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Electroweak interactions and the muon g� 2: Bosonic two-loop effects
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We present a detailed evaluation of the bosonic two-loop electroweak corrections to the muon’s
anomalous magnetic moment. We study the Higgs mass dependence and find agreement with a previous
evaluation in the large Higgs mass limit. We find aEW bos

� �two-loop� � ��22:2� 1:6� � 10�11, for
114 GeV � MHiggs � 700 GeV.
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I. INTRODUCTION

The anomalous magnetic moment of the muon a� �
�g� � 2�=2 has recently been determined with a very high
precision. A series of measurements with positive and
negative muons by the E821 Collaboration at the
Brookhaven National Laboratory resulted in the present
average value [1]
aexp
� � �116 592 080� 60� � 10�11: (1)
At this level of a one-half part per million precision, this
quantity is sensitive to subtle effects predicted by the
standard model (SM), including five-loop quantum electro-
dynamics (QED), hadronic vacuum polarization and light-
by-light scattering, and electroweak interactions at two-
loops.

Obviously, g� � 2 may be affected also by interactions
beyond the SM. For this reason, many researchers
have analyzed g� � 2 in various models of new physics
and performed sophisticated studies of the SM effects
which are an irreducible background in the search of un-
known phenomena. A summary of the SM prediction can
be found, for example, in the recent studies and reviews
[2–5].

At present, the experimental result in Eq. (1) exceeds the
SM prediction by about 2.6 times the combined theoretical
and experimental uncertainty. This tantalizing discrepancy
may be due to an effect of a new interaction, perhaps
supersymmetry. However, it is important to scrutinize the
SM prediction before a conclusion can be made. The
present paper is devoted to a reevaluation of the largest
part of two-loop electroweak diagrams, namely, those
without closed fermionic loops.

Electroweak one-loop corrections to g� � 2 were
among the first quantum effects studied in the renormaliz-
able electroweak theory, in 1972 [6–10]. They were found
to increase g� � 2 by
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whereG� � 1:16 639�1� � 10�5 GeV�2 and weak mixing
angle sin2�w � 1�M2

W=M
2
Z. The large mass parameter M

represents the mass of a W, Z, or a Higgs boson.
This effect was too small to be measured in the then

ongoing CERN experiment. The desire to observe it moti-
vated in part the latest Brookhaven effort.

Two decades after the first electroweak result, Kukhto et
al. [11] found that an additional virtual photon may sig-
nificantly modify the one-loop value in Eq. (2). They
estimated that effect as a �22% reduction—surprisingly
large for hard virtual photons. This and an analogous
reduction of the rare muon decay �! e� [12] are due
to the large anomalous dimension of the dipole operators
such as ������F�� and �e����F��.

That large effect found in a subset of two-loop electro-
weak contributions was similar in size to the design preci-
sion of the E821 experiment. It therefore appeared as
warranted, even necessary, to evaluate the complete two-
loop result—a calculation that had not been performed
before in the electroweak theory for any other observable.

In 1995 a complete set of 1678 electoweak two-loop
diagrams for g� � 2 was generated by a computer system
[13]. However, such large number of diagrams, many of
which are divergent, could not be numerically calculated,
at least at that time. Fortunately, it turned out that the
majority of those diagrams are strongly suppressed by
extra factors of the muon-to-intermediate-boson mass ratio
and can be neglected. Thus, a complete two-loop result was
found [14]. The numerical value was found to be domi-
nated by large logarithms arising due to photon exchanges
and was, somewhat accidentally, close to the value found in
its first studies [11,15].

In later work, the renormalization group equation was
employed to estimate higher-order logarithmic effects,
which however are not sizable [16,17].

The result of [14] was obtained in an approximation
assuming that the Higgs boson is sufficiently heavier
than the W and Z bosons such that MW;Z=MH can be
-1 © 2005 The American Physical Society
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used as an expansion parameter. A recent study [18] re-
laxed that approximation and found the value of two-loop
contributions valid also for a light Higgs (moreover, the
two-loop supersymmetric effects were evaluated in that
paper).

