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Role of dissipation in biasing the vacuum selection in quantum field theory at finite temperature
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We study the symmetry breaking pattern of an O�4� symmetric model of scalar fields, with both charged
and neutral fields, interacting with a photon bath. Nagasawa and Brandenberger argued that in favorable
circumstances the vacuum manifold would be reduced from S3 to S1. Here it is shown that a selective
condensation of the neutral fields, that are not directly coupled to photons, can be achieved in the presence
of a minimal external dissipation, i.e. not related to interactions with a bath. This should be relevant in the
early universe or in heavy-ion collisions where dissipation occurs due to expansion.
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I. INTRODUCTION AND OVERVIEW

In this paper we investigate the role that dissipation can
play in biasing vacuum selection after a symmetry break-
ing phase transition. Our work was initially motivated by a
mechanism suggested by Nagasawa and Brandenberger [1]
to stabilize nontopological classical solutions by out-of-
equilibrium effects. They studied an O�4� model in which
charged and neutral scalars coupled differently to a ther-
malized photon bath. Under the assumption that only the
charged fields receive thermal corrections from the bath,
these authors argued that the vacuum manifold would
collapse from S3 to S1 and therefore temporarily stabilize
nontopological strings.

The analysis in [1] is focused on the stability of em-
bedded strings when immersed in a thermalized plasma.
However, the primordial question of whether the formation
of the defect is dynamically favored has never been ad-
dressed. By looking at the requirements that favor their
formation we found a close link between ‘‘external’’ dis-
sipation and vacuum selection that ranges beyond our
initial aim. By external we mean a source of dissipation
that is not related to the interactions between the system
and the heat bath.

The vacuum selection we discuss can take place in the
early universe and in heavy-ion collisions. In the early
universe, the most relevant areas for applications are in
the studies of preheating at the end of inflation [2] and
defect formation in nonequilibrium cosmological phase
transitions [3].

Current and future heavy-ion collision experiments also
provide scenarios where dissipative vacuum selection
might take place. A specific problem where this process
might occur is the formation of disoriented chiral conden-
sates [4,5]. Processes of similar nature might take place in
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the quark-gluon plasma where modes with different ther-
malization times coexist. However, our study, which is
based on a symmetry breaking, does not provide by itself
a mechanism for this case.

The mechanism we investigate is illustrated here for the
same O�4� scalar field theory in 3� 1 dimensions used in
[1]. Some general assumptions are required to specify the
properties of the model but when presented out of a par-
ticular context, at first sight, these might not appear natural.
Therefore, we think it convenient to start with a brief
outline of our study. In the context of our work we see
the field theory as an effective model for the soft long-
wavelength modes of a system coupled to a heat bath. At
low temperatures the system has a symmetry broken phase
and the symmetry is restored above some finite tempera-
ture Tc.

The following are key requirements concerning the cou-
pling of the scalar fields to the heat bath. In the ordered
phase, two of the scalar fields, say for definiteness �1;2,
have decoupled from the heat bath, while the remaining
fields, say �3;4, stay coupled. This situation is more natural
than it seems at first sight. For example it occurs when the
fields �1;2 are neutral and �3;4 are charged, both with
respect to the same conserved charge, and the heat bath
consists predominantly of quanta of the associated gauge
field.

Furthermore, the coupling between �3;4 and the bath is
assumed to be much stronger than the scalar self-coupling.
Then, we expect that, by the time �3;4 thermalize at the
heat bath temperature T < Tc, the �1;2 fields are still out of
equilibrium. In other words, the relative strength of the
couplings implies that the relaxation times of �3;4 are
much smaller than the ones of �1;2. This is a condition
that can be realized in the early universe. The less favor-
able transition is probably the most recent one, the chiral
symmetry breaking transition, because of the strong pion
interactions. Under these circumstances, when some fields
are coupled and others uncoupled to a heat bath, the ques-
tion then arises: What is the effective vacuum manifold in
this system?
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When all the fields are coupled to the heat bath and
dissipate according to the fluctuation-dissipation relation
the answer is well known. The vacuum manifold is the
three-sphere S3 covered by all the equivalent scalar con-
figurations that minimize the free energy. The soft modes
described by the fields do not form a closed system because
their energy is being exchanged with the heat bath, e.g. via
collisions and decay channels, giving origin to dissipation.
Let us assume, as it is normally the case, that these terms
are characterized by viscosity coefficients 	i associated
with each scalar �i.

The situation we study here differs in two ways. First,
the neutral fields are not coupled directly to a heat bath.
Second, and most importantly, we consider these de-
coupled fields to have external sources of dissipation. For
example, in a cosmological context this type of dissipation
is naturally associated with the expansion of the universe.
As a result the decoupled �1;2 fields stabilize in steady
states that can be characterized by an effective temperature
Teff < T, independently on whether these fields condense
or not.

The most interesting effect occurs when the external
dissipation is much smaller than the dissipation in the
coupled fields due to their interaction with the bath. We
would expect a small external dissipation to have only a
negligible effect on the evolution of the fields. However,
this is in general not the case. We have that at vanishing
scalar self-coupling the limit 	1;2 ! 0, i.e. the external
sources of dissipation are ‘‘switched-off,’’ is singular.
This has the effect of changing the symmetry breaking
pattern even for small values of 	1;2. In this limit the
neutral fields are selected to condense, therefore effectively
reducing the vacuum manifold from S3 to S1 as originally
suggested by Nagasawa and Brandenberger [1].

