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Splitting the gluon?
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In the strongly correlated environment of high-temperature cuprate superconductors, the spin and
charge degrees of freedom of an electron seem to separate from each other. A similar phenomenon may be
present in the strong coupling phase of Yang-Mills theories, where a separation between the color charge
and the spin of a gluon could play a role in a mass-gap formation. Here we study the phase structure of a
decomposed SU(2) Yang-Mills theory in a mean-field approximation, by inspecting quantum fluctuations
in the condensate which is formed by the color-charge component of the gluon field. Our results suggest
that the decomposed theory has an involved phase structure. In particular, there appears to be a phase
which is quite reminiscent of the superconducting phase in cuprates. We also find evidence that this phase
is separated from the asymptotically-free theory by an intermediate pseudogap phase.
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I. INTRODUCTION

There seem to be some remarkable similarities between
high-temperature cuprate superconductivity in condensed
matter physics and the problem of mass gap in the Yang-
Mills theory of particle physics. It appears that in both
cases the basic theoretical problem is the same, the absence
of a natural condensate to describe the symmetry breaking
that takes place. In high-temperature superconductors elec-
trons do not form conventional Cooper pairs and the stan-
dard BCS-description of superconductivity can not be
applied in any obvious manner. There is no obvious alter-
native choice of condensate that leads to superconductivity.
In a very similar way, in the case of Yang-Mills theories we
do not have any natural candidate for a condensate of the
correct dimension, that describes the mass gap of gluons.
Could it then be that in both cases the condensate has a
similar origin?

It is definitely worth some effort to try and apply similar
techniques to both problems. One promising method in the
context of high-temperature superconductivity is the slave-
boson description, which has been studied actively [1–3].
This approach is based on the curious idea that, in the
strongly correlated environment of cuprate superconduc-
tors, the electron (or hole) is no longer a fundamental mode
of excitation, and thus electronic modes do not behave like
a structureless fundamental object. Instead the electron can
be interpreted as a composite particle, constructed from
two quasiparticles. One of these is described by a charge
neutral, spin-1=2 fermionic operator fi� where i is the site
label and � �"; # is the spin index. This operator corre-
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sponds to a particle called a spinon, and it carries the
(statistical) spin degree of freedom of the electron. The
other excitation is described by a spinless bosonic operator
bTi � �bi1; bi2�. It corresponds to a particle which is called
a holon and it carries the electric charge of the electron. In
terms of these two operators, the electron operator ci�
decomposes as

ci� �
1���
2
p byi  i�; (1)

where we have combined the spinon operators as

 Ti� � �fi�; ��~�f
y
i~��: (2)

The decomposition (1) also introduces an internal U(1)
gauge symmetry, since it is invariant under the simulta-
neous change-of-phase transformation

bi ! ei�bi;  i� ! ei� i�: (3)

As a result we have a compact U(1) gauge interaction
between the spinon and holon. Under normal circumstan-
ces we expect that the strength of this U(1) interaction
increases with increasing energy, to the effect that at high
energies the spinon and holon are confined into a (point-
like) electron. But in a strongly correlated environment,
such as in a cuprate superconductor, the spin and the charge
of the electron can become independent excitations [1–3].
This leads to a rather involved phase diagram, with several
different regions [3]. One of the easiest ways to study the
phase structure is using a mean-field theory. This is ob-
tained by integrating over the fermions  i�, and one finds
that (d-wave) superconductivity occurs when the remain-
ing bosonic holon field bi condenses,

hbyi bii � �b � 0: (4)
-1 © 2005 The American Physical Society
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Of substantial interest is also the possibility that the system
can enter a pseudogap phase. This is a precursor to the
superconducting phase with the characteristic property that
even though the underlying symmetry is broken, the effec-
tive bosonic order parameter �b vanishes due to quantum
fluctuations.

Curiously, a very similar picture seems to emerge in the
case of a pure four dimensional SU(2) Yang-Mills theory.
In analogy to the slave-boson decomposition of an elec-
tron, the off-diagonal components of the non-Abelian
gluon field become composite particles, with a separation
between their color-charge and spin degrees of freedom [4]
(see also [5,6]). Here we shall study the phase structure of
the decomposed gauge theory, by following the mean-field
approach to high-temperature superconductivity. We first
construct a mean-field state where we integrate over the
charge neutral spin degree of freedom of the off-diagonal
gluon. We propose that in the strong coupling regime the
spinless color-charge carrier of the gluon becomes con-
densed. The ensuing phase is analogous to the supercon-
ducting phase in cuprates. Furthermore, in analogy with
cuprate superconductors we also find evidence that there is
an intermediate pseudogap phase, a crossover region be-
tween the superconductinglike phase and the
asymptotically-free deconfined limit of the Yang-Mills
theory.
II. SLAVE-BOSON DECOMPOSITION IN
YANG-MILLS