In this paper, we reanalyze the two-loop electroweak
effects. Our goal is to check the previous results and study
the Higgs mass dependence. We present our results in a
semianalytical form. That is, the dependence on the Higgs
mass is presented analytically, while some parts of expres-
sions that depend only on the well-known particle masses
are, for the sake of brevity, evaluated numerically. A
method employed for obtaining analytical results is also
described in some detail.

In this work we focus on diagrams with only bosonic
loops (no closed fermion loops). The fermionic subset of
corrections was studied separately [19–21]. It was recently
the subject of an interesting theoretical controversy which
seems to be settled now (see [16] for a thorough discussion
and references).

In the next section we briefly explain the asymptotic
operation which is the main technical tool used to obtain
the analytical result for g� � 2. Section III presents partial
results for various groups of contributing diagrams. First,
we divide all diagrams into five subsets of topologically
equivalent diagrams. Then we give analytical or semian-
alytical results for each topology. Finally we discuss the
renormalization procedure and evaluate necessary counter-
terms, provide the final numerical result, and compare it
with the results of Refs. [14,18].

II. TECHNIQUES: ASYMPTOTIC OPERATION
AND RESULTING INTEGRALS

The method of asymptotic operation (see [22] for a
review and references) has been an invaluable tool in
numerous recent studies of effects involving various en-
ergy scales. In the present problem, the mass of the muon
m sets the soft scale, and the masses of theW, Z, and Higgs
(a )

FIG. 1. An example of applying the asymptotic operation to a gr
described in the text. Propagators through which hard momenta flo
Dashed lines contain only soft-scale momenta and masses—they co
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bosons—the hard scale: MW;Z;H � m. As we explained in
the introduction, the original study [14] assumed in addi-
tion MH � MW;Z. Here, we will not assume any hierarchy
between MW;Z and MH at the price of certain complication
of our results.

We would like to explain here the basic principles of
asymptotic operation. Instead of attempting a rigorous
derivation or even a rigorous exposition, we will use a
simple example to elucidate the method.

In this study, we are interested in two-loop Feynman
graphs G, which have a soft-scale (�m) external momen-
tum and involve internal lines with both soft-scale and
hard-scale (�M) virtual particles. The exact value of
the two-loop integrations is a (possibly very complicated)
function of m=M. However, for our purposes it is entirely
sufficient to know only an expansion of that function up to
m2=M2. The purpose of the asymptotic operation is to
obtain the desired order of that expansion without having
to compute the whole function.

For our purposes, the action of the asymptotic operation
on a Feynman graph G may be described with the follow-
ing formula,

As G �
X
h

��  h� � �Gnh�: (3)

Let us first of all explain the notation. As G is an expan-
sion of the exact value of G in powers and logarithms of
m=M. h are the subgraphs of G in which all loop momenta
are considered as hard.

Instead of giving an exact definition of which h are
relevant, we use as an example the diagram shown in
Fig. 1. In that figure, G is shown in picture (a).
Subgraphs h are shown in (b)–(e) and range from a single
heavy particle line to the whole graph. � is the Taylor
expansion operator, expanding a subgraph in all soft-scale
parameters such as the light-particle masses and external
momenta of that subgraph (the latter include loop momenta
of those loops that are not part of the subgraph). Finally,
(b ) (c)

(d ) (e)

aph G, shown in (a). (b)–(e) show the full set of subgraphs, as
w are indicated with solid lines—they constitute a subgraph h.
nstitute Gnh.
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(a) (b) (c)

FIG. 2. Basic types of loop integrals needed for the evaluation of two-loop electroweak corrections to g� � 2: (a) One-loop light-
mass on shell integral multiplied by a one-loop vacuum integral with a large mass; (b) Two-loop vacuum integral (some propagators
may be massless �M � 0�); (c) Two-loop light-mass on shell integral.

