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55Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
56Universités Paris VI et VII, Laboratoire de Physique Nucléaire et de Hautes Energies, F-75252 Paris, France
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We present an analysis of exclusive charmless semileptonic B-meson decays based on 83� 106 BB
pairs recorded with the BABAR detector at the ��4S� resonance. Using isospin symmetry, we measure
branching fractions B�B0 ! ��‘��� � �1:38� 0:10� 0:16� 0:08� � 10�4 and B�B0 ! ��‘��� �
�2:14� 0:21� 0:48� 0:28� � 10�4, where the errors are statistical, experimental systematic, and due
to form-factor shape uncertainties. We compare the measured distribution in q2, the momentum-transfer
squared, with theoretical predictions for the form factors from lattice QCD and light-cone sum rules, and
extract the Cabibbo-Kobayashi-Maskawa (CKM) matrix element jVubj � �3:82� 0:14� 0:22�
0:11�0:88

�0:52� � 10�3 from B! �‘�, where the fourth error reflects the uncertainty of the form-factor
normalization.

DOI: 10.1103/PhysRevD.72.051102 PACS numbers: 13.20.He, 12.15.Hh, 12.38.Qk, 14.40.Nd
The parameter jVubj is one of the smallest and least
known elements of the Cabibbo-Kobayashi-Maskawa
(CKM) quark-mixing matrix [1]. A precise determination
of jVubj would significantly improve the constraints on the
unitarity triangle and provide a stringent test of the stan-
dard model mechanism for CP violation. In this paper, we
present a determination of jVubj from charmless semilep-
tonic decays of B mesons with exclusively reconstructed
final states, B! hu‘�, where the hadronic state hu repre-
sents a ��, �0, ��, or �0, and ‘ represents e or �.
Exclusive decays allow for kinematic constraints and
more efficient background suppression compared to
inclusive decays, but must rely on theoretical form-factor
predictions. Using isospin symmetry, we measure
the branching fractions B�B0 ! ��‘��� [2] and B�B0 !
��‘��� as a function of q2 � �p‘ � p��2, the momentum-
transfer squared, and extract jVubj using recent form-factor
calculations based on light-cone sum rules (LCSR) [3,4]
and unquenched lattice QCD (LQCD) [5,6].

This measurement is based on a sample of 83� 106 BB
pairs recorded with the BABAR detector [7] at the PEP-II
asymmetric-energy e�e� storage rings. The data corre-
spond to an integrated luminosity of 75:6 fb�1 collected
at the ��4S� resonance and 8:9 fb�1 recorded 40 MeV
below it. Simulated BB events are used to estimate signal
efficiencies and shapes of signal and background distribu-
tions. Charmless semileptonic decays are simulated as a
mixture of three-body decays B! Xu‘� (Xu �
�;�;�0; �;!) based on the ISGW II quark model [8].
Decays to nonresonant hadronic states Xu with masses
mXu > 2m� are simulated following a prescription of
Ref. [9].

We identify charmless semileptonic decays by a charged
lepton with momentum j ~p�‘j> 1:3 GeV [10], a � or �
meson, and missing momentum j ~pmissj> 0:7 GeV in the
event. We identify � mesons via the decays �� ! ���0

and �0 ! ���� with mass 0:65<m�� < 0:85 GeV, re-
jecting candidates in which a charged track is identified as
a kaon; both �� and � candidates are rejected if a charged
track is identified as a lepton. The charged lepton is com-
bined with a �0, �0 or ��, �� of opposite charge to form a
051102
‘‘Y’’ candidate; Y candidates are rejected if the lepton and
an oppositely charged track from the signal hadron are
consistent with a J= ! ‘�‘� decay.

