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Simple patterns for nonlinear susceptibilities near Tc
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Nonlinear susceptibilities up to the eighth order have been constructed in QCD with two flavors of
dynamical quarks. Beyond leading order, they exhibit peaks at the crossover temperature, Tc. By
analyzing their behavior in detail, we find that the dominant contributions near Tc come from a set of
operators with a remarkably simple topology. Any effective theory of QCD near Tc must be able to explain
these regularities.
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Quark number susceptibilities (QNS) in QCD [1] are
interesting because they are measurable through event-to-
event fluctuations of conserved quantities in heavy-ion
collisions [2]. Recent determinations of the linear QNS
in lattice QCD include those in the continuum limit of the
quenched theory [3], the first results in the high tempera-
ture phase ofNf � 2 QCD [4–6], and the first computation
in Nf � 2� 1 QCD [7]. The nonlinear susceptibilities
(NLS) are a generalization introduced in [8,9] and have
been used in finding the Taylor expansion of the pressure of
the QCD plasma at finite chemical potential. The linear
combinations used for pressure were also reported in Nf �
2 QCD [5].

Here we report on systematic simplicities of these quan-
tities that we discovered in our investigation of QCD with
light dynamical quarks. These simple patterns which we
find here for the first time may be consistent with weak-
coupling theory in the high temperature phase of QCD.
However, in the vicinity of the finite temperature crossover
at Tc, we find a different simple pattern. It seems possible
to incorporate it into a simple model of the physics of the
crossover. A few of these results have been discussed in
[6]. Here we complete the study of the NLS started there.

The partition function for QCD at temperature T and
chemical potentials �f for each of Nf flavors can be
written in the form

Z�T; f�fg� �
Z

DUe�SG�T�
Y
f

detMf�mf; T;�f�; (1)

where SG is the gluon part of the action and M denotes the
Dirac operator. The pressure,

P�T; f�fg� � �
F
V
�

�
T
V

�
logZ�T; f�fg�; (2)

which is a convex function of T and�f, can be expanded in
a Taylor series about the point where all the �f � 0 [8].

In this paper we examine staggered fermions with Nf �
2 and a small but nonvanishing quark mass, mu � md �
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m. The Nth order derivatives in the Taylor expansion then
can be taken nu times with respect to �u and nd � N � nu
times with respect to �d. This is the nonlinear quark
number susceptibility, which we write as �nu;nd . This new
notation streamlines a more cumbersome notation which
was used earlier. The translation table between these two
notations can be understood from the relations—

�20 � �uu � �dd � �02; �11 � �ud;

�40 � �uuuu � �dddd � �04; �22 � �uudd; etc:;

(3)

where we have used flavor symmetry to write �nu;nd �
�nd;nu .

The Taylor expansion of the pressure can be written as

�P�T;�u;�d� � P�T;�u;�d� � P�T; 0; 0�

�
X
nu;nd

�nu;nd
�nu
u

nu!

�nd
d

nd!
: (4)

The NLS above can be written down in terms of the
derivatives of Z. From the expression in Eq. (1) it is clear
that the derivatives with respect to the �f land entirely on
the determinants. Now, since detM � expTr logM, the first
derivative gives �detM�0 � Tr�M�1M0� detM � O1 detM.
Higher derivatives can be found systematically using the
additional relation MM�1 � 1, which yields �M�1�0 �
�M�1M0M�1. Our notation for operators is that O0n �
On�1, and Olmn��� � OlOmOn � � � . The expectation values
hO2n�1��f � 0�i � 0 by CP symmetry. The derivatives of
Z can be written in terms of expectation values of certain
operators involving powers of traces of products of inver-
ses and derivatives of the Dirac operator. Diagrammatic
methods for their evaluation were developed in [8,10] and
explicit expressions were written down in [6].