FIG. 3. One-loop massive on shell self-energy integral.
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Gnh denotes the graph G with the subgraph h contracted
into a point. The physical intuition for that concept is such
that all masses and loop momenta in Gnh are soft; thus,
from their point of view, the hard-scale subprocess in h
occurs at a very short-distance scale and can be contracted
to a point. In other words, the subgraphs h create effective
vertices.

What do we gain from this construction? We completely
separate soft and hard scales for the purposes of the inte-
gration. Thus, the resulting integrals cannot contain bothm
and M—they factorize into a part that depends only on the
soft scales and another that depends on the hard ones. No
nontrivial functional dependence onm=M can arise and we
obtain the expansion to a given order in m=M by taking a
sufficient number of terms in the Taylor expansion of the
subgraphs.

The asymptotic operation greatly simplifies the types of
integrals that we need to evaluate, as shown in Fig. 2. One-
loop on shell integrals and one-loop massive integrals,
pictured in Fig. 2(a), are trivial.

Two-loop integrals in Fig. 2(b), dependent on arbitrary
masses, were computed in Refs. [23,24]. By means of
integration by parts identities [25] the initial integral with
arbitrary powers of propagators can be reduced to the
integral with all propagators in power one. For the case
when all three propagators are massive, we encounter only
diagrams with two different masses present. In this sim-
plified case, the general result for such integral, in the
dimensional regularization, becomes

ImmM �
�4��d

�2�1	 "�

�
ZZ ddpddq

�p2 	m2��q2 	m2���p	 q�2 	M2�

�
�m2�1�2"

�1� "��1� 2"�

�
�

1	 2z

"2 	
4z ln4z
"

� 2zln24z	 2�1� z���z�
�
; (4)

where d � 4� 2", z � M2

4m2 , and the function � is defined
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as

��z� � 4
�

z
1� z

�
1=2

Cl2�2 arcsin�z1=2��;

Cl2��� � �
Z �

0
d� lnj2 sin��=2�j;

(5)

for z < 1, and

��z� �
�

z
z� 1

�
1=2
�
�4Li2��� 	 2ln2�� ln24z	

�2

3

�
;

� �
1� �z�1

z �
1=2

2
; (6)

for z > 1.
For the case when one propagator is massless we intro-

duce the function Ifin, which is the finite part of the integral

IMcMaMb
for the case of Mc � 0; denoting R �

M2
b

M2
a

we have
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Ifin�R� � �
7

2
�1	 R� 	 3R lnR� �1� R�Li2�1� R�

�
R
2

ln2R:

(7)
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Finally, two-loop on shell integrals shown in Fig. 2(c) can
be found, for example, in Ref. [26].

To calculate the renormalization counterterms we shall
also need one-loop massive on shell self-energy integrals
shown in Fig. 3. They are expressed as linear combinations
of integrals of the type (we use p2 � �M2):
Sab�M1;M2;M� �
��b� 2	 "�
��b���1	 "�

Z 1

0
dx

xa

��1� x��M2
1 � xM

2� 	 xM2
2�
�b�2	"�

: (8)

These integrals can be represented as a series in " and can be easily computed to the necessary order. We introduce special
functions Sabfin�M1;M2;M� which represent the finite parts of (8). We shall need only the following cases,

S01
fin�M1;M2;M� �

Z 1

0
dxf��1� x��M2

1 � xM
2� 	 xM2

2��ln��1� x��M
2
1 � xM

2� 	 xM2
2�� 1�g;

Sa2
fin�M1;M2;M� � �

Z 1

0
dxxa ln��1� x��M2

1 � xM
2� 	 xM2

2�;
(9)
with a taking on the values 0,1 or 2.