The neutrino four-momentum, p� � �Emiss; ~pmiss�, is
inferred from the difference between the net four-
momentum of the colliding-beam particles, pbeams �
�Ebeams; ~pbeams�, and the sum of the four-momenta of all
detected particles in the event. To reduce the effect of
losses due to the detector acceptance, we require a total
charge of the event of jQtotj 	 1 and a polar angle of the
missing momentum in the range 0:6< �miss < 2:9 rad. In
addition, the missing mass measured from the whole
event should be compatible with zero. Because the
missing-mass resolution varies linearly with the missing
energy, we require jm2

miss=2Emissj< 0:4 GeV. We compute
the angle between the Y candidate and the B meson,
assuming zero missing mass, as cos�BY � �2E

�
BE
�
Y �

M2
B �M

2
Y�=�2j ~p

�
Bj ~p

�
Y j�. Here MB;MY; E�B; E

�
Y; ~p

�
B; ~p

�
Y refer

to the masses, energies, and momenta of the B and Y.
Signal candidates are required to satisfy j cos�BYj< 1:1,
allowing for detector resolution and photon radiation.

We restrict the momenta of leptons and hadrons in Y
candidates to enhance the signal over backgrounds. For
B! �‘�, we require j ~p�‘j � j ~p

�
hu
j> 2:6 GeV; for B!

�‘�, 1:5j ~p�‘j � j ~p
�
hu
j> 4:2 GeV and j ~p�‘j> 1:8 GeV.

These criteria keep 99.8% (75%) of true B! ����‘�
decays and reduce the B! Xc‘� background by about
10% (80%) after all other selection criteria. To suppress
backgrounds from e�e� ! qq �q � u; d; s; c� and QED
processes, we require at least five charged tracks in each
event or, to increase the efficiency for B� ! �0‘��, four
tracks and at least two photons. We also require L2 �P
ij ~p
�
i jcos2��i < 1:5 GeV. Here the sum is over all tracks

in the event excluding the Y candidate, and ~p�i and ��i refer
to the momenta and the angles measured with respect to the
thrust axis of the Y. This requirement removes over 95% of
qq and 80% of B! Xc‘� background and retains about
50% of the signal in all modes.

We discriminate against the remaining background
using the variables �E � �pB 
 pbeams � s=2�=

���
s
p

and
-4
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mES �
���������������������������������������������������������������������
�s=2� ~pB 
 ~pbeams�

2=E2
beams � ~p2

B

q
, where

���
s
p

is
the mass of the ��4S�. Only candidates with j�Ej<
0:9 GeV and mES > 5:095 GeV are retained. The total
signal selection efficiencies for the sum of electrons and
muons are 3.5% and 2.4% for ��‘�� and �0‘��, and
0.53% and 1.1% for ��‘�� and �0‘�� [11]. We use a low-
background sample of B0 ! D��‘�� decays with D0 !
K��� or D0 ! K����0 to compare the efficiencies of
each selection cut in data and simulation and find differ-
ences typically of a few percent.

To extract the signal yields, we perform a binned ex-
tended maximum-likelihood fit [12] to the �E vs. mES

distributions of the four signal modes simultaneously.
The fit takes into account statistical fluctuations of both
data and Monte-Carlo samples. We fit the relative propor-
tions of the simulated signal and background samples to
the data distributions in 5 GeV2 or 10 GeV2 intervals of
q2. To improve the q2 resolution, we adjust j ~p�j so that
�E � 0. The resulting q2 resolution is small compared to
the chosen intervals of q2 and can be described by the sum
of two Gaussian functions of widths �1 ’ 0:2 GeV2 (con-
taining about 75% of signal events) and �2 ’ 0:5 GeV2.
FIG. 1 (color online). Projected mES (a–e) and �E (f–j) distributio
projections are shown for signal bands �0:15<�E< 0:25 GeV a
points represent the statistical uncertainties. The histograms show
(white, dotted), cross feed from other B! Xu‘� decays (hatched), B
(dark shaded/blue). The normalizations of the signal and B! Xc‘�
maximum-likelihood fit.
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We use the isospin relations ��B0 ! ��‘��� �
2��B� ! �0‘��� and ��B0 ! ��‘��� � 2��B� !
�0‘��� to reduce the number of fit parameters to nine:
five for the signal yields in the five q2 intervals for B!
�‘� decays, three for the signal yields in the three q2

intervals for B! �‘� decays, plus one scale parameter,
shared among all q2 intervals and signal modes, to fit the
overall normalization of the B! Xc‘� background. We
classify signal candidates as ‘‘combinatoric signal’’ if the
reconstructed lepton comes from the isospin-conjugate
decay or the hadron is incorrectly selected. The fit uses
common parameters for combinatoric signal and signal.
The normalization of the simulated non-BB background is
scaled separately for events with e� and �� to match the
off-resonance data. We smooth the distributions for this
low-statistics background to reduce single-bin statistical
fluctuations.

