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Fate of non-Abelian plasma instabilities in 3� 1 dimensions
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Plasma instabilities can play a fundamental role in plasma equilibration. There are similarities and
differences between plasma instabilities in Abelian and non-Abelian gauge theories. In particular, it has
been an open question whether non-Abelian self-interactions are the limiting factor in the growth of non-
Abelian plasma instabilities. We study this problem with 3� 1 dimensional numerical simulations. We
find that non-Abelian plasma instabilities behave very differently from Abelian ones once they grow to be
nonperturbatively large, in contrast with earlier results of 1� 1 dimensional simulations. In particular,
they grow more slowly at late times, with linear rather than exponential dependence of magnetic energy on
time.
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I. INTRODUCTION

A fundamental problem in the theoretical study of
quark-gluon plasmas (QGPs) is to understand how such
plasmas equilibrate. By what processes would a heavy ion
collision first produce a quark-gluon plasma that is in
approximate local equilibrium and/or expanding hydrody-
namically?1 At the very least, it would be useful and
interesting to answer this question in a simplifying theo-
retical limit: that of arbitrarily high-energy collisions,
where the running strong coupling �s at relevant scales is
arbitrarily small due to asymptotic freedom. Even this
weak-coupling limit is rich and complicated. Various au-
thors have used weak-coupling techniques to study the
initial creation and interaction of the nonperturbatively
dense small-x glue which will eventually develop into
the quark-gluon plasma [2–8]. Baier et al. [9] have inves-
tigated the effects of two-particle scattering and
Bremsstrahlung on subsequently equilibrating the plasma,
once the initial small-x glue has expanded and diluted to
perturbative densities, where it can be treated as a collec-
tion of individual gluons. However, it now seems clear that
the process of thermalization is not controlled solely by
such individual particle collisions in the weak-coupling
limit [10]; one must account for collective processes in
the plasma in the form of plasma instabilities. The insta-
bilities are known as Weibel or filamentary instabilities
[11], and they have a very long history in traditional plasma
physics. Their possible relevance to QGP equilibration has
mic behavior does not necessarily require local
ibrium, as discussed in Ref. [1].
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been proposed for roughly 20 years by Mrówczyński and
others [12–23].

In the case of electromagnetism, a simple example of a
Weibel instability appears for two uniform, interpenetrat-
ing beams of charged particles traveling in opposite direc-
tions, as depicted in Fig. 1(a). Crudely think of each beam
as a superposition of many wires carrying current, and
recall that parallel wires magnetically attract if their cur-
rents are aligned, or repel if opposite. The ‘‘wires’’ are
therefore unstable to clumping, as depicted in Fig. 1(b).
More thorough discussions of the qualitative origin of
Weibel instabilities may be found in Refs. [10,20,24].
Very roughly speaking, Weibel instabilities occur in colli-
sionless plasmas whenever the velocity distribution of the
plasma is anisotropic in its rest frame. (See Ref. [10] for a
more precise statement.) For the purpose of analyzing the
instability, the plasma may be regarded as collisionless
FIG. 1. (a) Two uniform, interpenetrating beams of charged
particles, moving left and right; (b) the filamentation of those
beams by the Weibel instability.
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FIG. 2. A representative simulation of instability growth for
3� 1 dimensional SU(2) gauge theory (solid line), 3� 1 di-
mensional Abelian gauge theory (dashed line), and 1� 1 di-
mensional SU(2) gauge theory (dotted line). The latter is
qualitatively similar to the results of Ref. [27]. The parameters
used for these simulations are explained in Sec. II. For 3� 1
dimensions, they are lmax � 24, lattice spacing a � 0:25m�1

1 ,
time step 0:1a, volume L3 � �64a�3 � �16m�1

1 �
3, and initial

amplitude � � 0:02m�1=2
1 . For 1� 1 dimensions, they are the

same except that the length is L � 8192a � 2048m�1
1 and � �

0:014m�1=2. To simplify comparison of the curves, we have
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whenever the distance and time scales associated with the
instability are found to be small compared to those for
individual, random collisions of particles in the plasma.2

There are magnetic fields associated with the filaments
in Fig. 1(b). As the instability progresses, these fields
become stronger and stronger. Growth of the instabilities
is initially exponential in time. In electromagnetic plasmas,
growth stops only when the magnetic fields become so
large that they have a nonperturbatively large effect on
the particle trajectories. These effects of these large fields
can drive isotropization of plasmas that are initially aniso-
tropic [25]. This isotropization due to collective plasma
phenomena is the basis of our own recent scenario (with
Lenaghan) for the early onset of hydrodynamic behavior in
the weak coupling limit [1], as compared to estimates
based on individual 2-particle collisions. To analyze cor-
rectly the effects of plasma instabilities, however, it is
crucial to understand whether the (chromo-)magnetic
fields grow as large in non-Abelian gauge theories as in
Abelian ones. Because non-Abelian fields interact with
each other, there are two possibilities for what might limit
their growth. They might stop growing when (i) their effect
on typical particles in the plasma becomes nonperturbative,
as in the Abelian case, or (ii) when their interactions with
each other become nonperturbative. The first case occurs
when gauge fields A and magnetic fields B are of order [26]

A�
ppart

g
and B�

kfieldppart

g
; (1.1)

where ppart is the typical momentum of the particles, and
kfield is the wave number associated with the Weibel insta-
bility. The second case corresponds to

A�
kfield

g
and B�

k2
field

g
: (1.2)

For weakly-interacting plasmas at times late enough that
the particles have diluted to perturbative densities (number
densities small compared to p3

part=�s), one finds that

kfield � ppart; (1.3)

and so the second scale (1.2) is parametrically smaller than
the first (1.1).