III. BOSONIC ELECTROWEAK TWO-LOOP
CONTRIBUTIONS IN THE SM

In this section we apply the technique of asymptotic
operation, as described in Sec. II, to evaluate all two-loop
bosonic contributions. We divide the diagrams into subsets
of various topologies and mass assignments and present
detailed results for each subset. We display the dependence
on the Higgs mass in the analytical form. We also provide
details of the renormalization procedure.

Following [14], we use the ’t Hooft-Feynman nonlinear
gauge [27]. We choose it in such a way that we eliminate
the vertex �W�G�. Since g� � 2 involves an external
photon in every diagram, such choice greatly reduces the
number of diagrams. The set of diagrams we have to
consider contains all two-loop diagrams one can compose
in the SM with the exclusion of pure QED diagrams and
diagrams with closed fermion loop; we drop all diagrams
with more than one scalar coupling to the muon line, since
each such coupling introduces an extra factor m�

MW
. Taking

advantage of the mirror symmetry we reduce the number of
diagrams that must be individually calculated to 138; in
addition, some one-loop diagrams must be evaluated for
the renormalization.

A. Two-loop topologies and their evaluation

We divide all two-loop diagrams into five topological
types, as shown in Fig. 4. Possible insertions of the external
photon vertex are indicated with a circle cross, and wavy
lines stand for either scalar or vector bosons. Each subset
groups diagrams with similar properties with respect to the
asymptotic operation and thus can be calculated using the
same algebraic code (we use FORM [28] for most algebraic
operations). Applying the general formula (3) for the
asymptotic operation and computing all resulting integrals,
we obtain the following results for the finite parts of
various groups of diagrams:
T1A;B;C 	 T2A;D;E 	 T3A;B;C;D;G 	 T4A;D;E;J 	 T5 � �
	2

384c2s2�2 f680c4 � 362c2 � 363	 6��27� 30c2� lnm2

	 �54c2 � 56c4� lnM2
W 	 �56c4 � 84c2 	 27� lnM2

Z�g

� 	2 m
2

M2
W

�
4:6� 0:197 ln

m2

M2
W

�
; (10)

T2B � �
	2

576�2

m2

M2
W

1

�4��2 � 1�

1

s4

�
6�2

�
�2�6 � 6�4 	 3�2 	 1��

�
�2

4

�
	 �4�6 � 3�2 � 4�Ifin���2�

�

	 �2�3�4 	 �2 � 4� 	 84�8 	 108�6 � 111�4 � 123�2 � 84	 ln�2�96�6 � 78�2 � 72�

� 3ln2�2�4�8 � 8�6 � 3�4 	 2�2 	 8�
�
; (11)
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Topology M A M B M C M D M E

1A M Z M Z m m m

1B 0 M Z m m m

1C M Z M W m 0 0

Topology M A M B M C M D M E

2A M W M W M Z 0 m

2B M W M W M H 0 m

2C M Z M Z M H 0 0

2D M W M Z M W 0 0

2E M W M W 0 0 m

2F M Z M H M Z m m

Topology M A M B M C M D

3A M W M W M W 0

3B 0 0 M W m

3C M Z M Z / 0 M W m

3D M W M W M Z 0

3E M W M W M H 0

3F M Z M Z M H m

3G M Z M Z M Z m

Topology M A M B M C M D M E

4A M W M W M Z M W 0

4B M W M W M H M W 0

4C M Z M Z M H M Z m

4D M W M W 0 M W 0

4E M Z M Z M W M W m

4F M H 0 M W M W m

4G M H M Z M W M W m

4J 0 0 M W M W m

Topology M A M B M C M D M E

5A M Z M Z m m m

5B M W M W 0 m 0

5C 0 M W m 0 m

5D M Z M W m 0 m

5E M W M Z 0 0 0

5F 0 M Z m m m

5G M Z 0 m m m

FIG. 4. Diagram topologies and assignments of masses to their lines.
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T2C � �
	2