In reality, the uncoupled fields are still receiving energy
from the bath and the role of the external dissipation is
simply to release this energy at a comparable rate. This rate
is much smaller than the corresponding values for the
coupled fields and has no appreciable effect on them.

The origin of the vacuum manifold reduction in our
analysis is identified without having to call for out-of-
equilibrium effects as in [1]. We emphasize the important
role played by the existence of different steady states for
the various fields due to the external source of dissipation.

The vacuum selection takes place above a small critical
dissipation which occurs when the neutral fields stabilize at
a ‘‘cold’’ enough Teff . Our conclusion, therefore, is that the
reduction is more widely applicable than previously
thought.

Our simulations are governed by phenomenological
Langevin equations describing the dynamical evolution
of the fields. These equations have been previously used
in a relativistic context to study nonequilibrium phe-
nomena in cosmological phase transition [6–8]. There
are known limitations to the use of these equations which
045017
we discuss in Secs. IV and V. They provide nevertheless an
economic and qualitative good description of the different
processes involved in the dynamic evolution of the fields
where the coupling to the heat bath is expressed by rapidly
fluctuating fields and the dissipation effects are expressed
by viscosity terms. In particular, this makes it easy to
analyze the effects of dissipation terms that are not related
to interactions with the heat bath.

The paper is organized as follows. In Sec. II, we discuss
the role of decoupling and dissipation in the vacuum bias-
ing mechanism. A toy model illustrating the dissipation
requirement in a solvable system is presented in Sec. III.
We illustrate in this simple case the effects of nonthermal
dissipation terms that are not related to exchanges with a
heat bath but originate, for example, from the expansion of
the system. In Sec. IV we study dissipative vacuum selec-
tion in the O�4� symmetric model in 3� 1 dimensions.
This section is divided in four subsections. We begin with a
discussion on the use of phenomenological Langevin equa-
tions. The results of our simulations are then presented in
Secs. IV B and in Sec. IV C we analyze the effect of
varying the parameters of the model. Finally, in
Sec. IV D we discuss the conditions that guarantee the
vacuum selection to be in place when all fluctuating (and
dissipative) contributions are accounted for. We end in
Sec. V with a summary and a discussion of future work.

II. DECOUPLING AND DISSIPATION

We analyze the field dynamics in a system that under-
goes a symmetry breaking transition and where different
field sectors in the system reach distinct ‘‘thermalized’’
states with some heat bath. The nature of the bath will be
characterized below. Some fields arrive at a standard ther-
malized state at the temperature of the bath after a rela-
tively short relaxation time. The remaining fields stay out
of equilibrium for a longer period, which can still be small
compared to observation times. The fields that take longer
to either thermalize or reach another type of equilibrium
state are weakly or indirectly coupled to a heat bath. We
refer to them as decoupled in a convenient loose sense that
will be made clear later. In particular, we are interested in
the situation where the decoupled fields condense follow-
ing a finite temperature phase transition. In order for this to
happen these fields must lose most of their energy, and for
this reason we will follow closely the role of dissipation.

In order to discuss a setting where this scenario can be
realized we use an O�4� linear sigma model Lagrangian,

L �
1

2
@��i@��i �


4
��i�i � v2�2; i � 1; 2; 3; 4;

(1)

to describe the propagation and self-interactions of soft
modes. For convenience, we consider �1 and �2 to be
neutral scalars and �3 and �4 to be the constituents of a
charged scalar �� � ��3 � i�4�=

���
2

p
with respect to a
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U�1� charge. For concreteness let it be U�1�EM. Therefore,
�� is coupled to a bath of photons while the neutral scalars
are not. In a more comprehensive analysis, the effects of
the fluctuations from the hard modes of the scalar fields are
also to be taken into account. We will discuss their effects
in the next sections.

By keeping the model simple we can aim at a better
understanding of how a small dissipation can play a role in
selecting the vacuum. This is the effect we wish to empha-
size, and alongside we lay the conditions under which the
vacuum manifold shows the selectiveness that favors the
formation of such embedded structures.

Throughout this paper we work under the assumption
that the coupling between the charged scalars and the
photon bath is much stronger than the scalar self-coupling.
Without this assumption leading to an effective separation
of scales no nontrivial selection seems to take place. With
these conditions, we expect the charged scalars to thermal-
ize ‘‘quickly.’’ Their relaxation time sets the scale for what
we will refer to as a quick thermalization time. In practice,
at the observation scale, the charged scalars can be said to
remain in equilibrium. The neutral scalars have of course a
longer thermalization time and are at least close to thermal
equilibrium.

One of our aims is to express quantitatively the distinc-
tion between the steady state reached by the neutral and the
charged fields. If the decoupled fields have no direct pro-
cess to dissipate their energy, they reach a thermal equi-
librium state at the temperature T of the photon bath. This
thermalization occurs because the decoupled fields are not
completely cut off from the photon bath due to the quartic
scalar self-interaction. The rate at which the neutral fields
thermalize depends on the strength of . Elsewise, if they
dissipate due to the expansion of the system as it cools, as
in the early universe or heavy-ion collisions, the steady
state they reach is ‘‘colder.’’ This effect leads to their
selective condensation and suggests the use of an effective
temperature Teff as a way to parametrize the distinct steady
states. We will present a detailed discussion of Teff in the
next sections.