The slave-boson decomposition of the SU(2) gauge field
Aa� (a � 1; 2; 3 and � � 0; 1; 2; 3) proceeds as follows
[4,5]: We first separate the diagonal Cartan component
A3
� � A� from the off-diagonal components A1;2

� , and
combine the latter into the complex field W� �

A1
� � iA2

�. We then introduce a complex vector field e�
with

e �e� � 0 and e�e�� � 1:

We also introduce two spinless complex scalar fields  1

and  2. The ensuing decomposition of W� is [4]

W� � A1
� � iA2

� �  1e� �  �2e��: (5)

This is clearly a direct analogue of Eq. (1), a decomposi-
tion of W� into spinless bosonic scalars  1;2 which de-
scribe the gluonic holons that carry the color charge of the
W�, and a color-neutral spin-one vector e� which is the
gluonic spinon that carries the statistical spin degrees of
freedom of W�.

In general, the present gluonic slave-boson decomposi-
tion is not gauge invariant. But in a proper gauge it can be
given a gauge invariant meaning and, in particular, the
combination

�2 � �2
1 � �

2
2 � hj 1j

2i � hj 2j
2i (6)
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of the gluonic holons becomes a gauge invariant quantity.
For this we introduce [5,7]Z

�2 �
Z
��2

1 � �
2
2� �

Z
��A1

��
2 � �A2

��
2� �

Z
W�W��:

(7)

This is in general gauge dependent. But if we consider the
gauge orbit extrema of (7) with respect to the full SU(2)
gauge transformations, these extrema are by construction
gauge independent quantities. Moreover, the gauge orbit
extrema of (7) correspond to field configurationsW� which
are subject to a background version of the maximal
Abelian gauge [5],

�@� � igA��W� � 0; (8)

which is widely used in lattice studies [8]. In the sequel we
shall assume that the gauge fixing condition (8) has been
implemented. The slave-boson decomposition then ac-
quires a gauge invariant meaning, and, in particular, the
condensate (6) is a gauge invariant quantity.

As in (3), the decomposition (5) remains intact when we
change phases according to

 1;2 ! ei� 1;2 and e� ! e�i�e�: (9)

This determines an internal compact U(1) gauge structure.
A compact U(1) gauge theory is known to be confining
when the coupling is sufficiently strong [9]. The confining
phase is separated by a first order phase transition from the
deconfined weak coupling phase. Furthermore, since the
running of the �-function of the compact U(1) leads to an
increase of the coupling with increasing energy, we expect
that at high energy the gluonic holon and spinon become
confined by an increasingly strong compact U(1) interac-
tion to the effect that the high energy Yang-Mills theory
describes asymptotically-free and pointlike gluons, as it
should.

But at low energy and in a strongly correlated environ-
ment, maybe in the interior of hadronic particles, the
internal U(1) gauge interaction (9) can become weak and
the spin and the color-charge degrees of freedom of the
gluon can separate from each other. If in analogy with (4)
the spinless color-carriers then condense

�2 � �2
1 � �

2
2 � h 

y
1 1i � h 

y
2 2i � � � 0;

we have a mass gap and the theory is in a phase which is
very similar to the holon condensation phase of cuprate
superconductors.

In the case of high-temperature superconductivity the
basic criterion for the validity of the slave-boson decom-
position is a dynamic one: The decomposition can occur
only if the ensuing Hamiltonian admits a natural interpre-
tation in terms of the decomposed variables. In particular,
in the relevant background the holon and spinon operators
should indeed describe proper particle states. We propose
that the same criterion can also be adopted to Yang-Mills
-2
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theories. A decomposition of the gauge field Aa� in terms of
other fields leads to a valid description of the phase struc-
ture, only if the decomposed action has a natural structure
and particle interpretation in terms of the new variables. In
the case of Eq. (5) this criterion turns out to be satisfied. If
we write the Yang-Mills action in terms of the decomposed
variables, it admits a natural interpretation as a two-gap
Abelian Higgs model [5]. This suggests that the present
Yang-Mills version of the slave-boson decomposition
might actually identify the correct dynamical degrees of
freedom that describe the nonperturbative phases of the
theory.
III. THE MEAN-FIELD THEORY

In the case of cuprate superconductors, the phase struc-
ture can be investigated using a mean-field theory that
emerges when the original theory is averaged over the
electronic spinon field. We now proceed in an analogous
manner, and average the SU(2) Yang-Mills action both
over the color-spinon e� and the Cartan component A�
of the gauge field. Since we are only interested in the phase
structure of the ensuing mean-field theory, it is sufficient to
consider the free energy in a London limit where the slave-
boson condensates

�2
1;2 � hj 1;2j

2i

are spatially uniform.
The integration over A� and e� can be performed in

various different ways. Our starting point is the one-loop
result of Ref. [10], which yields for the (London limit)
condensates the dimensionally transmutated free energy