Based on arguments about the form of the magnetic
potential energy in anisotropic plasmas, Arnold and
Lenaghan [26] conjectured that the fields associated with
non-Abelian plasma instabilities are dynamically driven to
line up in color space at the scale (1.2) when their self-
interactions become important, and that they then grow as
2See Ref. [10] for an analysis of this point in the context of the
bottom-up scenario [9] for thermalization.
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approximately Abelian configurations to the larger scale
(1.1). They tested this conjecture numerically in a simpli-
fied 1� 1 dimensional toy model of QCD fields in an
anisotropic plasma. Subsequently, Rebhan, Romatschke,
and Strickland [27] simulated the full hard-loop effective
theory of the problem in 1� 1 dimensions. They indeed
found unabated exponential growth beyond the non-
Abelian scale , although the Abelianization of the fields
was not as global as that of the earlier toy model
simulations.

The purpose of this paper is to investigate, through
simulations, whether the full 3� 1 dimensional theory
behaves similarly. We find significant differences. We
will soon discuss the details of precisely what we simulate,
but here we give a preview of our results and conclusions.
The solid line in Fig. 2 shows the growth of magnetic
energy with time for a representative simulation. For com-
parison, the dashed line shows a similar 3� 1 dimensional
Abelian simulation, and the dotted line a 1� 1 dimen-
sional non-Abelian simulation. In the lower-left shaded
region of the plot, the fields are perturbative, and all the
curves grow at an exponential rate (as predicted by line-
1

lined them up at early times by shifting the origin of time
for the solid and dashed lines, which depend on details of
initialization.
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FIG. 3. Same as Fig. 2, except that the vertical axis is linear
rather than logarithmic, and the time axis has been extended.

3In this work, we will not attempt to deduce the ultimate
effects of self-consistently including the physics of instabilities
in the bottom-up scenario. For a recent attempt at making
progress in this direction, see Ref. [28].
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arized analysis of the instability). For the non-Abelian
curves, a change takes place in the unshaded region, which
turns out to roughly correspond to the non-Abelian scale
(1.2) where self-interactions of the fields become impor-
tant. The 1� 1 dimensional non-Abelian simulation soon
resumes exponential growth. The 3� 1 dimensional non-
Abelian simulation, however, has a different large-time
behavior. Though the magnetic energy continues to grow
with time, it eventually becomes linear with time, rather
than exponential, in the upper-right shaded region of Fig. 2.
This can be seen more clearly in the linear-axis plot of
Fig. 3.

As we shall explain below, the hard-loop effective theory
that we simulate treats the plasma particles as having
arbitrarily large momentum, ppart ! 1, and so the ultimate
scale (1.1) limiting growth of magnetic fields is pushed off
to infinity and irrelevant to the interpretation of our results.
These simulations are designed for the sole purpose of
cleanly studying what happens as one passes through the
non-Abelian scale (1.2). For similar reasons, the depen-
dence of our results on g is determined by trivial scaling
arguments: In the effective theory we use, all dependence
on g can be absorbed by simple rescaling. The only as-
sumptions are that g is small enough, and the separation
(1.3) of scales significant enough, for the hard-loop effec-
tive theory to be valid. Given these assumptions, the nu-
merical results we quote are valid for any g.

The primary motivation of studying instabilities in non-
Abelian plasmas is to help understand what happens in an
expanding quark-gluon plasma produced in a heavy-ion
collision. In this work, however, we simulate nonexpand-
ing systems, both for simplicity and to isolate the particular
issue we are studying. Ignoring the expansion is a perfectly
good approximation in cases where the instability growth
rate is large compared to the expansion rate. For example,
in the context of the original ‘‘bottom-up’’ thermalization
scenario of Baier et al. [9], this approximation would be
valid [10] for the initial, exponential growth of instabilities
054003
at times late compared to the saturation time scale 1=Qs

which characterizes the initial moments of the collision.3

(The saturation momentum scale Qs characterizes the mo-
menta of the original, nonperturbative, small-x gluons that
eventually develop into the quark-gluon plasma in the
saturation picture.)

The rest of this paper gives details of our simulations. In
Sec. II, we explain our formulation and discretization of
the hard-loop effective theory and our choice of initial
conditions. Section III gives further simulation results
that aid in understanding the nature of the instability in
the nonperturbative regime. In Sec. IV, we discuss sources
of systematic errors in our simulations and argue that the
qualitative behavior shown in Fig. 3 is not a simulation
artifact. Finally, we offer some last thoughts in Sec. V.
Some technical results used in the paper are left for
appendices.

II. WHAT WE SIMULATE

A. Equations of motion

As in the 1� 1 dimensional studies of Rebhan et al.
[27], the starting point for our 3� 1 dimensional simula-
tions will be hard-loop effective theory [29,30]. This is
equivalent to studying kinetic theory of particles in the
plasma, coupled to soft gauge fields, in an approximation
where the effect of the soft fields on particle trajectories is
taken to be perturbative [31–34]. This description is valid
when there is a separation of scales ksoft � ppart as in (1.3),
and when the soft fields have not reached the ultimate
limiting amplitude (1.1). Excitations with momenta of
order ppart (e.g. the initial post-collision gluons that pro-
vide the starting point for the formation of the quark-gluon
plasma) are grouped together and described by a classical
phase space density f�p; x; t�. The softer fields associated
with the instability, with momenta of order ksoft, are de-
scribed by classical gauge fields. Studying the instability
by treating these fields as classical is a good approximation
because the instability quickly drives the fields to become
classically large.

Our formulation of the continuum effective theory, pre-
sented below, is equivalent to that used by Rebhan et al.
The theory must be discretized for simulations, and we use
a different method for discretizing velocity space than
Rebhan et al., which we describe below.