Before ending this section we refer the reader to the
further underlying view that the Lagrangian (1) is better
suited for the broken phase. Our model can be seen as a
sector in a larger theory. For instance, above Tc other
mediating bosons that decouple at the transition can be
responsible for maintaining all the scalars in thermal equi-
librium. A known example that inspires this view can be
found in the electroweak transition. In this case the W- and
Z-bosons become massive below the transition while the
photons remain massless through the transition.

Renormalization due to radiative and thermal correc-
tions coming from hard modes could also have been
included in (1) but this should not have a major effect in
our phenomenological analysis. More important are the
fluctuation-dissipation effects coming from the scalar
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hard modes. They do indeed have some effect in the
main simple picture laid down in this section but they do
not change the outcome if the relative magnitudes of the
couplings remains as assumed above, as we show at the end
of the next section.

Before we address the dynamical description of the
model described by (1) we look at a simple two particle
system where we can perform analytic calculations that
highlight the main features of the ‘‘vacuum biasing.’’
III. BIASING IN A TWO FIELD SYSTEM IN ZERO
DIMENSIONS

In this section we illustrate how decoupling and dissi-
pation combine to bias the distribution of energy in a toy
system. We have two coupled one-dimensional oscillators
of unit mass and restoring constants m2

0 and m2
c.

Alternatively, they can be interpreted as two interacting
fields in zero spatial dimensions. The system can be seen as
a first approximation for an effective model for the zero
Fourier components of a field theory in three spatial di-
mensions. It is a simplified version of the O�4� model
introduced in the previous section, but now with only
two fields. Here one ‘‘charged’’ field �c is coupled to a
heat bath, and the other ‘‘neutral’’ field �0 is not coupled.

We adopt a Langevin description, in analogy to what we
will do in the next section for the system described by (1),
where the coupling to the bath is represented by a random
rapidly varying field. In a canonical form the equations of
motion are

_� 0 � �0 _�0 � �	0�0 �m2
0�0 �

@V
@�0

_�c � �c _�c � �	c�c �m2
c�c �

@V
@�c

� �:
(2)

The interaction between the fields is contained in the
potential V��0; �c� and the dissipation is expressed by
the viscosity terms involving the coefficients 	0 and 	c.
The interaction of the charged field, �c, with the ‘‘photon’’
bath is modeled by the random field �,

h��t�i � 0; h��t���t0�i � ���t� t0�; (3)

where � is the variance of the Gaussian white noise. This
ensemble of fields can be described by the probability
density ���0; �0; �c; �c; t�. The evolution of this distribu-
tion is governed by the Fokker-Planck–type equation,

@�
@t

� ��0
@�
@�0

�

�
m2

0�0 �
@V
@�0

�
@�
@�0

� 	0
@��0��
@�0

� �c
@�
@�c

�

�
m2

c�c �
@V
@�c

�
@�
@�c

� 	c
@��c��
@�c

�
�

2

@2�

@�2
c
: (4)

For any physical observable A��0; �0; �c; �c� we have
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hAi�t�

�
Z
d�0d�0d�cd�cA��0;�0;�c;�c����0;�0;�c;�c;t�;

(5)

and its time derivative can be calculated using Eq. (4) and
integrating by parts. The equation of motion for hAi then
reads

@hAi
@t

�

�
�0

@A
@�0

�
�

�
@V
@�0

@A
@�0

�
�m2

0

�
�0

@A
@�0

�

� 	0

�
�0

@A
@�0

�
�

�
�c

@A
@�c

�
�

�
@V
@�c

@A
@�c

�

�m2
c

�
�c

@A
@�c

�
� 	c

�
�c

@A
@�c

�
�

�

2

�
@2A

@�2
c

�
:

(6)

In equilibrium we have @thAi � 0 for all physical observ-
ables A. One way of obtaining a full description of the
system in equilibrium is to obtain all the expectation values
of all combinations of powers of the four quantities �0, �0,
�c and �c. These are the N-point functions for (classical)
fields in equilibrium. It is easy to see that, except for the
simple case of quadratic potentials (where we expect the
system to be solvable), these equations mix correlations of
powers of different degrees in the dynamical variables.
This leads to an infinite number of linked equations similar
to the Dyson-Schwinger hierarchy. Here we will consider
only the quadratic case and take the interaction potential to
be

V��0; �c� � �0�c: (7)

This choice will enable us to carry an analytic treatment.
For the case with a quartic interaction �2

0�
2
c we have

checked that the main features of the results are the same.
For the potential (7), the second order correlation func-

tions with i � j satisfy the following system of 10 equa-
tions,

�2
i ! h�i�ii � 0; �0�c ! h�c�0i � h�0�ci � 0

�2
i ! h�i�ji �m2

i h�i�ii � 	ih�
2
i i � �i2�=2 � 0

�0�c ! �h�c�ci � h�0�0i� �m2
0h�0�ci �m2

ch�c�0i

��	0 � 	c�h�0�ci � 0

�i�i ! h�i�ji �m2
i h�

2
i i � 	ih�i�ii � h�2

i i � 0

�i�j ! h�2
i i �m2

j h�i�ji � 	jh�i�ji � h�i�ji � 0;

(8)

which is closed because it involves only expectation values
of degree two in the dynamical variables. After some work
we can solve it obtaining the average for the momentum of
the decoupled field,
045017
h�2
0i �

2�

2

�
	0	c�m2

c �m2
0�

2

�	0 � 	c�
� 2�	0 � 	c�

� 	0	c�	cm
2
0 � 	0m

2
c�

�
�1
:

In the simpler case when m0 � mc � m this reduces to

h�2
0i �

2�

2�	0 � 	c��
2 �m2	0	c�

: (9)

The other momentum is related to this one by

h�2
ci �

�

2	c
�

	0

	c
h�2

0i: (10)

Next we assume that the dissipation for the coupled field
and the amplitude of the noise obey the fluctuation-
dissipation relation, � � 2	cT, where T is the tempera-
ture of the bath. We now define the effective stabilization
temperatures

Teff � h�2
0i �

2	cT

�	0 � 	c��2 �m2	0	c�
;

T0
eff � h�2

ci � T �
	0

	c
h�2

0i;
(11)

for the neutral and charged field, respectively. In the case of
zero dissipation coefficient for the neutral field, 	0 � 0,
not only these temperatures are the same but also Teff �
T0
eff � T for any finite nonvanishing values of . On the

other hand, when 	0 > 0 the effective temperatures of the
asymptotic states of each field are different which justifies
using the quantities defined by (11) as convenient parame-
ters to express quantitatively the distinct steady states. We
note that similar definitions have been introduced in glassy
systems [9], however the Teff we use here are constants as
they refer to steady states after relaxation instead of long
lasting transient states.

In this toy model the biasing mechanism corresponds to
an unequal distribution of the kinetic energy between the
different types of fields. The main features that character-
ize it are easy to identify from Eqs. (11). To start with, note
that if 	0  	c, T0

eff is hardly affected with relation to its
value at 	0 � 0, whereas Teff can be noticeably reduced,
provided 2 & m2	0	c. When these two conditions are
simultaneously satisfied even a very small value of the ratio
	 � 	0=	c can cause a large effect on the asymptotic
configuration of the uncharged fields �0. We have verified
that simulations for a model with quartic self-interactions
indicate the existence of analogous relations.

The reason why a small value of 	 is able to lead to a
qualitatively different behavior is the existence of a singu-
larity to which we now turn our attention. Consider the two
sequences of limits,  ! 0 followed by 	0 ! 0 and its
reverse when 	0 is taken to zero first. In the former we have
Teff ! 0 and T0

eff ! T, and in the latter both Teff and T0
eff

approach T. Clearly, the phenomena that we are studying
-4
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FIG. 1. The effective stabilization temperatures for each of the
fields as a function of the viscosity coefficient 	0. The curves
shown are for three values of  and m � T � 	c � 1.
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corresponds to a regime along the first sequence of limits
where the two types of fields are weakly coupled to each
other but a dissipation in the neutral field prevails even
after the self-coupling is ‘‘switched-off.’’ Therefore, we are
not only considering 	 small but also  has to be ‘‘small’’
in the sense that

2

m2	2
c

& 	 �
	0

	c
 1: (12)

We might expect that the physical origin of the sizable
effect for small 	 follows from 	0 not being associated
with fluctuation-dissipation effects. But this by itself is not
sufficient to explain what we observe. Equally important is
the existence of at least two scales in the problem. In order
to clarify this point let us consider the case when the
neutral field also evolves under the effect of fluctuations.
To this end we modify the second equation in (2) which
now reads

_� 0 � �	0�0 �m2
0�0 �

@V
@�0

� �0; (13)

where the dissipation coefficient 	0 is now decomposed
into two terms, 	0 � 	ext

0 � 	fl
0 . The first term corre-

sponds to an external source of dissipation while the sec-
ond one is related to fluctuating forces according to a
standard fluctuation-dissipation relation,

h�fl
0 �t�i � 0; h�fl

0 �t��
fl
0 �t

0�i � �0��t� t0�; (14)

where �0 � 2	fl
0T0, with T0 the temperature of the bath

coupled to the neutral field. It is natural in a first approxi-
mation to take T0 � T as we should not expect a selective
behavior for the high energy modes. Moreover, this situ-
ation corresponds to a case where biasing is less favorable.
The strength of the coupling of each field to the heat bath
reflects itself in the relative magnitudes of the dissipation
coefficients. This matter will be made clearer in the full
O�4� model.

A generalization of the calculation leading to (11) in-
cluding the noise for the neutral fields and with T0 � T
gives

T0
eff � Teff

T
�

	ext
0

	0
f�m2	c	0=

2�; (15)

with f�x� � x=�1� x�, from which we see that the effec-
tive temperatures of the steady states can still differ sub-
stantially if in addition to (12) we have 	ext

0 � 	0. These
combine to guarantee that the argument of f is large there-
fore assuring that f� 1. Under these conditions T0

eff �
Teff � T.

Note that an external dissipation should for consistency
affect both fields. The inclusion of such nonthermal dis-
sipation in the equations of the charged fields adds a new
term in the right-hand side of (15), analogous to the present
one, where for instance the prefactor is now 	ext

c =	c in-
stead of 	ext

0 =	0. As 	ext
c � 	ext

0 this leads to a small,
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O�	0=	c�, reduction in the thermalization temperature of
the charged fields and no qualitative change.