1152�2

m2

M2
W

1

�4��2 � 1�

�8c4 � 12c2 	 5�

c2s4

�
3�2

�
��6 � 3�4 � 6�2 	 8��

�
�2

4

�

	 2��6 � 3�2 � 4�Ifin���2�

�
	 �2�3�4 	�2 � 4� 	 3�7�8 	 9�6 � 31�4 � 41�2 � 28�

	 ln�2�24�6 	 18�4 � 78�2 � 72� � 3ln2�2��8 � 2�6 � 3�4 	 2�2 	 8�
�
; (12)

T2F �
	2

192�2

m2

M2
W

�2

��2 � 1�

�c2 � s2�

c2s2

�
3��6 � 7�4 	 14�2 � 8��

�
�2

4

�
	 12�2��4 � 4�2 	 1�Ifin���2�

	 �2�2��4 � 5�2 	 4� 	 6�7�6 � 21�4 � 20�2 	 6� 	 12 ln�2�3�4 � 11�2 	 2�

� 3ln2�2��6 � 7�4 	 14�2 � 4�
�
; (13)

T3E;F � �
	2

2304�2

m2

M2
W

�2 1

s4 f79� 336c2 	 224c4 	 72 lnm2�1� 3c2 	 2c4� 	 6 lnM2
H�7� 12c2 	 8c4�

	 30 lnM2
W � 12 lnM2

Z�5� 12c2 	 8c4�g; (14)

T4B �
	2

2304�2

m2

M2
W

1

��2 � 1�

1

s4

�
�18��8 � 6�6 	 7�4 	 4�2 � 6��

�
�2

4

�
� 36�4��4 � 3�2 � 2�Ifin���2�

� 126�8 	 216�6 	 635�4 	 650�2 � 367� 12�2 ln�2�12�4 � 34�2 � 17�

	 18ln2�2��8 � 5�6 	 4�4 	 4�2� 	 60 lnM2
W��

4 � 4�2 	 3�g; (15)

T4C �
	2

576�2

m2

M2
W

1

��2 � 1�

1

s4c2 f��
2 � 1��38�2 � 125	 c2�2c2 � 3��25�2 � 91��

	 18 lnm2�1� 3c2 	 2c4���4 � 4�2 	 3� 	 3�2 lnM2
H��

2 � 4��1� 6c2 	 4c4�

� 3 lnM2
Z�12� 20�2 	 5�4 	 �4c4 � 6c2��3� 8�2 	 2�4��g; (16)

T 4F � �
	2

16�2

m2

M2
H

1

�2

1

s2

�
�6� 7�2��

�
�2

4

�
	�2�6	�2��ln�2 � 2�

�
; (17)

T4G �
	2

128�2

m2

M2
H

�2

��2 � 1�

�4c2 � 3�

s4

��
14� 3

�2

�2 	 2
�1� 6c2�

�2

�
�
�

�2

4

�
	

�
2�2 	 12c2 � �2 � 18	

4�2

�2

�
�
�

1

4c2

�

� ln�2

�
2�2 	 12�

�4

�2 � 2
�2

�2

��
: (18)
In the above expressions we have dropped the divergences
(which cancel in the final sum with the counterterms). We
also express all masses in units of � � 1 GeV. The float-
ing point coefficients in (10) were rounded to provide the
precision of 10�11 of the final result. They were obtained
using MW � 80:423 GeV and MZ � 91:1876 GeV. The
functions ��x� and Ifin�x� are defined by means of (5)–
(7), respectively. We also use the notations � � MH

MW
, � �

MH
MZ

, c � MW
MZ

, and s �
��������������
1� c2
p

.
The results for topologies T1A, T1B, T1C, T2A, T2D,

T2E, T3A, T3B, T3C, T3D, T3G, T4A, T4D, T4E, T4J, T5
were collected into a single formula because the corre-
053016
sponding diagrams do not contain Higgs propagators and
thus can be evaluated without any assumptions about MH.