We start with the usual kinetic theory description of a
collisionless plasma in terms of f�x;p; t� and soft gauge
fields A��x; t�. Then write f � f0�p� � �f�p; x; t� and
linearize the theory in �f, which corresponds to a pertur-
bative treatment of the effect of soft fields on hard parti-
cles. The result is well known to have the form [31]
-3
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��Dt � v 	Dx��f
a � g�E� v�B�a 	 rpf0 � 0; (2.1a)

�D�F���a � j�a � gtR
Z d3p

�2��3
v��fa; (2.1b)

where �f is in the adjoint color representation and a is an
adjoint color index. Here D is the adjoint-representation
gauge-covariant derivative. The group factor tR is defined
by tr�TaRT

b
R� � tR�ab, where TR is the color generator for

the color representation R of the particles, and there is an
implicit sum over particle species and spins in (2.1b). We
use �� ���� metric convention.

For ultrarelativistic plasmas, it is possible to integrate
out the dependence on jpj by defining

Wa�v; x� � gtR
Z 1

0

4�p2dp

�2��3
�fa�pv; x; t�; (2.2)

where v � p̂ is a unit vector. Equations (2.1) then imply

�Dt � v 	Dx�W � g
2tR�E� v�B� 	

Z 1
0

4�p2dp

�2��3
rpf0

� 0; (2.3)

D�F�� � j� �
Z
v
v�W; (2.4)

where
R
v indicates integration over the unit sphere, nor-

malized so that Z
v

1 �
Z d�v

4�
� 1: (2.5)

It turns out that these equations only depend on f0 through
the angular function

M �v� � g2tR
Z 1

0

4�p2dp

�2��3
f0�pv�
p

; (2.6)

which was introduced in Ref. [10]. Specifically, we show in
Appendix A that (2.3) can be rewritten as

�Dt�v 	Dx�W��E 	 �rv� 2v��B 	 �v�rv�
M� 0;

(2.7)

where rv is the gradient operator for the two-dimensional
curved space S2 of v’s. More concretely, rv can be related
to the ordinary three-dimensional gradient by writing

riv � ��ij � vivj�jpjr
j
p (2.8)

and

r vM�v� � jpjrpM

�
p

jpj

�
: (2.9)

Everything relevant about the initial distribution is
specified by the angular function M�v�. This can be split
into a single dimensionful scale
054003
m2
1 �

Z
v
M (2.10)

and a dimensionless angular function

��v� �
M�v�

m2
1

: (2.11)

The mass m1 turns out to be the effective mass in the
dispersion relation !2 ’ p2 �m2

1 for large-momentum
transverse plasmons (p m1) [35]. In the isotropic
case, � � 1 and m1 � mD=

���
2
p

, where mD is the Debye
mass.

In order to discretize the problem for simulation, we
generalize the procedure used by Bödeker, Moore, and
Rummukainen [36] for the isotropic case. Specifically,
we will discretize the 2-dimensional velocity space by
expanding functions of v in spherical harmonics Ylm�v�
and truncating at some maximum value lmax of l. We will
have to check later, of course, that our simulation results
are insensitive to the exact value of lmax used, provided it is
large enough. So, we write

Wa�v� �
X
l�lmax

X
m

Wa
lm

�Ylm�v�; (2.12a)

��v� �
X
l�lmax

X
m

�lm
�Ylm�v�; (2.12b)

where we have chosen to normalize spherical harmonics
without the usual factor of

�������
4�
p

, so that �Y00 � 1 andZ
v

�Ylm�v�� �Yl0m0 �v� � �ll0�mm0 : (2.13)

The bar over the Y serves as a reminder of this normaliza-
tion. For working in lm-space, it is convenient to rewrite
Eq. (2.7) for W in the equivalent form (discussed in
Appendix A)

�Dt � v 	Dx�W �
�
E 	

�
1

2
�v; L2
 � v

�
� iB 	L

�
M � 0;

(2.14)

where

L � �iv� rv � �ip� rp (2.15)

is the operator, analogous to angular momentum, for which
the eigenvalues of L2 and Lz, acting on �Ylm�v�, are l�l� 1�
and m. One may then find the coupled equations for the
Wlm’s using manipulations familiar from the quantum
mechanics of spin.

In this paper, we will only simulate initial particle dis-
tributions f0�p� which are axially-symmetric about the z
axis, for which there are many simplifications. In this case,

��v� �
X
l�lmax

�l0
�Yl0�v�: (2.16)

The equations for theWlm’s in this case are given explicitly
in Appendix A. They are the same as those used by
-4
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Bödeker et al. [36] except for the E and B terms in the W
Eq. (2.3), which are sensitive to anisotropy in f0. With this
exception, our discretization of the problem, and the evo-
lution algorithm we use, are identical to Ref. [36]. For
computational simplicity, we simulate SU(2) gauge theory
instead of SU(3) gauge theory. We do not know of any
reason that SU(3) would be qualitatively different. For
future reference, we note that the vector current in
Maxwell’s Eq. (2.4) is determined by the l � 1 compo-
nents of W as

jx �
1���
6
p �W1;�1 �W11� � �

���
2

3

s
ReW11; (2.17a)

jy � �
i���
6
p �W1;�1 �W11� �

���
2

3

s
ImW11; (2.17b)

jz �
1���
3
p W10: (2.17c)

We should mention that, in the traditional plasma phys-
ics literature, the 1� 1 dimensional simulations of Rebhan
et al. would be referred to as 1D� 3V simulations, indi-
cating that they treat gauge fields and particle distributions
as depending on only four of the six dimensions of phase
space: one dimension of x space and three dimensions of
momentum (velocity) space. All three spatial components
�Ax; Ay; Az� of 3-dimensional gauge fields A are simulated
in 1D� 3V, but they depend on only one spatial dimen-
sion, e.g. Ai � Ai�t; z�. The 3� 1 dimensional simulations
in this paper are correspondingly referred to as 3D� 3V.
However, in the ultrarelativistic limit, calculations are
simplified by the fact that velocity space is effectively 2
dimensional, since jvj � 1.

