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Bernd Jantzen,1,* Johann H. Kühn,1 Alexander A. Penin,1,2 and Vladimir A. Smirnov3,4

1Institut für Theoretische Teilchenphysik, Universität Karlsruhe, 76128 Karlsruhe, Germany
2Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow, Russia

3Institute for Nuclear Physics, Moscow State University, 119992 Moscow, Russia
4II. Institut für Theoretische Physik, Universität Hamburg, 22761 Hamburg, Germany

(Received 14 April 2005; published 14 September 2005)
*Bernd Feu

1550-7998=20
We present the complete analytical result for the two-loop logarithmically enhanced contributions to
the high-energy asymptotic behavior of the vector form factor and the four-fermion cross section in a
spontaneously broken SU�2� gauge model. On the basis of this result we derive the dominant two-loop
electroweak corrections to the neutral current four-fermion processes at high energies.
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Recently a new wave of interest to the Sudakov
asymptotic regime [1,2] has been triggered by the study
of higher-order corrections to electroweak processes at
high energies [3–12]. Experimental and theoretical studies
of electroweak interactions have traditionally explored
the range from very low energies, e.g. through parity
violation in atoms, up to energies comparable to the masses
of the W- and Z-bosons, e.g. at the LEP or the Tevatron.
The advent of multi-TeV colliders like the LHC during
the present decade or a future linear electron-positron
collider will give access to a completely new energy
domain. Once the characteristic energies

���
s
p

are far
larger than the masses of the W- and Z-bosons, MW;Z,
exclusive reactions like electron-positron (or quark-
antiquark) annihilation into a pair of fermions or gauge
bosons will receive virtual corrections enhanced by powers
of the large electroweak logarithm ln�s=M2

W;Z�. The lead-
ing double-logarithmic corrections may well amount to
10 or even 20% in one-loop approximation and reach
several percent in two-loop approximation. Moreover, in
the TeV region, the subleading logarithms turn out to be
equally important [6,10]. One percent accuracy of the
theoretical estimates for the cross sections necessary for
the search of new physics beyond the standard model can
be guaranteed only by including all the logarithmic two-
loop corrections.

The direct calculation of the two-loop electroweak
corrections is an extremely challenging theoretical prob-
lem at the limit of available computational techniques
even in the high-energy limit. However, the asymptotic
high-energy behavior of the amplitudes is governed by
evolution equations which turn out to be a powerful
tool in the analysis of the logarithmic corrections. In
Ref. [5] the leading logarithmic (LL) electroweak correc-
tions have been obtained to all orders of perturbative
expansion within the infrared evolution equation approach.
This analysis has been extended to the NLL and N2LL
cht in previous publications
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approximation1 in Refs. [6,10] by combining the hard and
infrared evolution equations. Starting with the N3LL ap-
proximation the corrections become sensitive to fine de-
tails of the gauge boson mass generation and the analysis is
complicated by the presence of the mass gap and mixing in
the gauge sector. In Ref. [12] the general matching proce-
dure has been formulated which relates theories with and
without mass gap, thus setting the stage for the calculation
of the logarithmically enhanced two-loop corrections to
electroweak processes. In this Letter the analysis of
Ref. [12] will be completed. We first present explicit
analytical results for the two-loop logarithmic corrections
to the vector form factor and four-fermion cross section in
the spontaneously broken SU�2�model with the gauge and
Higgs bosons of the same mass M and six doublets of left-
handed massless fermions inspired by the standard model.
Then we proceed along the line of Ref. [12] and derive the
numerical results for the dominant two-loop electroweak
corrections to the cross sections of the neutral current four-
fermion processes in the full SUL�2� �U�1� theory with
light fermions. We neglect the fermion mass effects which
can be important for the top and bottom quark production.