Figures 1 and 2 show projections of the fitted �E vs.mES

distributions for each q2 interval for B! �‘� and B!
�‘�, respectively. Integrated over the whole q2 range, we
observe 396 ��‘��, 137 �0‘��, 95 ��‘��, and 98
�0‘�� decays. The resulting partial and total branching
fractions are given in Table I. The fitted normalization of
ns in five intervals of q2 for the combined B! �‘� modes. The
nd mES > 5:255 GeV, respectively. The error bars on the data
simulated distributions for signal (white), combinatoric signal
! Xc‘� decays (light shaded/yellow), and non-BB background
background simulations have been scaled to the results of the
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FIG. 2 (color online). Projected mES (a–c) and �E (d–f)
distributions in three intervals of q2 for the combined B!
�‘� modes. See the caption for Fig. 1 for details.
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the B! Xc‘� background is consistent with the measured
total branching fraction [13]. The goodness-of-fit is eval-
uated using a �2-based comparison of the fitted �E vs.mES

distributions and data, yielding �2=dof � 1:27. As a
check, we have performed the fit for e� and �� separately
and obtain consistent results.

The fit also allows us to study the q2 dependence of the
form factors. In decays to pseudoscalar mesons there is
only one form factor, f� (for low-mass leptons), and we
can extract the shape of f��q2� directly from the measured
q2 spectrum. We perform a �2 fit with a function proposed
by Becirevic and Kaidalov (BK) [14],

f��q2� �
cB�1� 	�

�1� q2=m2
B� ��1� 	q

2=m2
B� �
; (1)

wheremB� � 5:32 GeV is the mass of the B� resonance, cB
TABLE I. Partial and total branching fractions B�B0 !
��‘��� (�B�) and B�B0 ! ��‘��� (�B�) obtained from
the simultaneous fit of the four signal modes, and signal effi-
ciencies, 
� and 
�, averaged over charged and neutral B decays.
The errors are statistical.

q2 range �B� 
� q2 range �B� 
�
(GeV2) (10�4) (%) (GeV2) (10�4) (%)

0–5 0:30� 0:05 2.1 0–10 0:73� 0:17 0.70
5–10 0:32� 0:05 2.9
10–15 0:23� 0:05 3.8 10–15 0:82� 0:10 0.97
15–20 0:27� 0:05 3.5 15–25 0:59� 0:07 0.44
20–25 0:26� 0:03 3.3
0–25 1:38� 0:10 3.1 0–25 2:14� 0:21 0.72
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is a normalization factor, and 	 is a shape parameter. Since
we cannot measure the normalization, only 	 is mean-
ingful. Leaving both cB and 	 free, we fit 	 � 0:61�
0:09, in agreement with LQCD results [5,6]. For decays to
vector mesons, there are three form factors. The experi-
mental uncertainties for B! �‘� are still too large to
measure these. Thus we have to rely on theoretical
predictions.

Figure 3 compares the q2 distributions for B! �‘� and
B! �‘� with the various form-factor calculations, which
we implement by reweighting simulated signal events [15].
We use �2 probabilities to quantify the agreement: for B!
�‘� we obtain good agreement with the BK fit to the data,
P��2� � 35%; and the predictions of LCSR1 [3], 38%;
LQCD1 [5], 14%; and LQCD2 [6], 35%; but only marginal
agreement with the prediction of ISGW II [8], P��2�<
1%. For B! �‘� all calculations [4,8] are compatible
with the data within the large experimental uncertainties.

The systematic errors in the extraction of the branching
fractions are listed in Table II. The contributions from each
q2 interval are conservatively treated as fully correlated
and added linearly to obtain the uncertainty of the total
branching fractions. Part of the q2 variation of the stated
errors may be due to statistical variations in simulated
samples.