We report on results obtained using the configurations
generated in the study reported in [6]. Details of our
simulations and statistics can be found there. These results
have been obtained on lattices with temporal extent Nt �
4, and varying Ns, with the spatial volume being large. The
quark mass has been fixed in physical units to be such that
m�=m� � 0:31� 0:01, about 50% larger than in the real
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world, making this the smallest quark mass at which NLS
have been studied. Details of how the temperature scale is
set on the lattice also can be found in [6]. In physical units
we find that the crossover temperature is Tc=m� �

0:186� 0:006.
The volume dependence of Tc has been remarked upon

in [6]; we see evidence of some volume dependence in the
bare coupling at the crossover, but the scale has larger
uncertainties, so a finite size scaling study of the shift of
Tc with V performed at these lattice cutoffs a will not be
very useful. However, strong finite volume effects on the
NLS were found when the spatial lattice extent was too
small, Ns < 4Nt. In the remainder of this study, therefore,
we concentrate on the NLS obtained with Ns � 16, using
data obtained with Ns � 24 to make cross-checks of the
results. At Tc, the finite volume shift in the results is
significant, but become negligible on moving slightly
away—to 0:95Tc or 1:05Tc, for example.

The two leading terms in the series, the diagonal QNS,
�20, and the off-diagonal QNS, �11, have been computed
before. For completeness we display results from [6] in
Fig. 1. Note that �11 � �T=V�hO11i, which is a quark line
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FIG. 1 (color online). �20=T
2 varies smoothly across Tc, and

behaves roughly as an order parameter, being small in the
hadronic phase and large in the plasma. �11=T

2 is small in the
hadronic phase, perhaps peaks near Tc, and is not significant in
the plasma phase. Data from lattice sizes 4� 163 (circles) and
4� 243 (boxes) are shown.

054006
disconnected diagram. Also, one can see that �20 � �11 �
�T=V�hO2i, which is quark line connected. Diagrammatic
representations of these are shown in Fig. 2. Recall that for
T > Tc, these diagrams have been computed in weak-
coupling theory, giving reasonable agreement with the
lattice results [11–13].

A counting rule for the minimum number of gluon lines
needed in a quark line disconnected diagram was obtained
in [11] by noting that effectively the diagrams are Abelian,
and Furry’s theorem holds, i.e., the number of �� inser-
tions must be even. Among these must be counted the
insertions of �0 arising from taking derivatives with re-
spect to the chemical potential. For O11 one gluon ex-
change is ruled out for reasons of gauge invariance, two
by the counting rule, and hence three gluons are needed, as
shown in Fig. 2.

In Fig. 1 some volume dependence is visible in the
immediate vicinity of Tc. The high temperature behavior
of �20=T2 is consistent with our earlier results in [4], and,
therefore, is compatible with the predictions of [11,12].
The results on �11=T

2 are also completely compatible with
earlier results in [4] after correcting for a division by an
extra factor of �T=V� for �11=T

2 reported there. Com-
parison with the recent results of [5,7] are harder to per-
form since the actions and quark masses are different.

At the fourth order, there are five operators—O4, O31,
O22, O112, and O1111. The last four are quark line discon-
nected operators. The connected parts of the operators
enter into the expressions for the NLS [6,8]. In this paper,
we decompose the NLS into connected parts of these
operators, such as �T=V�hO22ic. Since comparisons are
always with connected parts, we indulge in slight notation
abuse by dropping the subscript often. We remind the
reader of the definitions of the connected parts at the fourth
order—

hO1111ic � 	hO1111i � 3hO11i
2
;

hO112ic � 	hO112i � hO11ihO2i
;

hO22ic � 	hO22i � hO2i
2
:

(5)

hO31i and hO4i are connected pieces by themselves; the
2O11
O

FIG. 2. The operator O11 is shown on the left with the smallest
number of gluon connections between the two fermion loops.
The contribution is naı̈vely of order g6, but a computation shows
that it is actually g5 logg [11]. The operator O2 shown on the
right is fermion line connected and hence the leading contribu-
tion shown is of order 1. The black dots denote insertions of
�0 arising from the derivatives with respect to the chemical
potential.
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FIG. 4. One of the contributions to the operator O22 is shown
on the left with the smallest number of gluon connections
between the two fermion loops allowed by the counting rules
of [11]. Other contributions correspond to permuting the gluon
lines and operator insertions along each quark line, while keep-
ing the loop topology fixed. The operator O4 shown on the right
is fermion line connected and hence of order 1. These diagrams
are expected to give accurate results in the plasma phase.
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former by virtue of the fact that hOni � 0 for odd n, the
latter because it is the largest loop at this order. In [6,8] we
have shown that each distinct operator topology is a physi-
cal observable in a version of QCD with appropriate num-
ber of quark flavors.