The vector form factor F determines the fermion scat-
tering amplitude in an external Abelian field. It plays a
special role since it is the simplest quantity which includes
the complete information about the universal collinear
logarithms directly applicable to any process with an arbi-
trary number of fermions. Let us write the perturbative
expansion for the form factor as F �

P
n�

�
4��

nf�n�, where
f�0� � 1 corresponds to the Born approximation and the
coupling constant � is renormalized at the scale M accord-
ing to MS prescription. In the SU�2� model the one-loop
coefficient f�1� in the Sudakov limit M=Q! 0 can easily
be obtained from the known U�1� result (see e.g. [12]) by
multiplying with the group factor 3=4. For the two-loop
logarithmic contribution of the virtual gauge and Higgs
1NmLL stands for the corrections of the form �nln2n�m�s� for
an arbitrary n.
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bosons we find by explicit calculation
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where �L � ln�Q2=M2�, Q is the Euclidean momentum
transfer, all power-suppressed terms are neglected, �3 �
1:202057 . . . and Cl2��=3� � 1:014942 . . . are the values
of the Riemann’s zeta-function and the Clausen function,
respectively. In Eq. (1) we do not include the contribution
due to the virtual fermion loop computed in [11]. The
Abelian contribution to Eq. (1) has been evaluated in
Ref. [12]. For the calculation of the leading power behavior
of the two-loop on-shell vertex diagrams with two massive
propagators in the Sudakov limit we used the expansion by
regions approach [13] (for the application to the Sudakov
form factor see also [6]). The method is based on the
separation of the contributions of the dynamical modes
characteristic for the Sudakov limit [14] in dimensional
regularization. Our result for the hard modes agrees with
the dimensionally regularized massless result of Ref. [15].
The result for the coefficients of the quartic, cubic and
quadratic logarithms in Eq. (1) is in full agreement with the
predictions of the evolution equation approach [10]. In
particular, they are not sensitive to details of the gauge
boson mass generation. This is not true for the coefficient
of the linear-logarithmic term which depends e.g. on the
Higgs boson mass. For example, in the (hypothetical) case
of a light Higgs boson with mass MH � M the coefficient
of the linear logarithm in Eq. (1) becomes
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Let us now consider the four-fermion process f �f ! f0 �f0.
We define the perturbative expansion for the corresponding
normalized total cross section as follows: R � �=�Born �P
n�

�
4��

nr�n�, r�0� � 1, where the coupling constant in the
Born cross section is renormalized at the scale

���
s
p

while the
series in � is renormalized at the scale M. The one-loop
coefficient r�1� in the Sudakov limit can be found in
Ref. [10]. The four-fermion amplitude can be decomposed
into (the square of) the form factor and a reduced ampli-
tude [6,10]. The latter carries all the Lorentz and isospin
indices and does not contain collinear logarithms. The
logarithmic corrections to the reduced amplitude are ob-
tained by solving a renormalization group like equation
[16]. The corresponding two-loop anomalous dimensions
can be extracted from the existing massless QCD calcu-
lations [17] (see [10,18]). By combining Eq. (1) with the
result for the reduced amplitude and integrating the cross
section over the production angle we obtain the two-loop
logarithmic contribution
051301
r�2�� �
9

2
L4 �

449

6
L3 �

�
4855

18
�

37

3
�2

�
L2

�

�
34441

216
�

1247

18
�2 � 122�3 � 15

���
3
p
�

� 26
���
3
p

Cl2

�
�
3

��
L�O�L0�; (3)
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for the initial and final state fermions of the same or
opposite isospin, respectively. In Eqs. (3) and (4) the virtual
fermion loop contribution is included and L � ln�s=M2� is
real in the physical region of positive s � �Q2. The co-
efficients of the quartic, cubic and quadratic logarithms in
Eqs. (3) and (4) are already given in Ref. [10], the linear-
logarithmic term is new.

The main distinction of the analysis in the standard
electroweak model with the spontaneously broken
SUL�2� �U�1� gauge group from the pure SUL�2� case
is the presence of the massless photon which results in
infrared divergences in fully exclusive cross sections. The
divergences are cancelled in cross sections which are in-
clusive with respect to the soft photon bremsstrahlung.
Besides the electroweak logarithms the inclusive cross
sections get logarithmic corrections of the form ln�s="2

cut�
and ln�s=m2� where m is an initial or final state fermion
mass and "cut is the soft photon energy cut. In the case
m; "cut � MW;Z these logarithms are of pure QED nature
and are known to factorize. Note that the two-loop pure
QED corrections to the four-fermion cross section are
known even beyond the logarithmic approximation (see
[19] and references therein). Within the evolution equation
approach [5] it has been found [10] that the electroweak
and QED logarithms up to the N2LL approximation can be
disentangled by means of the following two-step proce-
dure: (i) the corrections are evaluated using the fields of the
unbroken symmetry phase with all the gauge bosons of the
same mass M 	 MZ;W ; (ii) the QED contribution with an
auxiliary photon mass M is factorized leaving the pure
electroweak logarithms. This reduces the calculation of
the two-loop electroweak logarithms up to the quadratic
term to a problem with a single mass parameter. Then the
effect of the Z�W boson mass splitting can systemati-
cally be taken into account within an expansion around the
equal mass approximation [12]. In general the above two-
step procedure is not valid in the N3LL approximation
which is sensitive to fine details of the gauge boson mass
-2
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FIG. 1. The LL (short-dashed line), NLL (long-dashed line),
NNLL (dot-dashed line) and N3LL (solid line) two-loop elec-
troweak corrections to Rlq in percent.