Therefore, it is justifiable, under the requirements at the
end of the last paragraph together with (15), to neglect the
external dissipation contribution to the charged field as
	ext
c � 	ext

0  	c. It is the combination between the pres-
ence of an external source of dissipation and the existence
of two scales, say 	fl

c and 	fl
0 , that is behind the physical

origin of the effect we are analyzing. The effect is only
noticeable when the external dissipation is at least compa-
rable to the smaller scale. In the next section we carry out a
more explicit discussion on the role of these scales.

We conclude the study of this toy model with a couple of
graphical illustrations of the distinct steady states and their
associated relaxation times. For convenience we go back to
the starting study case, �0 � 0 and 	0 � 	ext

0 , with the
system governed by Eqs. (2).

Equations (11) are represented graphically in Fig. 1 for
three different values of . Clearly, as 	0 increases from
zero, Teff decreases from the starting value T. The drop in
temperature is more pronounced when the self-coupling is
smaller. Teff approaches negligible values for 	0 * 	c and
sufficiently small  & 0:2. This simply reflects that when
the indirect interaction of �0 with the heat bath is weaker
this field dissipates its energy more efficiently. On the other
hand, the field �c because of its direct coupling to the heat
bath remains ‘‘hot,’’ i.e. T0

eff stays close to T, but the larger
 is, the more it deviates from T. This deviation is a natural
consequence of the direct dissipative viscosity term for �0

which is not balanced by any fluctuating effects. Although
not shown in Fig. 1 we have from (11) that when  ! 1
the effective temperatures become identical for any value
of 	0.
-5
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The relaxation times for the decoupled fields for various
values of the self-coupling are shown in Fig. 2. The results
were obtained by determining the eigenvalues of the ho-
mogeneous version of Eqs. (2) (i.e. ignoring the noise
term). The several relaxation time scales for the system
are proportional to the inverse of the real part of these
eigenvalues. In Fig. 2 we show for each value of 	0 the
largest of these time scales, which we interpret as the
equilibration time for the uncoupled fields. We also
checked that for all values of 	0 and  there is one
eigenvalue leading to a relaxation time close to 2:0, corre-
sponding to the charged fields. When the two values of the
dissipation are the same, for 	0 � 	c � 1, the two time
scales coincide as expected. The rapid slowing down in the
rate at which �0 stabilizes as  decreases shows a depen-
dence closer to �2 as we would expect. This naive ex-
pectation derives from the effective noise term O�� that
the interacting potential induces in the equation for �0 in
the equations of motion (2).

In summary, by looking at a two field toy model we
observe an unevenness in the way the kinetic energy is
distributed between the charged and the neutral field. The
conditions for this biasing are possible because of the
presence of an external dissipation term and different
strengths for the coupling of the fields to the heat bath.
When the field with the weakest coupling to the bath is
decoupled, we recognize that this counterintuitive behavior
is due to a singularity in the limit of vanishing external
dissipation. In a realistic situation the weakest coupling to
the bath should not be neglected. The singular gives place
to a two scale regime and the biasing is expect to occur
when 	ext extracts energy at least at a rate comparable with
the input from the bath coming from the weaker coupling.
In the next section we will see how a similar effect con-
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tributes to a vacuum selection following a symmetry break-
ing phase transition.
IV. VACUUM BIASING IN THE O�4� MODEL

A. The use of the Langevin approach

We now return to the model described by the Lagrangian
(1) and we will study its dynamical evolution under the
Langevin approach already used in Sec. III. In order to
simulate the dynamics of the fields, we use phenomeno-
logical Langevin equations

�
�@2t �r2� ��2 � 

X4
k�1

�2
k � 	i@t

�
�i � �i; (16)

with �2 � v2, v being the T � 0 vacuum expectation
value, and where 	i and �i are, respectively, the viscosity
coefficients and the Gaussian noises. For the fields that
couple to the photon bath and that are assumed to thermal-
ize at its temperature T, we have

h�i� ~x; t��j� ~x0; t0�i � �i�ij��3�� ~x� ~x0���t� t0�; (17)

where #�i � 2	i, with # � 1=T, according to the
fluctuation-dissipation theorem. Below Tc this relation is
used only for i � 3; 4, while in the disordered phase it is
assumed for all the fields.

In the ordered phase we consider the neutral fields to be
decoupled from the bath, �i � 0, but let 	i � 0. The non-
vanishing value of these coefficients are due to an external
source of dissipation. An expansion of the system, as in the
early universe, is a possible origin for this type of dissipa-
tive term. In fact, this has been the main motivation behind
this study. The toy model in the previous section showed us
that even a small external dissipation could give rise to
non-negligible effects. In cosmology we expect a similar
situation (except at very early times) in the sense that the
dissipation due to the expansion of the universe is much
smaller than the one associated with the charged fields
which is due to the interactions with the photon bath.

It is in place to say something about the advantages and
limitations of using the Langevin equations (16) at this
stage. These equations describe the classical out-of-
equilibrium evolution of a system of coupled fields.
Therefore, at most, it provides effective equations for the
long-wavelength modes of quantum fields with large oc-
cupation number. For this reason it is often used as a
phenomenological set of equations to study close-to-
equilibrium effects near phase transitions [10]. The use
of the relativistic form of these type of equations has
been motivated by cosmological applications [6,7].