We show our results for the QNS �40 in Fig. 3, where we
also plot the connected part of �T=V�hO22i multiplied by
the coefficient with which it enters into �40. This operator
appears to take care of the peak in the QNS near Tc. In
Fig. 3 we also have shown the difference between these
two quantities. The peak disappears and the remainder, in
the high temperature phase, is saturated by �T=V�hO4i.
Like O2, this expectation value is also like an order pa-
rameter, being small in the low T phase, and large on the
other side of Tc.

In this range of temperatures, the two major contribu-
tions to the fourth order QNS are from O4 and O22. We also
find this kind of peak in �22, where it again matched the
peak in �T=V�hO22i. No other QNS at this order has con-
tribution from this operator and also shows little sign of a
comparable peak near Tc. O4 gives no contribution to any
other QNS, and, compatible with this, we see that all other
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FIG. 3 (color online). �40 (boxes) peaks at Tc, and the peak is
entirely due to the term in �T=V�hO22i (circles), as shown in the
lower panel. After subtracting this out, one gets a much smoother
function (circles in the lower panel), which agrees well with
�T=V�hO4i (boxes). Data are from lattice sizes 4� 163.
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fourth order QNS are very small above Tc. A similar
behavior is also seen on the 4� 243 lattice.

It is interesting that the counting rules of [11] show that
the two largest contributions above Tc should come from
precisely these operators. O4 is of order 1, and the con-
nected part of O22 shown in Fig. 4 is naı̈vely of order g4. In
comparison, O31 is of order g6, O112 is of order g8, and
O1111 is of order g12. These naı̈ve powers may be modified
into some logarithms in the computation.

At the sixth order we have 11 topologically distinct
operators O6, O51, O42, O33, O114, O123, O222, O1113,
O1122, O11 112, and O111 111. The determination of the
NLS are also significantly more expensive than the linear
QNS, requiring many more vectors in the stochastic evalu-
ation of the traces [6]. One result is that the measurements
are more noisy at higher orders. Nevertheless, it is possible
to make significant statements about the structure of these
operators.

One interesting point, illustrated in Fig. 5, is the quali-
tative similarity between �11 and �T=V�hO33i. Both are
small in the high T phase, possibly peak in the vicinity of
Tc, and are comparable to other operators in the low T
phase. We have previously argued that the increase in the
ratio �11=�20 with decreasing T implies that the fermion
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FIG. 5 (color online). �11 (boxes) and �T=V�hO33i (circles)
obtained on a 4� 163 lattice.
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FIG. 7. One of the contributions to the operator O222 is shown
on the left with the smallest number of gluon connections
between the two fermion loops allowed by the counting rules
of [11]. Other contributions correspond to permuting the gluon
lines and operator insertions along each quark line, while keep-
ing the loop topology fixed. The operator O6 shown on the right
is fermion line connected and hence of order 1. These diagrams
are expected to give accurate results in the plasma phase.
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sign problem becomes more severe, thus restricting the
usefulness of all the recent methods which have been
developed to handle this problem. The observation in
Fig. 5 extends this argument to finite chemical potential.

However, at higher temperatures, such contributions are
small. The dependence of �60 on T is shown in Fig. 6. The
peak at Tc is due to contributions from O222, as we dem-
onstrate by plotting along with this the values of �42

normalized so that the two have equal contribution from
O222. The difference is small; for T > Tc it is saturated by
O6, which is much smaller than the peak, but much larger
than O222. The operator O24 also peaks at Tc, but the value
at the peak is negligible in comparison with O222. Power
counting shows that O6 is of order 1, O24 is of order g4, but
O222 is of order g6. The form of the operators is shown in
Fig. 7. This is the lowest order at which we first find
explicitly that the perturbative power counting of the
high temperature phase does not extend down to Tc.

