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We compute the next-to-MHVone-loop n-gluon amplitudes in N � 4 super-Yang–Mills theory. These
amplitudes contain three negative-helicity gluons and an arbitrary number of positive-helicity gluons, and
are the first infinite series of amplitudes beyond the simplest, MHV, amplitudes. We also discuss some
aspects of their twistor-space structure.
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I. INTRODUCTION

The computation of on-shell amplitudes in the
maximally-supersymmetric (N � 4) gauge theory
(MSYM) has proven to be a useful laboratory for devel-
oping computational techniques in perturbative gauge
theories. Explicit results for amplitudes have in turn as-
sisted the development of Witten’s recent twistor-space
topological string theory [1,2], a candidate for a weak–
weak dual to the supersymmetric gauge theory. This string
theory generalizes Nair’s earlier description [3] of the
simplest gauge-theory amplitudes. (Berkovits and Motl
[4,5], Neitzke and Vafa [6], and Siegel [7] have given
alternative descriptions of the candidate topological string
theory.)

One-loop amplitudes in the maximally-supersymmetric
theory can also be regarded as terms in a computation of
amplitudes in perturbative QCD. In particular, the ampli-
tudes where all external states are gluons can be decom-
posed into three terms, corresponding to the amplitude in
the N � 4 theory; to the contribution of a matter multiplet
in the N � 1 supersymmetric theory; and to the contri-
bution of a scalar circulating in the loop. Moreover, in
special cases, we show that coefficients of some integral
functions in N � 4 gauge theory are identical to those of
QCD.

At tree level, three infinite sequences of gluon ampli-
tudes were conjectured by Parke and Taylor [8] in the mid
1980s, and quickly proven by Berends and Giele [9].
Amplitudes with zero or one negative-helicity gluons,
and an arbitrary number of positive helicity, vanish.
Amplitudes with two negative-helicity gluons, so-called
‘‘MHV’’ amplitudes, have a very simple form.

Investigations of the twistor-space structure of known
analytic results for more complicated helicity patterns led
Cachazo, Svrček, and Witten (CSW) [10] to formulate a
new set of rules for computing tree amplitudes in gauge
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theories. These rules employ vertices that are particular
off-shell continuations of the MHV amplitudes. The verti-
ces are sewn together using scalar propagators. These rules
have made it straightforward to write down new analytic
expressions for infinite sequences of amplitudes and cur-
rents with three or more negative-helicity legs, that is
helicity configurations beyond MHV [10–14]. They have
also been used to obtain amplitudes containing a Higgs
boson coupled to QCD via a massive top-quark loop (in the
infinite-mass limit) [15] and to obtain electroweak vector
boson currents [16]. A natural question is whether one can
compute similar amplitudes at one loop, and what light
they shed on the structure of the twistor-space string dual to
the gauge theory.

The unitarity-based method [17–20] makes use of the
simple forms of tree amplitudes to produce, in turn, simple
forms for infinite sequences of one-loop amplitudes. In this
approach, we sew together products of on-shell tree am-
plitudes, and directly reconstruct Feynman integrals with
the same analyticity properties. It makes use of the (stan-
dard) cuts of amplitudes, corresponding to the absorptive
parts of amplitudes, and also introduces the nonstandard
notion of generalized cuts [20–23] which has been used
effectively in a variety of one- and two-loop calculations.
We have employed both standard and generalized cuts for
the calculations described in this paper. The unitarity-
based techniques are enhanced by combining them with
knowledge of the basis of dimensionally regularized one-
loop integral functions that can appear in the results
[17,24,25]. The basis required for one-loop N � 4
super-Yang–Mills amplitudes is reproduced in
appendix B. Knowledge of the basis reduces the problem
to one of determining the coefficients in front of the
integral functions. We have also made use of the require-
ment that the infrared divergences match the known uni-
versal form [26] for parts of the computation.
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Recently, stimulated in part by the computation by
Brandhuber, Spence and Travaglini [27] of the N � 4
MHV amplitudes from CSW diagrams [10], there has
been a great deal of progress in obtaining and analyzing
one-loop amplitudes in N � 4 and N � 1 theories using
the unitarity method and twistor-motivated ideas [23,28–
37]. These new results have also made it clear that the
simplicity of tree amplitudes is inherited by their one-loop
counterparts.