Uncertainties in the simulation of the reconstruction of
charged particles and photons are evaluated by varying the
reconstruction efficiencies and the photon-energy resolu-
tion and are added in quadrature. In addition, most K0

L
escape detection. The impact of K0

L interactions in the
calorimeter is estimated by varying in simulation their
detection efficiency and energy deposition. To assess the
uncertainty of theK0 production rate, we vary the inclusive
branching fractions ofD� ! K0X,D0 ! K0X, andD�s !
K0X within their published errors [16]. All these constitute
the total uncertainty of the neutrino reconstruction, which
is dominant. For lepton identification we use relative un-
FIG. 3 (color online). Comparison of the differential decay
rates as functions of q2 for B! �‘� (a) and B! �‘� (b)
with various form-factor predictions. The data are background
subtracted and corrected for efficiency and radiative effects. The
error bars are statistical (inner) and statistical plus systematic
(outer).
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TABLE III. jVubj derived for B! �‘� and B! �‘� signal
for various q2 regions and form-factor (FF) calculations: LCSR1
[3], LQCD1 [5], LQCD2 [6], LCSR2 [4], ISGW II [8]. For the
cross feed from the other mode, we have used the BK fit to data
for �‘� and LCSR2 for �‘�. Quoted errors are statistical,
experimental systematic, uncertainties of form-factor shape
and form-factor normalization �� (no form-factor normalization
uncertainties are available for �‘�).

q2 range �� jVubj
(GeV2) (ps�1) (10�3)

� FF
LCSR1 0–15 5:1� 1:3 3:27� 0:16� 0:19� 0:10�0:53

�0:36

LQCD1 15–25 1:5� 0:4 4:92� 0:25� 0:29� 0:15�0:76
�0:52

LQCD2 15–25 2:0� 0:5 4:16� 0:22� 0:24� 0:12�0:72
�0:47

LCSR1 0–25 7:7� 2:3 3:40� 0:13� 0:20� 0:10�0:67
�0:42

LQCD1 0–25 5:7� 1:7 4:00� 0:14� 0:23� 0:12�0:78
�0:49

LQCD2 0–25 6:1� 2:1 3:82� 0:14� 0:22� 0:11�0:88
�0:52

� FF
LCSR2 0–15 12.7 2:82� 0:18� 0:30� 0:18
ISGW II 0–25 14.2 2:91� 0:12� 0:33� 0:19
LCSR2 0–25 17.2 2:85� 0:14� 0:32� 0:19

TABLE II. Relative systematic uncertainties of the partial and total branching fractions
B�B0 ! ��‘��� (�B�) and B�B0 ! ��‘��� (�B�) in the various q2 bins. The total
uncertainty in each column is the sum in quadrature of the listed contributions.

�B�=�B� (%) �B�=�B� (%)
q2 range (GeV2) 0–55–1010–1515–2020–250–25 0–1010–1515–250–25

Track and photon reconstruction 7.4 5.7 9.2 3.5 8.7 6.8 16.7 10.8 15.9 14.2
K0
L Production and interactions 8.8 5.0 7.3 2.5 4.8 5.7 12.7 4.7 10.9 9.1

Lepton identification 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3
B! Xc‘� background 5.0 3.9 3.9 4.3 3.6 4.2 7.2 1.8 3.8 4.2
B! Xu‘� background 0.5 1.5 0.6 2.2 5.7 2.1 10.9 9.1 19.2 12.5
Non-BB background 13.5 2.4 1.0 2.2 7.8 5.6 11.2 0.9 1.6 4.6
NBB 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1
B lifetimes 1.1 1.4 0.2 0.5 2.1 1.1 0.7 0.6 0.9 0.7
f��=f00 0.7 0.8 0.3 0.4 1.0 0.7 1.6 0.6 0.4 0.9
Isospin breaking 0.1 1.1 1.8 0.1 0.1 0.6 6.4 4.5 0.9 4.2
Radiative corrections 0.8 0.3 0.2 0.3 1.5 0.6 0.5 0.1 0.9 0.5

Total error 18.7 9.5 12.8 7.3 14.8 11.8 28.1 15.9 27.7 22.5
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certainties of �2% and �4% for electrons and muons,
respectively.