Other 1D� 3V simulations of non-Abelian plasma in-
stabilities have been performed by Dumitru and Nara [37].
Instead of working with a phase space distribution f, they
simulate a finite number of discrete, classical particles with
classical color charges interacting with the soft fields [38–
41]. If one linearizes in the perturbations to the hard
particles, this formulation leads to an effective theory
equivalent to that above. However, they do no such linea-
rization, since their interest lay in studying what happens if
the effects on hard particles eventually become
substantial.4
4It is quite interesting to study the nonlinearized theory, but a
few caveats of interpretation should be kept in mind. At some
time, energy loss of the hard particles through hard
Bremsstrahlung (catalyzed by interaction with the soft fields)
may become an important process. Processes which change the
number of particles with momenta of order ppart cannot be
described with the collisionless Boltzmann equation. Further,
the lattice implementation via ‘‘particle and cell’’ codes, as used
in [37,41], suffers from spurious interactions between particle
degrees of freedom and the most ultraviolet lattice modes, which
may be problematic in 3D� 3V simulations. For a discussion,
see Ref. [41].
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B. Choice of f0

If we measure all quantities in units determined by the
single dimensionful scale m1, then the only sensitivity of
our problem to the choice of the initial hard particle
distribution f0�p� is through the angular function ��v�.
In the axisymmetric case, that means we have to choose
����, where � is the angle of v with the z axis. In this
paper, we will only investigate results for a single choice of
����. Our criteria for choosing this distribution were that
(i) perturbatively, the dominant instability should be a
Weibel instability;5 (ii) �lm should be dominated by rela-
tively low l’s, to aid in numerical convergence of our
simulations to the lmax ! 1 limit; (iii) the Weibel insta-
bility growth rate should be reasonably large (relative to
wavelength), to help minimize simulation time; (iv) ����
should be everywhere non-negative, since the distribution
f0 is;6 and (v) preferably ���� should be monotonic for
0 � � � �=2. The last condition is simply superstition:
We did not want to have to worry whether a multiple-hump
distribution might perhaps have qualitatively different be-
havior than a single-hump one, and so we chose to study
the simplest, most natural case. After some experimenta-
tion with distributions containing only l � 6 harmonics,
we settled on

���� / �cos2�� cos2��3 � sin6� with � � 0:480:

(2.18a)

This corresponds to

�00 � 1; �20 � �0:790;

�40 � 0:367; �60 � �0:093;
(2.18b)

with all other �lm � 0. Figure 4 shows a plot of the
angular dependence.

The dominant instability of this distribution is a Weibel
instability with wave-number k along the z axis. A pertur-
bative analysis of this instability (see Sec. IVA) shows that
the mode with the maximum growth rate �, in the infinite-
volume, continuum limit, has

k � 0:827m1; � � 0:273m1: (2.19)
C. Initial conditions

We want to choose initial conditions that (i) have a
random mix of perturbatively unstable modes, and
(ii) are insensitive to the ultraviolet cutoff so that, for
instance, the energy density has a good continuum limit.
5For a discussion, in the QCD literature, of other possibilities
such as electric charge separation (Buneman) instabilities, see
Refs. [10,23], as well as references to the traditional plasma
literature in Ref. [10].

6Though this is a sensible physical requirement, it is not
evident that it makes any qualitative difference in simulations
of the hard-loop effective theory.

-5



FIG. 4. The angular dependence ���� of our hard-particle
distribution (2.18).
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A simple choice that works in any dimension is to choose
Gaussian noise for the gauge fields A with an exponential
falloff in k:

A �x� �
Z ddk

�2��d
A�k�eik	x; (2.20)

where d � 1 or 3 is the number of spatial dimensions and
the Aai �k� are Gaussian random variables with variance7

hAai �k�
�Abj �k

0�i �

�
�

g
e�k

2=k2
0

�
2
�ab�ij�2��

d��d��k� k0�:

(2.21)

Here � and k0 are constants. It is conventional in simula-
tions of SU(2) gauge theory to rescale the definition of
fields to absorb factors of 2=g, but in this paper we will
show all factors explicitly.8 Our simulations are carried out
in A0 � 0 gauge, but the evolution equations and all the
observables we report are gauge invariant. We choose

E � � _A � 0 (2.22)

and

W � 0 (2.23)

as our remaining initial conditions. Both are motivated
solely by simplicity. In particular, (2.22) automatically
implements Gauss’ Law.

For small � (so that perturbation theory applies) in three
dimensions, these initial conditions correspond to an initial
magnetic energy density of
7On the lattice, we replace k2 by
P
i

4
a2 sin2�kia=2� in (2.21) and

define the initialization of link matrices by Ui�x� �
exp�igaAai �x�	

a=2
.
8That is, our normalization convention will be the traditional,

perturbative convention that D� � @� � igAa�	a=2 in the fun-
damental representation, where the 	a are the Pauli matrices.
The redefinition A� ! 2A�=g would instead make D� � @� �
iAa�	

a.
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�
1

2
B2

�
’

3�k5
0

64�2��3=2

�2

g2 (2.24)

in the infinite-volume, continuum limit, where � � 6 is the
number of gauge boson degrees of freedom [2 spin times 3
color for SU(2)]. In 1D� 3V dimensions, the correspond-
ing result is �

1

2
B2

�
’

�k3
0

16�2��1=2

�2

g2 : (2.25)

In the 3D� 3V dimensional simulations reported in this
paper, we choose the momentum cutoff scale k0 in (2.21) as

k0 � 2m1: (2.26)

Unless otherwise stated, we take the initial amplitude � in
3D� 3V simulations to be

� � 0:02m�1=2
1 : (2.27)

In 1D� 3V simulations, we take � � 0:014m�1=2
1 , which

corresponds to roughly the same value of the dimension-
less9 energy g2h12B

2i=m4
1.