The relative simplicity of these equations is their main
asset. We take the noise to be white and the dissipative
kernel local both in space and time. Nevertheless, they
provide a good starting set of equations to look for quali-
tative answers to questions in close-to-equilibrium dynam-
-6



4 5 6 7 8 9 10
β

0

0.2

0.4

0.6

0.8

1

O
rd

er
 p

ar
am

et
er

instantaneous
exponential

power law

<|φ3φ4|>

<|φ1φ2|>

~

FIG. 3. Diagram showing the variation in the order parameter
as the system is cooled across Tc. We use  � 1 and a 503 box.
We show curves for three different decouplings: instantaneous,
exponential and power law.
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ics provided one keeps a careful perspective of its short-
comings. This is the approach we take here.

The shortcomings of Eqs. (16) are best understood when
a more systematic derivation of the effective out-of-
equilibrium dynamics from first principles is carried out
[11–13]. The phenomenological approach to the study of
hot non-Abelian plasmas provides also useful insights
[14,15]. There are, for instance, the questions on whether
the origin of the noise is external or internal [13], or that the
Langevin approach is only reliable near thermal equilib-
rium when a quasiparticle type of approximation can be
justified. Let us say something briefly on the second issue.

One of the safest ways of understanding the regimes
where a Langevin description applies in quantum field
theory is to start from the Kadanoff-Baym equations [16]
and work out under which conditions these equations can
be interpreted as the result of Langevin processes [17]. The
high temperature limit is a well established condition and is
naturally implicit in (16) as this is an effective equation for
long-wavelength modes, k  T. The use of classical equa-
tions is also justifiable by the more recent investigations on
the reliability of the classical field theory limit to the
dynamics of quantum fields out of equilibrium [8,18,19]
at high T or near Tc.

B. The simulations

We use a discretized version of (16) in three-
dimensional square lattices with 503 to simulate the evo-
lution of the O�4� model (1). A leap-frog algorithm with
time step �t � 0:05 is used. Larger lattices of 1003 have
been used to verify the stability of our results. A Gaussian
random number generator is used for the rapidly changing
fluctuations. All quantities are measured in units of the
T � 0 vacuum expectation v. The dimensionless quanti-
ties are identified with a tilde. For example, ~v � 1 and ~# �
v=T. When choosing the lattice spacing we need to ensure
that the modes with wavelength longer than �T�1 are not
cut off. In our runnings merely for reference we took
physical scales from the chiral symmetry breaking effec-

tive mean field model. By using a lattice spacing f�x �
0:25 for v � 93 MeV we can work up to temperatures of
approximately T � 350 MeV.

We run our simulations for successive temperatures of
the heat bath determined by �� � 2	�T, the amplitude
for the noise of the charged scalars. Starting from a tem-
perature T > Tc, we bring down the temperature across Tc.
While in the disordered phase all the fields are taken to be
in contact with the heat bath. It is only for T < Tc, when
the vacuum expectation value starts to increase, that the
neutral fields are decoupled.

In Fig. 3, we plot the order parameters for the conden-
sates of neutral and charged scalars against the inverse
temperature #. These are, respectively, hj�1�2ji and

hj�3�4ji, where hj�i�jji �
������������������������������������������P

n�i;j�
1
V

R
V �n�x��2

q
are
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averages over the entire lattice. As the details of the
decoupling of the neutral fields are not known, we show
the curves for three different types of decoupling. The label
of instantaneous, exponential and power law refer to the
way the variance �0 � �0�T� approaches zero starting
from its value at the disordered phase as T continues to
decrease below Tc. For the runnings in Fig. 3, the values of
all the viscosity coefficients 	i are kept the same for all the
scalars. The different decouplings do not have an effect on
the final values of the order parameters which always favor
a nonvanishing value for hj�1�2ji. This shows a bias for
the condensation of the neutral fields resulting from the
relative large value of the ratio between the viscosity
coefficient of the neutral by the charged scalar. Here we
used 	0=	� � 1 to emphasize the case when the conden-
sation of the neutral sector is strongly favored.

For the large value of 	0 used in the simulations for
Fig. 3, the neutral and the charged scalars have an equally
effective channel to cool as the temperature decreases.
However, the fluctuations coming from the interaction
with the heat bath have the effect of slowing down the
dissipation of the charged fields. This will favor the neutral
fields to roll down more effectively to the bottom of the
potential and condense.

The neutral fields are not blind to the photon bath due to
the scalar self-coupling. They dissipate through the viscos-
ity term but they gain energy via the scalar self-coupling.
However, as long as the effects of fluctuations hitting the
neutral modes is small and any increment of energy can
quickly be dissipated, which occurs when  is not too large
and 	0 not too small compared to 	�, the neutral scalars
continue to monopolize the vacuum. As we discuss next
the situation might change as 	0 decreases.
-7



TABLE I. The table shows the values of hj�1�2ji and
hj�3�4ji. The three values of ~# correspond, respectively, to a
temperature above, near and below Tc.