B. Renormalization counterterms

Conceptually, the renormalization procedure for our
calculation is identical to the one we used in Ref. [14].
The only technical difference is that in our calculation we
computed one-loop massive self-energy diagrams pre-
cisely, rather than in an expansion to the order of sin6�W .
In this section we briefly review our renormalization pro-
cedure and list specific expressions for the W and Z self-
energies and for other renormalization constants.
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The counterterms for the two-loop EW corrections are
generated by renormalizing vertices and propagators in
one-loop diagrams. In the nonlinear ’t Hooft-Feynman
gauge there are just three such diagrams: the Schwinger’s
QED diagram with a photon loop, its analog with the
photon replaced by a Z boson, and a diagram with two
W bosons.

The result for Schwinger’s diagram in dimensional regu-
larization is given by

aSchw �
	

2�
�1	 "�4� lnm2��: (19)

For the calculation of the counterterms we also need the
contribution of that diagram with one internal muon propa-
gator squared. It is

aSchw
2 �

i	
2�m

�1	 "�1� lnm2��: (20)

Using (19) and (20), and bearing in mind that since for the
calculation of the EW corrections we dropped the two-loop
photonic corrections to the Schwinger diagram and thus
have to subtract the photonic contributions from muon
mass and wave function renormalization constants as
well, we find the counterterm to the af at the two-loop
level,

aSchw
CT � aSchw

�
1

2
�
ZR� 	 
ZL� � 2
Z��� 	 �0AA�0�

�

� 2iaSchw
2 �
m� 
m��: (21)

One-loop contribution of the Z-loop diagram is

aZ �
m2

M2
Z

	
4�
�g2
VV 	 g

2
AA�;

V �
1

3
	 "

�
� lnm2 	

2

3
lnM2

Z �
11

9

�
;

A � �
5

3
	 "

�
lnm2 	

2

3
lnM2

Z �
11

9

�
:

(22)

The corresponding diagram with one muon propagator
squared gives

aZ2 �
im2

M2
Z

	
4�
�g2
V � g

2
A�

�
1

2
� "

�
1

2
lnm2 	 1

��
: (23)

Combining expressions (22) and (23) we obtain the coun-
terterm generated by the Z-loop diagram,

aZCT ��2iaZ2
m	
m2

M2
Z

	
4�

�
Vg2

V

�
ZR�	
ZL�
2

�

M2

Z

M2
Z

	 2

gV
gV

�
	Ag2

A

�
ZR�	
ZL�
2

�

M2

Z

M2
Z

	 2

gA
gA

�

	gVgA
V	A

2
�
ZR��
Z

L
��	

2

3
"�g2

V 	g
2
A�

M2

Z

M2
Z

�
:

(24)
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Finally, the one-loop contribution of the diagram with
two W bosons is

aW �
m2

s2M2
W

	
4�

�
5

6
	 "

�
�

5

6
lnM2

W 	
19

36

��
: (25)

Using this expression we obtain a relatively simple counter
term because there is no internal muon line and there are
only left-handed couplings,

aWCT � aW
�
2
Ze � 2


s
s
	 
ZL� �


M2
W

M2
W

�

�
5

6

m2

s2M2
W

	
4�

"

M2

W

M2
W

: (26)

The constants appearing in the expressions (19)–(26) are
defined as follows:

gV �
1

sc

�
�

1

2
	 2s2

�
; gA �

1

2sc
;


gA � �
1

2sc

�

Ze 	

�
s2

c2 � 1
�

s
s

�
;


gV � �
gA 	 2
s
c

�

Ze 	

1

c2


s
s

�
;


s � �
c2

2s

�

M2

Z

M2
Z

�

M2

W

M2
W

�
; 
Ze �

�0AA�0�

2
;

�0AA�0� �
	

4�

�
�

7

"
	 7 lnM2

W �
2

3

�
;