To perform Abelian simulations, we use our SU(2)
simulation code with initial conditions that lie in a single
direction in adjoint color space, i.e.

hAai �k�A
b
j �k
0�i �

�
�

g
e�k

2=k2
0

�
2
�a3�b3�ij�2��

d��d��k� k0�:

(2.28)
III. ADDITIONAL RESULTS

In addition to the magnetic energy plotted in Figs. 2 and
3, it is interesting to see a breakdown of other components
of the energy of the soft fields. For an isotropic distribution
f0, the combinationZ

x

�
1

2
E2 �

1

2
B2 �

1

4
m�2
1

Z
v
W2

�
(3.1)

would be conserved [42]. We will therefore loosely refer to
1
4m
�2
1

R
vW

2 as the ‘‘W field energy density.’’ Figures 5 and
6 compare various components of the volume-averaged
energy density as a function of time, including the mag-
netic, electric, and W field energy densities. As one indi-
cation of the anisotropy of the soft fields, we also show 1

2B
2
z

and 1
2E

2
z . Note that, unlike Fig. 2, we now show time all the

way back to the initial conditions at t � 0. There is a very
early transient atm1t & 1 that is difficult to see in the plot,
when the initial energy in the magnetic fields is quickly
shared with the other degrees of freedom, E and W. The
9In d spatial dimensions, the coupling g has mass dimension
�3� d�=2 and gB has mass dimension 2. Since g can be scaled
out of the classical equations of motion by A! A=g, the natural
dimensionless measure of energy for classical simulations is
g2h12B

2i=m4
1 rather than, for instance, h12B

2i=md�1
1 .
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unstable modes start to grow, but it is only when they grow
large enough to dominate the energy density that this
manifests as the start of exponential growth in the magnetic
energy, around m1t� 10 to 15.

Figure 7 shows the ratio of the B2
z contribution to the

magnetic energy density to the total B2. If the soft fields
were isotopic, this ratio would be 1=3. This is indeed the
value at the earliest times, due to our isotropic soft-field
initial conditions. For 10 & m1t & 20, as the Weibel in-
stability first starts to grow and dominate the magnetic
field, Bz drops dramatically compared to B. This is because
the Weibel instability is dominated by modes with wave
number k along the z axis, and magnetic fields are perpen-
dicular to k. In the Abelian case, that is the end of the story:
Bz continues to become more and more insignificant as the
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FIG. 6 (color online). Same as Fig. 5, but with a linear vertical
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unstable modes grow. In the non-Abelian case, Bz � �r�
A�z � ig�Ax; Ay
, and the non-Abelian commutator con-
tributes even when k is in the z direction. This contribution
to Bz will grow with time, as the gauge fields Ax and Ay
grow due to the instability, and Bz should become the same
order of magnitude as Bx and By once those fields become
nonperturbatively large (1.2). This growth corresponds to
roughly 23<m1t < 30 in the figure. At m1t� 30, the
ratio is no longer small, and so one would expect this to be
where some deviation from the behavior of Abelian insta-
bilities should occur. This was indeed the case in the non-
Abelian magnetic energy curve of Figs. 2 and 5, where one
sees a first small bump in the plot of magnetic energy vs
time at m1t� 30.

Based on arguments concerning 1� 1 dimensional con-
figurations of fields, it was conjectured in Ref. [26] that
dynamics at the non-Abelian scale would cause the field
configurations to approximately Abelianize, and that the
Weibel instability would then again take over, causing the
field to grow all the way to the ultimate scale (1.1). If
Abelian-like Weibel modes come to dominate, then Bz
should again become small relative to B. This was seen
in numerical simulations by Rebhan et al. and is repro-
duced in our own 1� 1 dimensional data in Fig. 7 for
m1t > 30. For a brief time, the 3� 1 dimensional simu-
lations behave similarly, but the decrease of Bz=B even-
tually stops and reverses at m1t� 36. The ratio then starts
growing again and finally levels out near 0.29 (slightly
lower than one third) at m1t� 53, which is near the
beginning of the linear growth of magnetic energy in
Figs. 3 and 6.
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In Fig. 8, we plot the ratio of electric energy to magnetic
energy. The behavior is somewhat similar to the previous
plot. Looking at the Abelian curve (dashed), we see that, as
the Weibel instability grows and dominates the energy
density, the ratio drops and eventually asymptotes to a
constant. Theoretically, this constant should be ��=k�2,
where � and k are the growth rate and wave number of
the dominant unstable mode. Using (2.19), the infinite-
volume, continuum value is ��=k�2 � 0:11, which is in
good agreement with the figure. For the non-Abelian simu-
lations, however, the ratio subsequently grows as non-
Abelian interactions first become important, and then de-
creases again, consistent with the picture of approximate
Abelianization. For 3� 1 dimensional non-Abelian simu-
lations, however, the ratio then increases yet again, and
finally approaches unity in the linear energy growth re-
gime. Note that plasma oscillations with momenta large
compared to the mass m1 would naturally have E2 ’ B2.
Figure 8 might therefore be a hint about what sort of soft-
field excitations dominate the energy in the linear regime.