 � 4 ~# � 4 ~# � 6 ~# � 9

~	0 � 1� 10�4 0.011 0.011 0.113 0.046 0.607 0.047
~	0 � 5� 10�5 0.011 0.011 0.072 0.048 0.586 0.123
~	0 � 2� 10�5 0.011 0.011 0.057 0.046 0.552 0.225

 � 12

~	0 � 2� 10�4 0.008 0.008 0.198 0.089 0.621 0.126
~	0 � 1� 10�4 0.008 0.008 0.135 0.157 0.604 0.185
~	0 � 5� 10�5 0.008 0.008 0.108 0.165 0.623 0.111

 � 20

~	0 � 5� 10�4 0.007 0.007 0.292 0.071 0.649 0.098
~	0 � 2� 10�4 0.007 0.007 0.133 0.250 0.639 0.140
~	0 � 5� 10�5 0.007 0.007 0.074 0.278 0.650 0.078
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FIG. 5. Diagram showing the kinetic energy of the scalar fields
for a single value of 	 � 	0=	c and three different values of .
For small values of  the neutral scalars approach a steady state
at a very slow rate.
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The curves in Fig. 4, where we set 	0 � 0 but all other
parameters are kept the same as in the runnings used for
Fig. 3, show that in this case the charged scalars condense.
This suggests that as 	0 is decreased below some critical
value the charged fields condense instead of the neutral
ones. This results in a ‘‘superconducting’’ background
where the photons are massive which clearly violates our
working assumption of having a thermalized photon bath.
Therefore, we conclude that the condensation of the
charged scalars is an artifact of our simulations in this
region of the parameter space of the model.

From the simulations we have discussed, we anticipate
the existence of a critical value 	cr for 	 � 	0=	� in the
interval 0<	cr < 1. A precise determination of 	cr is
numerically delicate and at this phenomenological stage
of our study it does not justify the dedicated effort it
requires. For certain this critical value indicates the end
of the validity of the context of our working conditions.
This, we expect, indicates a qualitative change on the
nature of the condensation.

The region of critical 	 is characterized by competing
domains of neutral and charged scalars, which might
present analogies to disoriented chiral condensates [4]. In
this region we have estimated the value of 	cr for varying
self-coupling and present them in Table I. Although the
dependence with  is difficult to establish, our results give
an indication that, as  is increased by approximately 1
order of magnitude,  � 4 ! 20, the critical value of 	
also increases by a similar magnitude, 	cr � 10�5 !
10�4. This is the behavior we would naively expect from
the fact that the scalar self-coupling is also a measure of the
extent to which the decoupled fields have indirect contact
with the photon bath. Finally, we remark that the results in
the Table I for ~# � 9 might already fall outside the region
where a classical description based on a Langevin ap-
045017
proach is not reliable [8] as the system is no longer close
to Tc.

C. Interplay between parameters

It is useful to analyze the interplay between the various
parameters in the model. To this end, we look at the kinetic
energy of each set of fields, the coupled and the decoupled.
Parallels with the toy model studied in the previous section
will also be easier to draw. With this study we aim at
learning how thermalization is affected by the ratio of the
viscosity coefficients 	 � 	0=	� and the scalar coupling
.

In Fig. 5 the time evolution of the kinetic energies
for both types of scalar fields are plotted. The parameters
-8
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~	0 � 0:005, ~	� � 1 and ~# � 6:5, all in units of the T � 0
vacuum expectation value v in a 1003 box, are the same for
all the curves, whereas we use three different values for .

The equilibrium curve corresponds to the coupled fields
which thermalize quickly in the time scales displayed in
our plot. Of course quickly here means that the relaxation
times for the decoupled fields are clearly longer than for
the coupled ones. This occurs for all the parameter values
shown. We verified that the temperature for the equilibrium
curve is to a very good approximation consistent with the
equipartition relation and therefore independent of . The
external dissipation does not give origin to noticeable
deviations from equipartition, as in the toy model, because
of the present large number of degree of freedom.

The most interesting feature of Fig. 5 is the  depen-
dence of the asymptotic values for the kinetic energy of the
decoupled fields. As in (11) we can interpret these quanti-
ties as effective equilibration temperatures Teff . We ob-
serve that the larger  is, the faster the decoupled fields
approach a steady state. This is to be expected as the
decoupled fields interact indirectly with the photon bath
via the quartic scalar coupling. It explains not only the
shorter relaxation times for larger values of  but also the
higher Teff values which get closer to the temperature of
the bath.

We verified that the value of the asymptotic kinetic
energies is independent of the initial conditions. In Fig. 5
the starting kinetic energy of the decoupled fields is a third
of the equipartition value. It is therefore safe to conclude
that for weak scalar couplings the equilibrium state should
be quite distinct from the equipartition thermalized state.

In Fig. 6 we complement the curves shown in Fig. 5 by
keeping now the same scalar coupling for all the curves,
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FIG. 6. Diagram showing the kinetic energy of the scalar fields
for a single value of  and four different values of 	 � 	0=	c.
The slowest relaxation time for the neutral fields occurs in the
	 � 0 limit of no external dissipation.
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here we use  � 8, and vary 	0, or equivalently 	 as we
again set 	� � 1. We observe that the larger the viscosity
coefficient 	0 the faster the decoupled fields equilibrate.
On the other hand, as 	 increases Teff shifts away from T.
The asymptotic steady state approaches the equilibrium
curve only in the opposite limit, i.e. when the external
dissipative channel is ‘‘switch off.’’ In this case, the kinetic
energy does eventually reach the value expected by equi-
partition but at a clearly slow rate set by the magnitude of 
via the fluctuations mediated by the scalar coupling.