(27)

and 
m; 
ZL;R� are the muon mass and wave function
renormalization defined as


m � 
m� 	 
mZ 	 
mW;


m� � m
	

4�

�
�4�

3

"
	 3 lnm2

�
;


mZ �
	

4�
m

s2

�
�

1

16
	

1

8"
�

lnM2
Z

8
�

1

12

m2

M2
Z

�

	
	

4�
m

c2

�
�

21

16
�

11

8"
	

11 lnM2
Z

8

	
m2

M2
Z

�
�

17

12
	 2 ln

M2
Z

m2

��

	m
	

4�

�
5

2
	

3

"
� 3 lnM2

Z 	
m2

M2
Z

�
8

3
� 4 ln

M2
Z

m2

��
;


mW �
	

4�
m

s2

�
�

1

8
	

1

4"
�

lnM2
W

4
	

1

12

m2

M2
W

�
; (28)

and
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M H [GeV]

114 GeV LEP lower limit on M H

[%]

FIG. 5. aEW
� �two�loop�

aEW
� �one�loop�

as a function of MH , expressed in percents.
Dashed line represents the result from Ref. [14], solid line is the
result of this work. The vertical dotted line shows the lower limit
for the Higgs boson mass from direct searches, 114 GeV.
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ZL� � 
Z
L
����	
Z

L
��Z�	
Z

L
��W�;


ZL���� � 
Z
R
���� �

	
4�

�
�4�

3

"
	 3 lnm2

�
;


ZL��Z� �
	

4�
1

16s2c2

�
�2� 4s2�2

�
1

2
�

1

"
	 lnM2

Z�
2m2

3M2
Z

�

�
2m2

3M2
Z

�7� 5�1� 4s2�2�

�
;


ZL��W� �
	

4�
1

s2

�
1

4
�

1

2"
	

lnM2
W

2
�

m2

3M2
W

�
;


ZR� � 
Z
R
����	
Z

R
��Z�;


ZR��Z� �
	

4�
1

16s2c2

�
16s4

�
1

2
�

1

"
	 lnM2

Z�
2m2

3M2
Z

�

�
2m2

3M2
Z

�7� 5�1� 4s2�2�

�
; (29)

and 
M2
W and 
M2

Z are mass renormalization constants.
The expressions (21), (24), and (26) provide all counter

terms necessary to renormalize two-loop bosonic correc-
053016
tions to a�. Taking the sum of the finite parts of these
expressions we obtain for the counterterms,
CT �
	2

384c2s2�2 f680c4 � 362c2 � 363	 6��27� 30c2� lnm2 	 �54c2 � 56c4� lnM2
W 	 �56c4 � 84c2 	 27� lnM2

Z�g

� 	2 m
2

M2
W

�
0:74	 0:058 ln

m2

M2
W

� 0:111�2 � 0:0134�2 ln�2

�

�
	2

384s6�2

m2

M2
W

�
S01

fin�MW;MW;MZ�

M2
W

��96	 475c2 � 924c4 	 828c6 � 256c8� 	 �7� 14c2 	 4c4�

�

�
S01

fin�MW;MH;MW�

M2
W

	 �1	 28c2�
S01

fin�MZ;MW;MW�

M2
W

	 3S02
fin�MW;MH;MW� � ��

2 � 2�S12
fin�MW;MH;MW�

� S22
fin�MW;MH;MW� � �1	 48c2�S22

fin�MZ;MW;MW�

�
	 �5� 16c2 	 8c4�

�

�
�c2 S01

fin�MZ;MH;MZ�

M2
W

	 �1� 4c2 	 12c4��S22
fin�MW;MW;MZ� � S12

fin�MWMWMZ��� 3S02
fin�MZ;MH;MZ�

	 ��2 � 2�S12
fin�MZMHMZ� 	 S

22
fin�MZMHMZ�

�
	 �96� 515c2 	 1212c4 � 1404c6 	 512c8�S02

fin�MW;MW;MZ�

	 ��133	 82c2 	 322c4 � 169c6 	 21c8�S02
fin�MZ;MW;MW� 	 �217� 346c2 � 42c4 	 29c6 	 7c8�

� S12
fin�MZ;MW;MW�

�
; (30)
where, as in expression (10), the floating point coefficients
were rounded to provide the precision of 10�11 of the result
and do not depend on MW and MZ chosen within experi-
mentally accepted interval. All special functions Sfina;b are
defined in Eq. (8).