2Throughout Sec. 4 of Ref. [10] the terms with the factor
�aNg � b�t2W , where a and b stand for some constants, should be
multiplied by an extra t2W , and the terms with the factor Ngs2

W
should be multiplied by s2

W . This results in a small change of the
numerical estimates.
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generation. For the exact calculation of the coefficient of
the two-loop linear-logarithmic term one has to use the true
mass eigenstates of the standard model. The evaluation of
the corrections in this case becomes a very complicated
multiscale problem. The analysis, however, is drastically
simplified in a model with a Higgs boson of zero hyper-
charge. In this model the mixing is absent and the above
two-step procedure can be applied to disentangle all the
two-loop logarithms of the SUL�2� gauge boson mass from
the infrared logarithms associated with the massless hy-
percharge gauge boson [12]. With the result for the SUL�2�
model presented in this Letter at hand we are able to
complete the analysis of the two-loop logarithmic correc-
tions in the simplified model. In the standard model the
mixing of the gauge bosons results in a linear-logarithmic
contribution which is not accounted for in this approxima-
tion. It is, however, suppressed by a small factor sin2�W 	
0:2, with �W being the Weinberg angle. Therefore, the
approximation gives an estimate of the coefficient in front
of the linear electroweak logarithm with 20% accuracy.

Let Rff0 � �=�em be the normalized total cross section
of the f �f annihilation into a f0 �f0 pair. Here �em stands for
the cross section which incorporates the pure QED radia-
tive corrections and is free of the electroweak logarithms. It
is convenient to normalize �em so that the virtual QED
corrections vanish at m � 0; s � �2, where � is the auxil-
iary photon mass, and to use the electroweak coupling
constants renormalized at the scale

���
s
p

in the Born approxi-
mation [10]. In the standard electroweak model the pertur-
bative expansion involves two parameters: the SUL�2�
coupling constant � and the U�1� hypercharge coupling
constant �0. For convenience we eliminate the latter by
means of the relation �0 � tan2�W� and define the one-
parameter series for the cross section Rff0 �

P
n�

�
4��

nr�n�ff0 ,

r�0�ff0 � 1, in terms of the MS SUL�2� coupling renormalized
at the scale of the gauge boson mass. The complete one-
loop result for the cross section is known exactly (see e.g.
Ref. [20] and references therein). For the two-loop loga-
rithmic corrections to the phenomenologically interesting
processes we obtain the following numerical approxima-
tion:

r�2�lQ � 1:93L4 � 11:28L3 � 33:79L2 � 150:95L;

r�2�lq � 2:79L4 � 51:98L3 � 321:34L2 � 603:43L;

r�2�Qq � 3:53L4 � 20:39L3 � 65:20L2 � 275:24L;

r�2�ll0 � 1:42L4 � 20:33L3 � 112:57L2 � 260:15L;

r�2�QQ0 � 2:67L4 � 46:64L3 � 278:94L2 � 538:11L;

r�2�qq0 � 4:20L4 � 71:87L3 � 423:61L2 � 757:03L;

(5)

where L � ln�s=M2
W�, l stands for a charged lepton,Q and

q stand for the u; c; t and d; s; b quarks, respectively. Note
that the result is symmetric under exchange of the initial
051301
and final state fermions and can easily be generalized to
f �f ! f �f processes by including the t channel contribution
which goes beyond the scope of this Letter. In Eq. (5) we
use the value sin2�W � 0:231 corresponding to the MS
coupling constants renormalized at the scale MZ. The
coefficients of the cubic and quadratic logarithms in the
two-loop corrections to the cross sections of e�e� annihi-
lation have been computed in Refs. [6,10] neglecting the
W � Z boson mass difference2. In Eq. (5) we included the
leading correction in the mass difference 1�MW=MZ to
these coefficients. The coefficient of the linear logarithm is
computed in the approximation described above.