D. Coupling the decoupled fields

We end this section with a discussion on the effects of
introducing fluctuation terms to the evolution equations for
the decoupled fields in analogy to what we have done in
(13) for the toy model. The Langevin equations already
include indirect interactions of the decoupled fields with
the bath. However, one may still wonder if results might
change when we include a more direct source of fluctua-
tions. The most natural reason for introducing additional
fluctuating forces is the interaction between the soft modes
described by the Langevin equations and the associated
scalar hard modes which should be present for both types
of fields.

The relative strength of the different interactions is
central here. Let g denote the gauge coupling. Then our
working assumption that the scalar self-coupling is weak
compared to the coupling to the photon bath means g � .
In a simple perturbative estimate this implies that 	� �
	fl
0 . Qualitatively this relation is expected to hold at very

high temperatures but more reliable nonperturbative state-
ments require more dedicated simulations.

In order for the external dissipation to have observable
effects it cannot be negligible with relation to both thermal
dissipation coefficients. In our simulations this is trivially
the case as 	� � 	ext

0 � 	0, but 	ext
0 >	fl

0 � 0. The first
of these two inequalities justifies neglecting nonthermal
terms in the equations for the coupled scalars. In general,
the biasing should occur as long as 	ext

0 * 	fl
0 � 0. Let us

see how our analysis supports this view.
Looking back at Eq. (15), we see that in the toy model

the neutral field dissipation must be external for the effec-
tive temperatures of the asymptotic states to be different. A
similar result applies to the O�4� model where no vacuum
selection occurs unless there is an external dissipation.
From Fig. 6 we recognize that it is necessary for the
dissipation coefficient 	0 to have a nonthermal external
component. Clearly if 	0 had a purely thermal origin the
kinetic energy of the neutral field would always asymptoti-
cally approach the equilibrium curve. This is expressed in
the 	 � 0 curve in Fig. 6 as thermal dissipative effects are
implicitly already present due to the scalar self-coupling.
Adding an explicit coupling to a heat bath would only have
the effect of decreasing the relaxation time.
-9
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V. SUMMARY AND DISCUSSION

In this paper we discussed the conditions that cause a
selective condensation of neutral fields in an O�4� sym-
metric scalar field sector of a field theory in three dimen-
sions when this sector also includes charged fields. In
particular, we studied a regime in the vicinity of a symme-
try breaking transition where the interactions with a ther-
malized photon bath can be simulated by a
phenomenological Langevin approach.

We show that under quite general conditions a nonther-
mal dissipation in the evolution of the neutral fields effec-
tively reduces the vacuum manifold of a system described
by an O�4� scalar model from S3 to S1, above a small
dissipation threshold. From this analysis we identify the
conditions that favor the formation and stabilization of
embedded defects as first argued by Nagasawa and
Brandenberger [1].

The vacuum manifold reduction is due to the existence
of different asymptotic steady states for the two types of
scalar fields considered. This effect is caused by an exter-
nal source of dissipation, in the sense that it does not arise
from fluctuations resulting from interactions with the pho-
ton bath. The neutral field steady state is characterized by
an effective temperature Teff < T, colder than the photon
bath, and this is what leads to their selective condensation.

The remarkable feature is that even a small amount of
external dissipation can be sufficient to cause qualitatively
distinct effects, such as the vacuum selection. Small here is
in relation to the dominant dissipation terms in the charged
scalar field sector, which is related to the interaction with
the photon bath by the fluctuation-dissipation theorem.
This is counterintuitive. In principle, one would be inclined
to neglect the possible effects of such a small amount of
dissipation. For instance, the asymptotic state of the
charged field sector is hardly affected by the external
dissipation. What changes things is the existence of a small
indirect thermal dissipation. Then the external dissipation
needs at least to be of the order of the much smaller thermal
dissipation coming from the indirect coupling of the neu-
tral scalars with the heat bath.

We can naturally generalize the system to a more real-
istic one. First, the external dissipation is considered in
both scalar field sectors. However, for the charged field
sector this leads only to negligible corrections. Second, the
045017
neutral scalars are coupled directly to the heat bath
although with a much weaker coupling than the charged
scalars so that the resulting thermal dissipation for the
former does not dominate over the nonthermal external
dissipation. Under these general conditions our results on
vacuum selection are not qualitatively changed.

Finally, we note that possible corrections to the scalar
fields potential coming from the interactions with the
gauge bosons should not play an important role for our
analysis. We know from the work of Nagasawa and
Brandenberger [1] that the asymmetry created by the de-
coupling from the neutral fields from the photon bath
biases the effective potential in a way that stabilizes non-
topological defects when immersed in a photon plasma.
Moreover, equilibrium thermal corrections to the potential
tend to reduce the instability of these embedded configu-
rations [20]. Therefore, at a perturbative level we do not
expect corrections to counteract the vacuum selection we
analyze here. A less investigated difficulty, but potentially
an important one, is the contribution from very soft pho-
tons. Because of infrared divergences reliable corrections
similar to those in [11,12] are not to our knowledge cur-
rently available. More dedicated simulations including the
full dynamics of both the scalars and the gauge bosons are
necessary to clarify this problem.

The type of scenario we describe here should be relevant
for applications in the early universe where the expansion
of the universe provides a nonthermal source of dissipa-
tion. It would also be interesting to investigate if similar
effects might take place in the quark-gluon plasma where
different steady or intermediate states might coexist as in
the bottom-up thermalization in heavy-ion collision pro-
posed in [21] driven by soft gauge boson modes.
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