F�
1

8
g2��2

1��
2
2�

2 	

�
1�

22

3

g2

�4��2
	

�
ln
j�2

1��
2
2j

�2 �
25

6

��
:

(10)

Here � is the renormalization scale and g2 is the (�
dependent) coupling constant and a finite renormalization
�! �� sends g! �g with the familiar relation

�g 2 �
g2

1� 22
3

g2

�4��2 ln� ��=��
; (11)

or in infinitesimal form

� 	
dg
d�
� ��g� � �

22

3

g3

�4��2
:

The minima of (10) are highly nondegenerate, and lo-
cated on the �1 > 0, �2 > 0 branch of the hyperbola

j�2
1 � �

2
2jmin � �2 exp

�
�

24�2

11g2 �
11

3

�
: (12)
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Along this hyperbola, the value of the free energy is

Fmin � �
11

24

g4

16�2 �4 exp
�
�

48�2

11g2 �
22

3

�
: (13)

Since (10) is a one-loop approximation it can not be used
for providing numerically accurate predictions. For this,
high-precision Monte Carlo simulations are needed. But if
one is only interested in the qualitative features of the
phase diagram, the explicit form (10) is adequate, as shown
below.

Indeed, if we assume that the Yang-Mills �-function has
no zeroes so that Z dx

��x�
< 0;

the minimum values (12) and (13) can be represented in the
renormalization group invariant form

��2
1 � �

2
2�

2
min � �4 exp

�
�4

Z g dx
��x�

�
22

3

�
;

and

Fmin � �4�4 	
Z g

��x�dx 	 exp
�
�4

Z g dx
��x�

�
22

3

�

� �4
Z g

��x�dx 	 ��2
1 � �

2
2�

2
min:

Consequently we expect that the qualitative features of our
conclusions have a validity which extends beyond the one-
loop level. For the present purposes it is sufficient to start
from the notationally simpler version

~F �
1

2
��2

1 � �
2
2�

2 	

�
1� ~� 	

�
ln
j�2

1 � �
2
2j

�2 � 	
��

:

(14)

We normalize F with the factor �1� �	�, set �2 � 1 and
redefine

� �
1

2

~�

1� ~�	
;

and arrive at the final version of the free energy that we
shall use in our analysis:

F �
1

2
��2

1 � �
2
2�

2 	 �1� � 	 ln��2
1 � �

2
2�

2�: (15)

In Fig. 1 we have plotted this free energy for � � 100, on
the entire ��1; �2� plane. The generic features of this
potential, a ridge along the lines �1 � 
�2, and a narrow
hyperbolic valley on both sides of these lines, are indepen-
dent of �, but the depth of the valleys and steepness of the
potential are more prominent for larger values of �, as used
here.

The Landau pole at

~� � 1=	 (16)
-3



FIG. 1 (color online). The free energy F in Eq. (15), for � �
100. The physical branch corresponds to the quadrant �1;2 � 0.
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separates the strong coupling region with ~� > 1=	 from
the weak coupling region with ~� < 1=	. Since the latter
region includes the small coupling limit of the original
Yang-Mills theory and since the free energy (10) can
only be reliable for weak coupling, we shall in the follow-
ing concentrate on the region 0 � ~� � 1=	: Notice that in
terms of the redefined coupling � in (15), this corresponds
to the region of a positive �. In particular, if 	 in (14) is
large, the strong coupling limit �! 1 in (15), does not
necessarily correspond to a strong coupling limit of the
original model (14).
IV. CLASSICAL ASPECTS

We first consider the properties of the free energy (15) at
a classical level, where we do not include the quantum
fluctuations in the spatially uniform London limit conden-
sates �1;2. This free energy has the following classical
scaling symmetry [11],

�0 �
�
c
; �0 �

�

1� 2� ln�c2�
;

F0 �
1

c4 	
F

1� 2� lnc2 :

(17)

We can employ this scaling symmetry to restore the pa-
rameter � in the free energy; see (14) and (15). Indeed, it is
obvious that this scaling symmetry reflects the renormal-
ization group symmetry of the original Yang-Mills theory,
with the scaling transformation of the coupling constant �
a version of (11).

In addition, as a function on the entire ��1; �2� plane the
free energy has a discrete symmetry since it only depends
on a polynomial combination of the condensates

F��1; �2� � f���2
1 � �

2
2�

2�:
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and in addition we also have the gauge invariant polyno-
mial combination in Eq. (7),

�2 � �2
1 � �

2
2: (18)

We are interested in linear transformations that act on the
��1; �2� plane and leave both polynomials intact. These
polynomials are exactly the basic invariants that generate
the octonic dihedral group D4 (also called 4mm), which is
the non-Abelian symmetry group of the square.