For the case of e�e� annihilation the size of the correc-
tions is shown in Figs. 1 and 2. In Fig. 1 the values of
different two-loop logarithmic contributions to Rlq are
plotted separately as functions of s for � � 3:38 
 10�2.
The two-loop logarithmic terms have a sign-alternating
structure resulting in significant cancellations. Although
the individual logarithmic contributions can be as large as
10%, their sum does not exceed 1% at energies below
2 TeV for all the cross sections (see Fig. 2). In the region
of a few TeV the corrections do not reach the double-
logarithmic asymptotics. The quartic, cubic and quadratic
logarithms are comparable in magnitude. The linear-
logarithmic term is a few times smaller than the quadratic
logarithm which is in agreement with the prediction of
Ref. [10] for the structure of the two-loop corrections
and justifies neglecting the nonlogarithmic contribution.
Still, the linear-logarithmic contribution amounts to a few
-3
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FIG. 2. The total electroweak logarithmic two-loop correc-
tions to RlQ (dashed line), Rlq (dot-dashed line) and Rll0 (solid
line) in percent.
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percent and must be included to reduce the theoretical
uncertainty below 1%.

Let us discuss the accuracy of our result. On the basis of
the explicit evaluation of the light fermion/scalar [11] and
the Abelian contribution [12] we estimate the uncalculated
two-loop nonlogarithmic term to few permill. For���
s
p

> 500 GeV the power-suppressed terms do not exceed
a permill in magnitude as well [11]. The leading effect of
the W � Z mass splitting results in a variation of the
coefficients of the two-loop cubic and quadratic logarithms
of at most 5%. Thus the expansion in the W � Z mass
difference converges well for these coefficients and the
leading correction term taken into account in our evalu-
ation is sufficient for a permill accuracy of the cross
sections. Neglecting the gauge boson mixing effects, which
are suppressed by a factor of sin2�W , induces an error of
20% in the coefficient of the two-loop single logarithm.
051301
Neglecting the difference between the Higgs and gauge
boson masses leads to a variation of the linear-logarithmic
coefficient of at most 5% since the scalar boson contribu-
tion is relatively small. The same is true for the uncertainty
due to the top quark mass effect on the t�t virtual pair
contribution. Hence for the production of light fermions
our formulae are supposed to approximate the exact coef-
ficients of the two-loop linear logarithms with approxi-
mately 20% accuracy leading to a few permill
uncertainty in the cross sections. By adding up the errors
from different sources in quadrature we find the total
uncertainty of the cross section to be from a few permill
up to 1%, depending on the process. This result should be
sufficient for all practical applications to collider physics.
The only essential deviation of the exact two-loop loga-
rithmic contributions from our result is relevant for the
production of the third generation quarks and is due to the
large top quark Yukawa coupling. The corresponding cor-
rections are known to NLL approximation and can numeri-
cally be as important as the generic non-Yukawa ones [7].

To conclude, we have derived the analytical result for
the two-loop logarithmic corrections to the vector form
factor and four-fermion cross section in the spontaneously
broken SUL�2�model. We have also obtained the dominant
two-loop electroweak corrections to neutral current four-
fermion processes, which are crucial for the high-precision
physics at the LHC and the next generation of linear
colliders.

A. A. P. thanks G. Sterman and E. W. N. Glover for
communication concerning the results of Refs. [17,18].
The work of J. H. K and A. A. P. was supported in part by
BMBF Grant No. 05HT4VKA/3 and SFB/TR9. The work
of V. A. S. was supported in part by the Russian Foundation
for Basic Research through project 05-02-17645 and DFG
Grant No. Ha 202/110-1.
[1] V. V. Sudakov, Zh. Eksp. Teor. Fiz. 30, 87 (1956).
[2] R. Jackiw, Ann. Phys. (N.Y.) 48, 292 (1968); 51, 575

(1969).
[3] M. Kuroda, G. Moultaka, and D. Schildknecht, Nucl.

Phys. B350, 25 (1991); G. Degrassi and A. Sirlin, Phys.
Rev. D 46, 3104 (1992).

[4] M. Beccaria et al., Phys. Rev. D 58, 093014 (1998); P.
Ciafaloni and D. Comelli, Phys. Lett. B 446, 278 (1999);
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