The uncertainty of the B! Xc‘� background is eval-
uated by varying the B! D=D�=D��‘� branching frac-
tions [16] and the B! D�‘� form factors [17]. For the
B! Xu‘� background, we independently vary the branch-
ing fractions of B� ! !‘�� and B� ! �‘��within their
published errors [16,18]. We assume equal branching frac-
tions for �‘� and �0‘� and use a relative uncertainty of
100% for the latter. We also vary the nonresonant contri-
bution within the range allowed by the uncertainty of the
total B! Xu‘� branching fraction [19]. The impact of
quark-hadron duality violation or weak annihilation effects
have not been considered. We estimate the uncertainty of
the small remaining non-BB background by comparing
simulation with off-resonance data and extract a normal-
ization error of �70

�25 % for electrons and �25% for muons.
The overall uncertainty of the number of produced B

mesons is 1.1%. We take into account the uncertainties of
the ratio of B lifetimes, �B�=�B0 � 1:081� 0:015 [16], the
charged-to-neutral B production ratio f��=f00 � 1:044�
0:050 [16], and the potential effect of isospin breaking due
to �0–! mixing [20]. We assign an uncertainty of 20% to
the radiative corrections based on PHOTOS [21].

The impact of the uncertainties of the B! �‘� form-
factor shape on the measured branching fractions is negli-
gible, whereas for the different B! �‘� form-factor cal-
culations we see variations of up to �6% in
B�B0 ! ��‘��� and �13% in B�B0 ! ��‘���. We
take the full spread between calculations as the uncertainty
of the q2 dependence of the form factors.

We extract jVubj (see Table III) from the partial branch-
ing fractions �B using the relation jVubj ����������������������������

�B=��B0���
p

, where �B0 � �1:536� 0:014� ps [16] is
the B0 lifetime and �� denotes the predicted form-factor
normalization in each q2 interval. For q2 < 15 GeV2 we
051102
derive jVubj using LCSR calculations; for q2 > 15 GeV2

we use unquenched LQCD. To extract jVubj from this
measurement over the whole q2 range, we extrapolate the
LQCD results to low q2 using the fits of the BK parame-
trization in Ref. [5,6] and the LCSR results to high q2 using
the parametrization given in Ref. [3]. We adopt the un-
certainties of the form-factor normalization estimated in
Refs. [3–6].

In conclusion, we have measured the exclusive branch-
ing fractions B�B0 ! ��‘��� and B�B0 ! ��‘��� as a
function of q2, and have extracted jVubj using recent form-
factor calculations. We measure the total branching frac-
tions,
-7
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B �B0!��‘���� �1:38�0:10�0:16�0:08��10�4;

B�B0!��‘���� �2:14�0:21�0:48�0:28��10�4;

where the errors are statistical (data and simulation), ex-
perimental systematic, and uncertainties of the form-factor
shapes. As a consistency check, we have also measured the
branching fractions for the charged and neutral �‘�
samples separately, B�B0 ! ��‘��� � �1:41� 0:17�
0:17� 0:08� � 10�4, B�B� ! �0‘��� � �0:70�
0:10� 0:08� 0:04� � 10�4. The ratio ��B0 !
��‘���=��B� ! �0‘��� � 2:21� 0:41 is consistent
with the assumed isospin relation within the quoted statis-
tical uncertainty.

For B! �‘�, the q2 distribution agrees well with cal-
culations based on LCSR [3] and unquenched LQCD [5,6],
but the data disfavor ISGW II [8]. Instead of averaging
results based on different calculations, we choose the
measured form-factor shape and normalization of
LQCD2 and quote

jVubj � �3:82� 0:14� 0:22� 0:11�0:88
�0:52� � 10�3;
051102
where the additional fourth error reflects the uncertainty of
the form-factor normalization. The results are consistent
with previous measurements [22,23], but have higher sta-
tistical accuracy, are less dependent on theoretical form-
factor predictions, and benefit from recent advances in
theoretical calculations [3–6].
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