It is interesting to directly address the conjecture of
Ref. [26] that nonperturbative dynamics would
Abelianize the gauge field configurations. We consider
the following local observable, related to ones used by
Refs. [26,27]:

C �
3���
2
p
�
R d3x

V ���jx; jy
�
2 � ��jy; jz
�2 � ��jz; jx
�2�
1=2R d3x

V jjj
2

;

(3.2)

where �jx; jy
2 � 
abcjbxjcy
amnjmx jny , etc. The normaliza-
tion of C has been chosen so that C would be unity if the
components of j were independent random numbers with
the same distribution. For an Abelian configuration, C
054003
would be zero. Figure 9 shows the time development of
C in our canonical non-Abelian simulations. We see that C
drops suddenly when non-Abelian interactions first be-
come important, in agreement with the Abelianization
conjecture. However, in the 3� 1 dimensional simula-
tions, C later rises again all the way to unity, showing no
local Abelianization in the linear growth regime.

In Figs. 7–9, we have not displayed any data for the 1�
1 non-Abelian or 3� 1 Abelian simulations at late times
when the corresponding energy curves in Fig. 2 grew so
large that they are approaching the top of the plot. At those
and later times, the fields in our simulations grow so large
that they become sensitive to the discretization of the
lattice, and the behavior of the results is then a lattice
artifact. We shall discuss this issue more thoroughly in
Sec. IV C.

In 1� 1 dimensional simulations, the size of particle
currents j was used by Rebhan et al. [27] to track the
growth of the instability. In Figs. 10 and 11, we track a
related quantity for our 3� 1 dimensional simulations.
These figures compare the magnetic energy density to the
energy density in the l � 1 components of W. The latter is
given by (3.1) as Wa

1mW
a
1m=�4m

2
1�, which is directly pro-

portional to the squared current jjj2 by (2.17):

1

4m2
1

X
m

Wa
1mW

a
1m �

3jjj2

4m2
1

: (3.3)

Figure 11 shows that 3
4 jjj

2=m2
1 exceeds the magnetic

energy 1
2B

2 by roughly a factor of 2 in the exponential
growth regime, but then drops substantially and is only
about half the magnetic energy in the linear regime.
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10For example, Q0�z� �
1
2 lnz�1

z�1 , Q1�z� �
z
2 lnz�1

z�1� 1, and
Q2�z� �

�3z2�1�
4 lnz�1

z�1�
3z
2 .
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IV. CHECKS AND SYSTEMATIC ERRORS

A. Perturbative growth rate

One simple check of simulations is to see whether the
rate of exponential energy growth in the perturbative re-
gime is consistent with the infinite-volume, continuum
prediction for the Weibel instability growth rate. To com-
pute the perturbative growth rate, one looks for exponen-
tially growing solutions (Im!> 0) to the linear dispersion
relation

���!2 � k2�g�� � K�K� �����!; k�
A� � 0; (4.1)

where K � �!; k� and � is the hard-loop self-energy
[13,22]
054003
����!; k� � g2tR
Z
p

@f0�p�

@pl

�
�v�gl�

�
v�v�kl

�!� v 	 k� i


�
: (4.2)

In Appendix B, we formulate this in terms of the angular
distribution ��v� and then find a result that is well suited
for calculations of growth rates in cases where � is ex-
pressed in terms of spherical harmonics. Specifically, in
situations where the hard-particle distribution f0�p� is
axisymmetric, the transverse self-energy for wave vectors
along the z axis can be expressed as

�?�!; kez� �
1

2
m2
1

X
l

��������������
2l� 1
p

�l

�
!
k

�
�l0 (4.3a)

with

�l��� � �1� �2��l0 � �1� �2���l� 1�Ql�1���

� �l� 1��Ql���
: (4.3b)

Here, Ql��� is the Legendre function of the second kind
defined so that it is regular at � � 1 and the cut is chosen
to run from �1 to �1.10 In cases where the dominant
instability is a Weibel instability with k along the axis of
symmetry, the dispersion relation then reduces to

�!2 � k2 ��?�!; kez� � 0: (4.4)

For a given distribution ����, one can solve this equation
numerically for each k, and then scan over k to look for the
mode with the largest growth rate � � Im!. For the dis-
tribution (2.18) used in our simulations, the resulting � and
k were given earlier in Eq. (2.19).

The rate � gives the growth rate of the perturbative
vector potentials. The corresponding magnetic energy
should grow as the square of the field strength, so that

1

2
B2 / e2�t: (4.5)

In Fig. 12, we again show our canonical simulations of
Fig. 2, this time focusing on the perturbative regime and
comparing the slope of ln�12B

2� to 2�. We get reasonable
agreement. Keep in mind that there is an entire spectrum of
unstable modes, not just the dominant mode discussed
above; so the exponential growth of instabilities is not
described by a single exponential at early times.

B. Finite volume errors

In Figs. 13 and 14, we show how our 3� 1 dimensional
non-Abelian simulation results of Fig. 2 change if we
decrease the physical volume. When comparing results
for different volumes, it is important to realize that differ-
-9
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ent simulations will have different random initial condi-
tions—there is no good way to start two simulations with
the same initial conditions when they have different physi-
cal volumes. To get an idea of the size of this effect, we
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FIG. 13 (color online). Magnetic energy vs time as in Fig. 2,
but showing results for several different physical volumes.
Multiple lines for a single volume correspond to different
instantiations of the random initial conditions.
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have simulated various volumes more than once, changing
the seed of our random number generator. For very large
volumes, one would expect the spread of the results to
decrease with increasing volume because the volume av-
erage taken in computing the energy density averages over
multiple spatial regions with different initial conditions.