This pattern recurs at the eighth order, as we display in
Fig. 8. There is a peak in some of the susceptibilities at Tc,
but this can be ascribed to O2222. The high temperature
phase is dominated by a nonvanishing value of O8, which
is much lower than the peak. Other operators at the eighth
order which may peak at Tc are O26 and O44. As we
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FIG. 6 (color online). In the first panel we show �60 (circles)
and 5�42 (boxes) as found on a 4� 163 lattice. The two are
normalized such that they have equal contribution from O222.
The second panel shows �T=V�hO6iT

2 on 4� 163 (circles) and
4� 243 (boxes) lattices. Note the difference in the scales of the
two figures.
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illustrate in Fig. 9, they indeed have interesting behavior
near Tc. However, these operators are numerically negli-
gible compared to the value of O2222. In the high tempera-
ture phase the power counting rules show that O8 is of
order 1, O26 and O44 are of order g4, whereas O2222 is of
order g8. The pattern of dominance near Tc therefore has
nothing to do with power counting in g.
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FIG. 8 (color online). In the first panel we show �80T4 (circles)
and 7�62T

4 (boxes) as found on a 4� 163 lattice. The two are
normalized such that they have equal contribution from O2222.
The second panel shows �T=V�hO8iT4 on a 4� 163 lattice. Note
the difference in the scales of the two figures.
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FIG. 10. The expectations for the NLS near Tc based on an
effective theory of QCD near the phase transition in which the
composite operator O2 is identified as the order parameter.
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FIG. 9 (color online). The connected parts of the expectation
values of O26 (circles) and O44 (boxes) as found on a 4� 163

lattice. The expectation values are normalized by T=V and
rendered dimensionless through a multiplication by T4.
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In summary then, we have found a very pleasing pattern
for the NLS. In the hadronic phase, all operators seem to
have comparable expectation values. This is not unex-
pected. In the hadronic vacuum, at T � 0, many different
operators have vacuum expectation values, which are all
typically expected to be of similar order. Above Tc, we
have an extremely simple pattern, in which the NLS are
dominated by the operators with a single quark loop, On,
and the expectation values �T=V�hOniT

n�4 are all in the
range of 1–2. This pattern seems to be organized by weak-
coupling power counting arguments, but it would be useful
to have precise estimates of these operators through per-
turbative computations.

It follows from this observation, that the pressure at
finite chemical potential has contributions from all even
terms, but the numerical importance of the terms decreases
factorially at high temperature. As shown in [14], in a free
field theory at finite �, the pressure can be separated into a
quark piece and an antiquark piece, each of which has
contributions to all even orders in �, which cancel to
give a pressure which contains only terms up to order
�4. These small terms in the pressure can be thought of
as little shifts in these pieces caused by a weak-coupling,
such that the cancellation becomes incomplete. Such a
mismatch between particle and antiparticle is possible
because a chemical potential explicitly breaks CP
invariance.

The most unexpected regularity that we have found is in
the vicinity of Tc. Here, the NLS are dominated by a
054006
composite operator which is made up of appropriate num-
bers of fermion loops with two �0 insertions in each, i.e.,
with an appropriate number of O2. Our observation sug-
gests that it may be possible to write down effective long-
distance theories in which this composite bosonic operator
is treated as a field operator whose expectation value shows
the correct crossover behavior. In that case hO22ic would be
the susceptibility of this field, and being proportional to the
temperature derivative of hO2i, would peak, as observed.
The expectation value hO222ic would be proportional to the
next derivative of hO2i. Then the T dependence of these
quantities at �f � 0 would have the shapes shown Fig. 10.

In an effective 3D spatial Landau theory of the form that
we suggest, O2 can be taken to be a two-point function
built from one polarization of a vector operator. Under the
symmetries of the transfer matrix that builds the equilib-
rium correlation functions, i.e., the screening correlators,
this polarization mixes with the scalar [15]. It has been
suggested that the scalar crucially impacts the physics of
the phase transition in the chiral limit [16], because of the
fact that it becomes massless at that point. This is the
situation in the chiral limit; it would be interesting to see
predictions from such models for the behavior of these
NLS at finite quark mass.

This computation was carried out on the Indian Lattice
Gauge Theory Initiative’s CRAY X1 at the Tata Institute of
Fundamental Research. It is a pleasure to thank Ajay Salve
for his administrative support on the Cray.
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