C. Two-loop corrections to g� 2

Our result (not yet in its final form—see the next
section) for the two-loop bosonic contribution to g� � 2
is obtained by adding up all diagrams, Eqs. (10)–(18), and
counterterms (30),

aEW bos
� �two-loop� � T1A;B;C 	 T2A;D;E 	 T3A;B;C;D;G

	 T4A;D;E;J 	 T5	 T2B 	 T2C

	 T2F 	 T3E;F 	 T4B 	 T4C 	 T4F

	 T4G 	 CT: (31)

Its numerical value, normalized to the one-loop correc-
tion given in Eq. (2), is plotted in Fig. 5 with a solid line,
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for a range of the Higgs boson mass 50 GeV � MH �
700 GeV. Also plotted, with a dashed line, is the approxi-
mate result of Ref. [14]. We see that both results coincide
well for the Higgs boson heavier than about 200 GeV. The
only difference in the large Higgs mass region is due to an
additional approximation made in Ref. [14], where the
difference of the W and Z masses was treated as a small
perturbation (first four terms in an expansion in sin2�W
were retained there). Above MH � 250 GeV, the relative
difference between two results is less than 0.1%, well
within the precision of the result in Ref. [14]. However,
the results differ strongly in the low Higgs mass region.
The result of Ref. [14] is not valid in that region since it
was obtained under the assumption MW;Z � MH. We see
that while the result of Ref. [14] seems to grow strongly for
the light MH, the actual bosonic correction (solid line)
remains moderate.

D. Reparametrization in terms of G�
Equation (31) gives a finite result for the two-loop

correction, expressed in terms of the fine structure constant
	, the W mass, and the weak mixing angle. Some of the
corrections computed in this way are universal for all weak
processes and it is convenient to include them in the lower
order result by expressing it in terms of the Fermi constant
G�. This amounts to the substitution, to be made in all
components of Eq. (31),

e2

8s2M2
W

!
G����

2
p �1��r� (32)

with

�r � 2
Ze � 2

s
s
�

M2

W

M2
W

	
�W�0�

M2
W

	
	

4�s2

�
6	

7� 4s2

2s2

�
lnc2: (33)

This transformation decreases the central value of the ratio
053016
of the two-loop to one-loop corrections by up to 7%
(depending on the Higgs mass) and, in addition, reduces
its uncertainty, since G� has been measured to much better
precision than MW and s.
IV. CONCLUSIONS

We have presented a detailed evaluation of the two-loop
bosonic corrections to g� � 2. Our result confirms the
previous approximate evaluation in the limit of the heavy
Higgs boson [14]. Our final number for this correction is

aEW bos
� �two-loop� � ��22:2� 1:6� � 10�11; (34)

where the central value was computed for the Higgs mass
of 200 GeV, and the error encompasses the interval
50 GeV � MH � 700 GeV. This is in agreement with
the numerical results of an exact study in Ref. [18]. In
addition to the numerical result we have provided here a
number of semianalytic intermediate results. They give
insight into details of our calculation, allow future checks,
and simplify the evaluation of the correction for any Higgs
boson mass.

The uncertainty in Eq. (34) is due to the unknown Higgs
mass and is slightly reduced in comparison with previous
estimates based on the approximate evalulation. The main
variation of the correction occurs in the relatively low
Higgs mass range. Thus, when more stringent limits on
MH are obtained, that uncertainty will quickly decrease.
The main uncertainty of the electroweak contributions will
then be due to electroweak hadronic effects, as discussed
in [16].
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