As one can see, the simulations shown in Fig. 14 still
show a significant variation in results with respect to initial
conditions at a volume of L3 � �16=m1�

3. However, the
rates of growth in the perturbative, exponential regime and
the nonperturbative, linear regime have clearly reached
their large volume limits. Specifically, Fig. 13 shows that
the perturbative growth rate (the slope of the curve for
10 & m1 & 20) is not significantly affected in increasing
volume from �8=m1�3 to �16=m1�

3. And Fig. 14 similarly
shows little effect on the slope of the late-time linear
growth behavior. This implies that the phenomenon of
linear growth is not a finite-volume artifact.

C. Finite lattice spacing errors

1. 3� 1 dimensions

Figure 15 shows the lattice-spacing dependence of our
simulations for a lattice volume of L3 � �8=m1�3. We
chose a smaller volume than that used in our canonical
simulation of Fig. 2 so that we could push to smaller lattice
spacing with our available computer resources. Recall
from Fig. 13 that this smaller volume is adequate for
reproducing the linear growth rate. Here and in all our
simulations, the time step used in evolving the system is
�t � 0:1a.11
11Reducing a therefore also reduces the time step. In addition,
for one of our simulations, we checked that holding a fixed and
reducing �t to 0:05a makes little (< 5%) difference to the
result. In particular, the continued growth of energy in the linear
regime does not appear to be a time discretization artifact.
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Since we have already seen that different initial condi-
tions can produce substantially different behaviors at this
volume, especially at the transition between exponential
and linear growth, it is essential in comparing lattice spac-
ings to ensure that the initial conditions are as nearly
identical as possible. In Figs. 15 and 16, we have done
this by drawing the smallest lattice-spacing configuration
randomly as described in subsection II C, and converting it
into larger lattice-spacing configurations via blocking.
Besides the lattice spacing and volume, we otherwise use
the same ‘‘canonical’’ values for variables as in most
previous simulations.

From Fig. 15, one sees negligible spacing dependence in
the early, perturbative growth of the instability. From
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FIG. 16 (color online). Same as Fig. 15, but with a linear
vertical axis.
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Fig. 16, we conclude that spacing does not have a signifi-
cant effect on the slope of the linear growth in magnetic
energy provided a is at least as small as our canonical value
of 0:25m�1

1 . The largest lattice spacing shows approxi-
mately the same exponential growth behavior, but different
linear growth behavior. This is apparently because there is
more energy in ultraviolet degrees of freedom during the
linear growth period, and these degrees of freedom are
compromised by the large lattice spacing.

To test dependence on both lattice spacing and initial
amplitude �, we show in Fig. 17 what happens if we start
with large, nonperturbative initial conditions12 of � � 2:0.
Here the system goes directly into linear growth, and the
a � 0:25m�1

1 and a � 0:125m�1
1 results are reasonably

close.
From the consistency of the slope of the linear regime

for a � 0:25m1, we conclude that the existence of the
linear growth regime is not an artifact of finite lattice-
spacing.

2. 1� 1 dimensions

To sharpen our conclusions that the linear growth regime
in 3� 1 dimensions is not an artifact of our simulations, it
is useful to look at a different case, where the end of
exponential growth is a lattice artifact. Such an example
is provided by our 1� 1 dimensional simulations, shown
in Fig. 18 for a variety of lattice spacings.13 We display
results to much larger energies than in Fig. 2. Superficially,
12For historical reasons concerning the development of our
methods, this data was produced with a slightly different proce-
dure for matching initial conditions between different lattice
spacings: initial conditions for coarser lattices were obtained
from those for finer lattices by setting Fourier amplitudes Ak
exactly the same for the physical momenta k that exist on the
coarser lattice (choosing k so that ��=a < k < �=a).

13Again for historical reasons, initial conditions were matched
using the method of footnote 12.
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each individual curve looks vaguely similar to our 3� 1
dimensional results: each shows an eventual end to expo-
nential growth, although at much higher energy density
than in 3� 1 dimensions.

In our simulations, we implement 1� 1 dimensions by
using our 3� 1 dimensional code on a periodic lattice that
is a single lattice spacing wide in the x and y directions. No
matter how fine the lattice is compared to the wavelength
of the unstable modes, the continuum limit will break down
when the fields become so large that the magnetic energy
per plaquette is of order its maximum possible value on the
lattice, corresponding to 1

2B
2 � 1=�g2a4�. Even at lower

fields, the dynamics is modified by ‘‘irrelevant’’ operators
induced by the lattice, such as a2nBn�1, which become
more and more important as B grows larger. As one takes
the lattice spacing a smaller and smaller, the fields should
be able to grow larger and larger before these problems
arise. The termination of exponential growth in Fig. 18
clearly shows this behavior, demonstrating it is a lattice
artifact.

In discussing our 3� 1 dimensional simulations, we
have emphasized how the slope of the late-time linear
growth is not significantly sensitive to decreasing the lat-
tice spacing. In contrast, a similar look at the slope of the
phony late-time behavior of the 1� 1 simulations, in
Fig. 19, shows no such spacing independence.

Figure 20 shows the measure C of local commutators,
defined by Eq. (3.2), for the 1� 1 dimensional simulations
of Fig. 18. The reader may now see late-time behavior that
we did not display in Fig. 9, and also see that this behavior
054003
is a lattice-spacing artifact. This is the reason we truncated
our 1� 1 dimensional curves in Figs. 7–9. Specifically, we
truncated those curves when the magnetic energy densities
reached 20m4

1=g
2, which is a little before where the a �

0:25m�1
1 energy curve deviates from the continuum limit in
-12
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Fig. 18 and where the corresponding curve for C suddenly
begins to rise in Fig. 9. A similar truncation was made for
the Abelian results, where a similar large-field issue arises
since we implement compact rather than noncompact
Abelian gauge theory.