The four branches of the hyperbola that minimize (15),

��2
1 � �

2
2�

2 � exp
�
1� �
�

�
; (19)

are separated by (nonanalytic) ridges along the lines �1 �

�2, and mapped to each other by the D4 transformations.
At the minima along the hyperbolic valleys the free energy
is given by

Emin � �
1

2
exp

�
1� �
�

�
: (20)

This ground state is highly degenerate, but the combination
on the left-hand side of (19) is not the proper gauge
invariant condensate. The gauge invariant condensate is
given by Eq. (18), and we can employ it to remove the
infinite degeneracy of the hyperbolic vacuum.

From (19) we conclude that the ground-state value �2 �
v2 of the gauge invariant condensate (18) is bounded from
below by a nonvanishing quantity,

�2 � �2
1 � �

2
2 � v2 � j�2

1 � �
2
2j � exp

�
1� �

2�

�
: (21)

When v2 is larger than the lower-bound in (21), there are
eight solutions ��1; �2� to the equations that define the
vacuum

�2
1 � �

2
2 � v2; �2

1 � �
2
2 � 
 exp

�
1� �

2�

�
: (22)

But when v2 coincides with the lower bound there are only
four solutions,

�1 � 
v & �2 � 0; �1 � 0 & �2 � 
v:

(23)

which correspond to the vertices of the hyperbola. The
solutions are mapped onto each other by the dihedral group
D4, and selecting any one as the ground state breaks theD4

symmetry.
The solutions of (22) describe the generic situation

where both condensates are nonvanishing. The solutions
are D4-degenerate, but we remove this degeneracy when
we select the (physical) �1;2 � 0 quadrant. The remaining
ground state is doubly degenerate under exchange of �1

and �2, which correspond to the physical scenario that in
general the London limit densities are unequal.

Finally, the degenerate solutions (23) correspond to the
limit where one of the two condensates vanishes, and again
-4
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by selecting the physical quadrant �1;2 � 0 we remove the
degeneracy.

According to (21) the ground-state value of (18) is non-
vanishing for all nonvanishing values of the coupling con-
stant �. This suggests that in the Yang-Mills theory the
gauge invariant condensate (6) is also nonvanishing for all
nonvanishing values of the coupling constant. This would
mean that the mass gap in the Yang-Mills theory is present
for all values of the coupling, and it vanishes only asymp-
totically in the short distance limit where the gluons be-
come asymptotically-free and massless.
TABLE I. Character table (trace over classes of elements of
the representation matrices) for D4. The five classes on the top
line are, respectively: E identity; 2C4z rotations over 
�=2
around the z axis; C2z a rotation over � around the z axis;
2�y reflections in the x or y axis; 2�xy reflections in the lines
x � 
y.

E 2C4z C2z 2�y 2�xy Representative wave function

A1 � �1 1 1 1 1 1 f�x2 � y2�

A2 � �2 1 1 1 �1 �1 xy�x2 � y2�

B1 � �3 1 �1 1 1 �1 x2 � y2

B2 � �4 1 �1 1 �1 1 xy
E � �5 2 0 �2 0 0 �x; y� and �x� y; x� y�
V. QUANTUM MECHANICS—NUMERICAL
APPROACH

The classical treatment of the mean-field theory in the
previous section suggests that the condensate (6) is always
nonvanishing, hence a mass gap is present for all nontrivial
values of the coupling. We now want to inspect what
effects spatially homogeneous quantum fluctuations
around the classical mean-field value have on this conden-
sate. For this we need to improve the free energy so that it
also includes the contribution from the momenta �1;2 that
are canonically conjugate to the (spatially homogeneous)
condensates �1;2. For computational simplicity we con-
sider these condensates to be defined over the entire
��1; �2� plane. This results in a D4 symmetry, and by
selecting the physically relevant values �1;2 � 0 for the
condensates we then break this discrete symmetry.

The conjugate momenta are the generators of spatially
homogeneous translations. Their inertia is undefined, and
we therefore add a parameter M. The improved free energy
can be interpreted as a Hamiltonian

H �
1

2M
��2

1 � �
2
2� �

1

2
��2

1 � �
2
2�

2�1� � ln��2
1 � �

2
2�

2�:

(24)

It corresponds to the effective action

Seff �
Z T

0
dt��1 _�1 � �2 _�2 �H��;���; (25)

and the equations of motion for Seff are invariant under the
following extension [11] of the scaling transformation (17)

�0 �
�
c
; �0 �

����������������������������
1

1� 2� ln�c2�

s
�

c2 ;

�0 �
�

1� 2� ln�c2�
; t0 �

����������������������������
1� 2� ln�c2�

q
	 ct:

(26)

We also note that the action (25) is clearly invariant under
the dihedral D4 symmetry group.

