aiming at the examination of the
consequences derived from it and their possible experi-
mental checks. This can be important not only to directly
progress in the understanding of the �� system but also
(due to the connection of the short-range character to the
gluon intensity) to indirectly disentangle the quantitative
role played by gluons and pions in the NN system.
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