In this paper, we shall compute all next-to-MHV one-
loop n-gluon amplitudes, that is one-loop amplitudes with
three negative-helicity gluons and �n� 3� of positive-
helicity. Some of the all-n coefficients appearing in the
amplitudes were also computed elsewhere [23,31,36]
These amplitudes in N � 4 super-Yang–Mills theory
were computed previously for n � 6 in Ref. [18], and for
n � 7 in Refs. [23,32]. For these two cases, using parity
one can reduce the number of negative helicities to three or
less; hence the next-to-MHV amplitudes exhaust the set of
non-MHV amplitudes.

As a by-product of our computation, we have uncovered
new representations of the NMHV n-point tree amplitudes.
These representations arise from the required form of
infrared divergences in any one-loop amplitude [26].
These new representations suggest that there is a more
general formalism than MHV vertices for systematically
and directly generating the tree amplitudes. The equiva-
lence between the different representations appears to
require a stronger symmetry than the gauge invariance
needed to remove the CSW reference momentum.

This paper is organized as follows. In Sec. II, we de-
scribe our notation. Our calculational approach is dis-
cussed in Sec. III, with the results given in Sec. IV.
Consistency checks on the results, as well as the derivation
of a few sets of coefficients from collinear limits of ones
obtained by direct calculation, are described in Sec. V. The
new representations of n-point tree amplitudes, obtained
from the infrared-divergent terms, are presented in Sec. VI.
Finally, we discuss twistor-space properties of the box
coefficients, for NMHV and more general amplitudes, in
Sec. VII. Our conclusions and outlook are presented in
Sec. VIII. We also include two appendices. The first con-
tains an explicit demonstration that our all-n box coeffi-
cients are coplanar, as required [23,33]. The second
contains the basis of box integral functions.
II. NOTATION

We use the trace-based color decomposition [38,39] of
amplitudes. At tree level, this decomposition is,

Atree
n �fki; hi; aig�

�
X

�2Sn=Zn

Tr�Ta��1� � � �Ta��n� �Atree
n ���1h1 ; . . . ; nhn��; (1)

where Sn=Zn is the group of noncyclic permutations on n
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symbols, and jhj denotes the j-th momentum and helicity
hj. The Ta are fundamental representation SU�Nc� color
matrices normalized so that Tr�TaTb� � �ab. The color-
ordered amplitude Atree

n is invariant under a cyclic permu-
tation of its arguments.

We describe the amplitudes using the spinor helicity
formalism. In this formalism amplitudes are expressed in
terms of spinor inner-products,

hjli � hj�jl�i � u��kj�u��kl�;

jl� � hj�jl�i � u��kj�u��kl�;
(2)

where u��k� is a massless Weyl spinor with momentum k
and plus or minus chirality [39,40]. Our convention is that
all legs are outgoing. The notation used here follows the
standard QCD literature, with ij� � sign�k0

i k
0
j �hjii

� so
that,

hijiji� � 2ki � kj � sij: (3)

(Note that the square bracket ij� differs by an overall sign
compared to the notation commonly used in twistor-space
studies [1].)

We denote the sums of cyclicly-consecutive external
momenta by

K�
i...j � k�i � k�i�1 � � � � � k�j�1 � k�j ; (4)

where all indices are mod n for an n-gluon amplitude. The
invariant mass of this vector is si...j � K2

i...j. Special cases
include the two- and three-particle invariant masses, which
are denoted by

sij � �ki � kj�2 � 2ki � kj; sijk � �ki � kj � kk�2:

(5)

In color-ordered amplitudes only invariants with cyclicly-
consecutive arguments need appear, e.g. si;i�1 and
si;i�1;i�2. We also write, for the sum of massless momenta
belonging to a set A,

K�
A �

X
ai2A

k�ai : (6)