In order to study the effects of quantum fluctuations in
the condensates we investigate the solutions of Schröd-
inger equation
054007
�
@

2

2M
�@2

1 � @
2
2� ��1; �2� �

1

2
��2

1 � �
2
2�

2

 �1� � ln��2
1 � �

2
2�

2� ��1; �2� � E ��1; �2�: (27)

We have studied this Schrödinger Eq. (27) numerically,
using a highly-accurate finite difference approximation, on
grids of varying size and spacing, using up to 400 400
grid points. We have analyzed both the ground-state wave
function and several of the low-lying excited-state wave
functions when the coupling constant � in (27) varies for
fixed M. According to the relation between (14) and (15),
this surveys the phase structure of the theory at couplings
below the Landau pole.

We note that since the Schrödinger Eq. (27) is invariant
under the action of the dihedral D4, the wave functions can
be chosen to have definite D4 transformation properties.
Unfortunately, most discussions of point groups, see e.g.
[12], look for representations in 3D space, where one can
distinguish between the groups C4v and D4, but these
groups act identically in the xy plane. Following
Mulliken’s (A;B 1D irrep; E 2D irrep) or Koster’s notation
(�i) as discussed in Ref. [12], we have five possible repre-
sentations of this group in two dimensions, see Table I.

In that table we have also listed representative wave
functions for all the irreps. Looking at the symmetry of
the wave functions, we expect A1, B1 and one of the E
cases with zeroes on the lines x � 
y to form four almost
degenerate states as � grows large, as borne out by Fig. 5
below.

When �! 0 the Schrödinger Eq. (27) reduces to the
x2y2 model which has been studied in detail in [13]. In
particular, it has been established that the spectrum of the
x2y2 model is discrete, the eigenstates are normalizable,
and the ground-state energy is separated from E � 0 by a
nonvanishing gap.

In Fig. 2 we depict the behavior of the numerically
constructed ground-state wave function for different values
of � for M � 1. Very similar behavior is found for other
values of M, but as analyzed in more detail below, the
similarity is greatest if we compare solutions for identical
values of �M. We find that the wave function exhibits three
-5



FIG. 2 (color online). The ground-state wave function for � from 0 to 200. A result for a larger value of � is given in Fig. 5.
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different kinds of qualitative behavior. There is a weak
coupling region 0< �M< �a � 10, an intermediate cou-
pling region �a < �M < �b � 500 and a strong coupling
region �b < �. In all cases the ground-state wave function
lies in the lowest symmetric representation (A1) of D4.
These regions have the following characteristic features

a. Weak coupling: In the weak coupling region with
M�< �a � 10, we find that the ground-state wave func-
tion is qualitatively reminiscent of the ground-state wave
function in the x2y2 model, in particular, it has a single
maximum which is located at the origin of the ��1; �2�
plane. We also find that the value of the wave function at its
maximum varies very slowly as a function of �, especially
for a large value of M, which means a more tightly local-
ized wave function, see Fig. 3; both the shape of the
ground-state wave function and the location of its maxi-
mum suggest, that in this weak coupling region quantum
fluctuations tend to restore the system towards the sym-
metric state �2 � 0 so that there would not be any mass
gap in the underlying Yang-Mills theory.

Clearly, we find nonzero condensate values for any finite
value of M. As suggested by Fig. 4, the condensate goes to
zero at � � 0, as M goes to infinity but there remains a
054007
crossover to a broken phase at stronger coupling. This is
consistent with the fact, that in the limit of vanishing
coupling the Yang-Mills theory describes free massless
gluons.

Independent of M, when � approaches �a the value
of �� overshoots the classical value given by the right-
hand side of (19). Consequently the expectation value (6)
detects the presence of symmetry breaking and the ensuing
nontriviality of the condensate, even though this is not
reflected in the location of the maximum value of the
ground-state wave function.

Such a behavior where the condensate (6) detects a
symmetry breaking while the wave function tends to retain
the symmetry, is reminiscent of the pseudogap phase [3].
As a consequence we propose that in the weak coupling
region 0< �< �a the underlying Yang-Mills theory is in a
pseudogap phase, a crossover region which terminates in
the asymptotically-free theory as �! 0. Presumably this
region is intimately related to a Coulomb-like phase in the
Yang-Mills theory.

b. Intermediate coupling: When 10 � M�a <M�<
M�b � 500 there is a clear qualitative change in the be-
havior of both the ground-state wave function and the
-6



0.01 1 100
λM

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
λ

M=1
M=2
M=4
M=8
M=16

FIG. 4 (color online). The condensate (6), as a function of M�
for various values of M, as indicated in the plot.