D. Finite lmax errors

Figures 21 and 22 show the dependence of our results on
lmax. The figures show simulations with fixed lattice spac-
ing a � 0:25m1 and fixed physical volume L3 �
�8=m1�3. By comparison of the lmax � 24 and lmax � 48
curves in Fig. 22, we conclude that our canonical choice of
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FIG. 22. Same as Fig. 21, but with a linear vertical axis. The
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lmax � 24 seems to be a good approximation to the large
lmax limit and that the linear growth regime is not a finite
lmax artifact.

We have chosen to run simulations only for even values
of lmax, based on the experience of Ref. [36] for isotropic
particle distributions, where it was found that convergence
to the large lmax limit was much faster for lmax even than
lmax odd.
V. DISCUSSION

We have found that 3D� 3V dimensional non-Abelian
plasma instabilities behave qualitatively differently than
1D� 3V dimensional instabilities once they grow non-
perturbatively large. Initially, there is a period of nonper-
turbative growth that looks quite similar to the 1D� 3V
case and to early conjectures about Abelianization, but
eventually the 3D� 3V instabilities settle into a period
characterized by linear rather than exponential growth of
the magnetic energy. Based on our analysis of sources of
systematic error, we believe that this conclusion is not a
simulation artifact.

There are many more things one would like to know
about the linear growth regime, such as its efficiency at
scattering and isotropizing typical particles in the plasma,
its power spectrum, and possible models for the underlying
physical processes. It would also be useful to check
whether nonperturbative linear growth occurs for a wide
variety of different distributions f0���, beyond the single
case studied here. We leave this and further characteriza-
tion to future work.
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APPENDIX A: HARD LOOP EFFECTIVE THEORY
IN lm-SPACE

First, we will fill in a few steps in the text. The transition
from (2.3) to (2.7) follows by using (2.8) to write

r pf0 �
1

p
rvf0 � v

@f0

@p
: (A1)

Then integrate the last term by parts in dp to obtainZ 1
0

4�p2dp

�2��3
rpf0 � �rv � 2v�M (A2)

and so (2.7). Using (2.8) and (2.15), one may derive that

�v; L2
 � 2�rv � v�; (A3)

which yields (2.14).
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Now use the lm-expansions (2.12) of W and � in (2.14)
and project out the lmth component of the result. Working
in A0 � 0 gauge, which is the gauge of our simulations,
this yields the evolution equation for Wlm,

@tWlm �
X
l0m0

�
�hlmjvjl0m0i 	DxWl0m0 �

�
E 	 hlmj

1

2
�v; L2


� vjl0m0i � iB 	 hlmjLjl0m0i
�
m2
1�l0m0

	
�
X
l0m0

�
�hlmjvjl0m0i 	DxWl0m0

�m2
1

�
1�

l�l� 1� � l0�l0 � 1�

2

�
E

	 hlmjvjl0m0i�l0m0 � im2
1B 	 hlmjLjl0m0i�l0m0

	
:

(A4)

The expectation values hlmjvjl0m0i and hlmjLjl0m0i are
simple results from the quantum mechanics of spin. The
first, hlmjvjl0m0i, is also relevant to the simulations for
isotropic f0, and explicit formulas may be found in
Appendix A of Ref. [36]. The L expectations are

ihlmjLxjl
0m0i �

i
2
�ll0 ��m;m0�1

��������������������������������
�l�m��l�m0�

p
� �m0;m�1

��������������������������������
�l�m0��l�m�

p

; (A5)

ihlmjLyjl0m0i �
1

2
�ll0 ��m;m0�1

��������������������������������
�l�m��l�m0�

p
� �m0;m�1

��������������������������������
�l�m0��l�m�

p

; (A6)

ihlmjLzjl0m0i � im�ll0�mm0 : (A7)

In practice, we found it convenient to implement (A4)
with a basis of real functions of v instead of the usual
complex Ylm’s. So we switched to the basis of

eY lm �

8><>:
���
2
p

ReYlm; m > 0;
Ylm; m � 0;���

2
p

ImYljmj; m < 0;
(A8)

with overall normalization again set by (2.13).
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APPENDIX B: SELF ENERGY �

In this appendix, we derive the result (4.3) for the hard-
loop transverse gluon self-energy �?�!; k� when the par-
ticle distribution is axisymmetric and k is along the axis of
symmetry. By integration by parts, the spatial part of
Eq. (4.2) can be recast into the form [10]:

�ij�!;k� � e2
Z
p

f0�p�

p

�
gij �

kivj � kjvi

�!� v 	 k� i


�
��!2 � k2�vivj

��!� v 	 k� i
�2

�
: (B1)

Take the axis of symmetry to be the z axis. For k along that
axis, axial symmetry implies

�? � �xx � �yy �
1

2
��ij � k̂ik̂j��ij: (B2)

Then, using (B1) and introducing � � !=k,

�?�!; kez� � e2
Z
p

f�p�
p

�
1�
�1� �2��1� �v 	 k̂�2


2���� v 	 k̂�2

�
�
Z �1

�1

d�cos��
2

�
1�
�1� �2��1� cos2�


2���� cos��2

�
�M���: (B3)

Expanding M in spherical harmonics gives

�?�!; kez� �
X
l

Ml0

��������������
2l� 1
p

�
Z �1

�1

dx
2

�
1�
�1� �2��1� x2�

2���� x�2

�
Pl�x�:

(B4)

Decomposing by partial fractions and usingZ �1

�1
dx

Pl�x�
��� x

� �2Ql���; (B5)

and its �-derivativeZ �1

�1
dx

Pl�x�

���� x�2
� �2Q0l���

�
2�l� 1�

1� �2 �Ql�1��� � �Ql���


(B6)

produces the final result (4.3).
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