0

0.2

0.4

0.6

0.8

1

<ρ
1

2
+ρ

2

2
>

<(ρ
1

2
-ρ

2

2
)
2
>

1/2

ρ
max

2

0.01 1 100
Mλ

0

0.01

0.02

0.03

φ(
0,

0)

FIG. 3 (color online). The upper panel shows the two con-
densates �2 and ���2

1 � �
2
2�

2�1=2 , and the distance of the maxi-
mum value of the ground-state wave function to the origin. The
lower panel gives the value of the ground-state wave function at
the origin. The solid lines show the values for M � 1, and the
dashed lines for the larger value M � 8.
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condensates (6). For these values of the coupling the origin
in the ��1; �2� plane becomes a local minimum, and instead
there are now four maxima in the wave function. These
maxima are all located the same distance �max from the
origin, and related to each other by the D4 symmetry. Both
the value of the ground-state wave function at the origin,
and the condensate (6) decrease essentially linearly in the
logarithmic scales of Fig. 3, while the value of �max very
rapidly approaches the classical limiting value determined
by (19), as �! �b. In particular, as �! �b the value of
the condensate (6) becomes less than its classical bound in
(19), but is still clearly bounded from below.

In this intermediate coupling region both the ground-
state wave function and the condensate (6) behave simi-
larly, and in a manner which suggests that the underlying
Yang-Mills theory has a mass gap. Indeed, the behavior is
quite reminiscent of the superconducting phase in cuprate
superconductors. We find it natural to propose that this
region of the coupling constant describes a superconduct-
054007
ing mass-gap phase of the Yang-Mills theory, maybe a
magnetic dual to the confinement phase.

c. Strong coupling: When �! �b � 1000 we detect a
new transition, towards a strong coupling regime �b < �.
Now the value of the ground-state wave function essen-
tially vanishes at the origin, see Fig. 3. The value of the
condensate (6) again increases, and asymptotically ap-
proaches the value �max � exp��1=4� which is the classi-
cal �! 1 lower bound value (21) for the minimum
distance between the potential minimum and the origin.
Indeed, for the entire strong coupling region �b < � we
find that the difference between the classical and quantum
values of the condensate is very small, suggesting that in
this region one of the condensates essentially vanishes.
Consequently as �! 1 the system becomes driven to-
wards a degenerate ground state where one of the conden-
sates asymptotically vanishes, while the other becomes
asymptotically determined by the classical theory.

The strong coupling region retains the major character-
istics of the intermediate coupling region: There is a mass
gap, and the ground-state wave function is peaked at a
nontrivial value of the condensate, even though in the
infinite coupling limit one of the (quantum) condensates
seems to vanishes asymptotically—it seems that the two
quantities �2 and ���2

1 � �
2
2�

2�1=2 coincide as �! 1. But
in this region the ground-state wave function has the addi-
tional characteristic property that it (essentially) vanishes
in a neighborhood around the origin, thus becoming (es-
sentially) separated into four disjoint components. This
means that the lowest four states, consisting of two one-
dimensional representations and one two-dimensional one,
become degenerate. While we do recognize that in a finite
dimensional quantum mechanical model there always re-
mains a (vanishingly small) tail of the wave function at the
origin, the numerically observed vanishing of the wave
function in the vicinity of the origin is very definite.
Consequently we envision, that in the underlying field
theory with its infinite number of degrees of freedom, there
-7



FIG. 5 (color online). The four lowest eigenstates (from left to right and top to bottom) of the problem (27) for � � 400.
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is a true transition where the tunneling between the four
dihedrally symmetric branches of the ground-state wave
function becomes totally suppressed.

Finally, we find that the at these high values of � the
wave functions of the four lowest states become degener-
ate, see Figs. 5. The symmetries of these states correspond
to A1, E, and B1 irreps, as argued above.

VI. QUANTUM MECHANICS—ASYMPTOTIC
ANALYSIS

The present model is a generalization of the x2y2 model,
a notoriously complex system [13]. While the �! 0 limit
of our numerical results reproduce the known properties of
the x2y2 model, there is a need to confirm the main features
of our � � 0 results by formal analysis. For this, we now
consider the relevant asymptotic behavior of the ground-
state wave function.

A. Large distance behavior of the wave function

For � � 0 the behavior of the solutions of (27) are
known and have been discussed in detail in [13]: The
spectrum is discrete, the eigenstates are normalizable,
and the ground-state energy is separated from E � 0 by a
054007
nonvanishing gap. Our numerical investigations suggest
that these conclusions persist for nonvanishing values of
�. We now proceed to verify this using asymptotic analysis
of the Schrödinger Eq. (27). In particular, we wish to
establish that the wave function is indeed normalizable.

When �1 � 
�2 the potential in (27) is bounded from
below by a positive quadratic form. Consequently any
peculiar, unexpected behavior in the ground-state wave
function must be concentrated near the lines where �2

1 �
�2

2. This is best studied in hyperbolic coordinates [14]


 �
1

2
��2

1 � �
2
2�; and � � �1�2: (28)

We note that even though these coordinates only cover half
of the ��1; �2� plane, we can use them to study the full
behavior of the wave function for large values of �1 �

�2. In these coordinates the Schrödinger operator is

Ĥ � �
�����������������

2 � �2

q
�@

 � @��� � 2
2�1� � ln�4
2��

and we are particularly interested in the behavior of the
wave function for large values of � and small values of 
.

We first consider the known � � 0 case, this leads us to
the Schrödinger equation
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�j�j��

 ����� � 2
2� � E�:

We wish to implement an asymptotic separation of varia-
bles. For this we select � to be large and positive (alter-
natively large and negative). Since the potential depends on

 alone, we can introduce a transformation in this variable
that allows separation to (almost) take place: We write

x � 
=�1=4 & y � �1=2

and

��
; �� � f�x�g�y�:

With this Ansatz we get

yg�y���f00�x� � 2x2f�x�� �
f�x�g00�y�

4

�
1

y

�
�

5xg�y�f0�x�
16

�
f�x�g0�y�

4
�
xf0�x�g0�y�

4

�

�
x2g�y�f00�x�

16y2 � Ef�x�g�y�: (29)

Thus, the problem is separable to leading order in 1=y,

�f00�x� � 2x2f�x� � f�x�; (30)

�
g00�y�

4
� yg�y� � 0: (31)

The function f is clearly one of the harmonic oscillator
states, and for the ground state of our Schrödinger equation
we must have the lowest energy eigenstate of the harmonic
oscillator. The equation for g then becomes

�
g00�y�

4
�

���
2
p
yg�y� � 0;

since for large values of y the value of the energy becomes
irrelevant. For a normalizable wave function, the only
acceptable solution is

g�y� � Ai�25=6y� (32)

which decays rapidly. This is consistent with our numerical
simulations, and the (� � 0) results in [13]: The ‘‘tendrils’’
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FIG. 6 (color online). The functions
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of the wave function along the potential valleys are indeed
decaying very rapidly. In original coordinates,

���1; �2� � exp
�
�

1

8
��2

1 � �
2
2�

2=��1�2�

�
 Ai�25=6��1�2�

2�: (33)

We now consider the general case: As above, our ap-
proach is based on asymptotic separation of variables
obtained by rescaling 
, which allows us to combine the
terms multiplying f00 with the rescaled potential. Let us
therefore look at the 
! 	
 scaling of the general poten-
tial, as studied in Eq. (17),

V��
� � 2
2�1� � ln4
2�: (34)

We find

V��	
� � 	2�1� � ln	2�2
2

�
1�

�
�1� 	��

ln4
2

�
� �V~��
�; (35)

where

� � 	2�1� � ln	2� & ~� �
�

�1� 	��
: (36)

If we now make 	 dependent on �, and define x �

=	���, we get a matching condition by requiring a com-
mon �-dependent factor for the leading second derivative
with respect to x and the potential

�	2 � 	2�1� � ln	2�;

which has the solution

	 �
�

2�

� plog�2�e
2=�

� �

�
1=4
; (37)

where plog is the ‘‘product logarithm’’ (inverse to xex).
The functions 	��� and ���� (see Fig. 6) are increasing

functions of �, and will provide us with a second expan-
sion parameter. Now we separate variable in x and � as
before,

��
; �� � f�x�g���;
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which leads us to the following generalization of (29)

� �g00���f�x� � ����g�����f00�x� � V~�����x�f�x��

�
����2	0���2

4�
g����3xf0�x� � x2f00�x��

� ����	0���xf0�x�g0���

�
1

2
����	00���xf0�x�g��� � Ef�x�g���: (38)

We now ignore all but the first three terms—it can be
verified numerically that all other terms are small—and
separate variables

�f00�x� � V~�f�x� � ��~�����f�x�; (39)

��g00��� � ������~�����g��� � 0: (40)

The value ���� is larger than �1=2, its value when � � 0,
as can be seen in Fig. 6. The eigenvalue ��~�� is larger than���

2
p

, if we take � large enough so that ~� � O�1�, see Fig. 7.
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FIG. 8 (color online). The lowest eigenfunction of (37) as a
function of �.
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Since ~�! 0 for �! 1, we then have a rapid decay of the
wave function for large �, as expected.

The equation for f�x� is interesting for other reasons as
well; as shown in Fig. 8, we find that for large values of �
the wave function separates into two parts. Remembering
that x � 0 corresponds to the lines �1 � 
�2, this sup-
ports our assertion that the wave function separates in 4
disjoint parts for large �.

B. Large values � > �b
In the region of large coupling, the hyperbolic valleys of

the free energy become very deep. We are interested in the
asymptotics of the ground-state wave function, when it
becomes separated into four disjoint components. We con-
tinue to utilize the hyperbolic coordinates, but we shall
now expand around the minima of the free energy.

In hyperbolic coordinates, the minimum of the free
energy


0 � 

1

2
exp

�
�

1� �
2�

�
remains very close to 
 � 0 (less than 1

2
��
e
p � 0:303 . . .

which is the value for �! 1). Consequently the previous
asymptotic analysis remains valid, and we can immedi-
ately conclude that the wave functions are decaying
rapidly.

However, it is also of interest to consider the limit of a
very deep potential directly, and for this we introduce
coordinates from the minimum, scaled with 
0,


 � 
0�x
 1� & � � 
0y:

We then expand in powers of x, keeping leading terms only.
The Hamiltonian simplifies to

H � �
1


0M

����������������������������
�1� x�2 � y2

q
�@xx � @yy� � 2�
2

0�x� 1�2

 �log�x� 1�2 � 1�

� �
1


0M

����������������
�1� y2

q
�@xx � @yy� � 2�
2

0��1� 2x2�:

(41)

With � � �
3
0 and � � E
0 �� this leads to the eigen-

value problem

�

��������������
1� y2

p
M

�@xx�� @yy�� � 4�x2� � ��: (42)

We now wish to consider the properties of solutions to this
Schrödinger equation: We substitute

��x; y� � f�z�g�y�;

with

z � x�1� y2�1=8:

When we ignore terms containing lower order or mixed
-10
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derivatives in addition of powers of x, we find that the
equation takes the form

�1�y2�1=4g
�

1

M
@zzf�4�z2f

�
�f

�������������
1�y2

q 1

M
@yyg��fg:

Assuming again the lowest harmonic oscillator eigenstate
for f,

f � exp���z=bz�2=2�;
with

bz � �2�M�
�1=4;

we find for g,

�

��������������
1� y2

p
M

@yyg�
�������
2�

p
�1� y2�1=4g � �g:

In order to obtain an analytic solution we shall assume� to
be so large that we again can make the harmonic approxi-
mation. This gives

�@yyg�
���������
�=2

q
y2g � ���

�������
2�

p
�g:

Thus

g � exp���y=by�2=2�;

with by � �8=M��1=8, and the ground-state energy is given
by

� � �2�=M�1=2 � ��=�2M�3�1=4:

The energy for the original problem can thus be expressed
as

E �
�2�=M�1=2 � ��=�2M�3�1=4 ��


0
:

which is a good approximation only when the wave func-
tion fg has no overlap with those from the remaining three
valleys—and when our harmonic approximations are
valid.

We also conclude that the scaling of the condensates
observed in the previous section is indeed taking place; the
width of both f and g depends on the combination �M �
�M
3

0, and for large � 
0 is approximately constant, lead-
ing to the observed scaling in �M. Since the wave func-
tions contract slowly to the maximum point (most slowly
for g), we find that indeed we have in the limit �! 1 the
case where one of the two condensates disappears, as stated
above. A further numerical analysis using the separated
wave function confirms that this approach is very slow, and
we must go to extremely high values of � to see the point
where we cannot distinguish between the maximum and
the expectation value of �2.

VII. CONCLUSIONS

In conclusion, we have investigated the phase structure
of pure SU(2) Yang-Mills theory using a slave-boson
054007
decomposition of the gauge field. We have employed
a mean-field approximation where we account only
for spatially homogeneous fluctuations in the gluonic
holon fields. Our analysis suggests that the decomposed
theory has an involved phase diagram, resembling that
of cuprate superconductors. At intermediate couplings,
there seems to be a gapped phase which is separated
from the asymptotically-free high energy limit by a pseu-
dogap phase. Furthermore, we find that a mass gap appears
to persists in the strong coupling limit even though
asymptotically one of the two holon condensates appears
to vanishes.

In our analysis we have employed a version of the
maximal Abelian gauge. In this gauge we have the advan-
tage, that many results are available from first principle
lattice simulations; see [8] for a review. In particular, it
has been observed [8] that the (electric) confinement of
color relates to the condensation of magnetic monopoles
in the dual Higgs phase. Here we have inspected a (renor-
malization group invariant) perturbative one-loop approxi-
mation to the Yang-Mills effective action, in terms of
decomposed variables that have a natural magnetic
interpretation. Our results do not account for topologically
nontrivial configurations, consequently it is not directly
clear how our results could relate to the (electric) color
confinement as observed in the lattice simulations. For
a comparison, we need a first-principles numerical lattice
analysis in terms of the separated spin and charge
variables. We also need a better understanding of
electric-magnetic duality in terms of these variables.
However, even at the level of the (crude) approximation
that we employ here, it appears that when formulated
in terms of the separate spin and charge variables the
Yang-Mills theory has a very rich phase structure, not
easily described in terms of the conventional gluonic var-
iables. Our results suggests that the possibility of a
spin-charge separation in the Yang-Mills theory may
occur, and deserves to be addressed by extensive first-
principles lattice simulations. Furthermore, there is a
need to address theoretical issues such as electric-
magnetic duality and the description of the Yang-
Mills theory in terms of the spin-charge separated dual
variables.

Indeed, if gluons can become decomposed into their
independent holon and spinon components, it could have
deep consequences to our understanding of the fundamen-
tal structure of matter.
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