(The sets that will appear in explicit expressions will be of
cyclicly-consecutive external momenta.) For non-MHV
loop amplitudes, longer spinor strings than (2) will typi-
cally appear, such as

hi�jK6 Ajj�i and hi�jK6 AK6 Bjj�i: (7)

The simplest color-ordered amplitudes are the maxi-
mally helicity-violating (MHV) Parke-Taylor tree ampli-
tudes [8], which have two negative-helicity gluons and the
rest of positive helicity,

Atree MHV
m1m2

�1; 2; . . . ; n� � i
hm1m2i

4

h12ih23i � � � hn1i
; (8)

where m1;2 label the negative-helicity legs.
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FIG. 1. Examples of box integral functions B�i; j; k; l� appear-
ing in seven-point amplitudes; the arguments i; j; k; l are the
uncanceled propagators: (a) the one-mass box B�3; 4; 5; 6� �
F1m�s34; s45; s345�, (b) the ‘‘easy’’ two-mass box B�3; 4; 6; 7� �
F2me�s345; s456; s45; s712�, (c) the ‘‘hard’’ two-mass box
B�3; 5; 6; 7� � F2mh�s56; s345; s712; s34�, and (d) the three-mass
box B�2; 4; 6; 7� � F3m�s671; s456; s71; s23; s45�.

FIG. 2. A generalized triple cut. The three propagators cut by
the dashed lines are required to be ‘‘open’’.
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For one-loop amplitudes, the color decomposition is
similar to the tree-level case (1) [41]. When all internal
particles transform in the adjoint representation of SU�Nc�,
as is the case for N � 4 supersymmetric Yang–Mills
theory, we have

A1�loop
n �fki; hi; aig� �

Xbn=2c�1

c�1

X
�2Sn=Sn;c

Grn;c���An;c���;

(9)

where bxc is the largest integer less than or equal to x. The
leading color-structure factor

Gr n;1�1� � NcTr�Ta1 � � �Tan�; (10)

is Nc times the tree color factor. The subleading color
structures are given by

Gr n;c�1� � Tr�Ta1 � � �Tac�1�Tr�Tac � � �Tan�: (11)

Sn is the set of all permutations of n objects, and Sn;c is the
subset leaving Grn;c invariant.

The one-loop subleading-color partial amplitudes are
given by a sum over permutations of the leading-color
ones [17]. Therefore we need to compute directly only
the leading-color single-trace partial amplitudes An;1.

The N � 4 SYM amplitudes may be expressed as a
sum of scalar box integrals I4, multiplied by coefficients
which are rational functions of spinor products [17]. It is
convenient to multiply these integrals by suitable dimen-
sionful combinations of kinematic invariants in order to
obtain ‘‘box functions’’ F whose series expansions in �
only contain logarithmic or polylogarithmic dependence
on the kinematic invariants. The necessary box functions
F4m, F3m, F2mh, F2me and F1m (and for n � 4, F0m), are
listed in appendix B. The kinematics of each box function
appearing in an n-point amplitude is determined by can-
celing �n� 4� propagators from the n-point diagram with
external legs in the order 1; 2; 3; . . . ; n. In Ref. [23] we
labeled the box integrals for n � 7 by a triplet of integers,
say �i0; j0; k0�, corresponding to the three propagators can-
celed from the heptagon diagram with external legs in the
order 1; 2; 3; . . . ; 7. This labeling scheme becomes very
cumbersome for discussing the all-n case, since the num-
ber of integers required grows with n. Here we therefore
choose to label the integrals, and their kinematic coeffi-
cients, by a quartet �i; j; k; l� of distinct integers, corre-
sponding to the four uncanceled propagators. In the seven-
point case, this quartet is the complement of the triplet
�i0; j0; k0� used in Ref. [23], fi; j; k; lg [ fi0; j0; k0g �
f1; 2; 3; 4; 5; 6; 7g. See Fig. 1 for examples of this labeling.
(We also use the notation B�i; j; k; l� for the labeled box
functions, instead ofF�i; j; k; l�, in order to avoid confusion
with the twistor-space colinear operator Fijk discussed in
Sec. VII A.)

We write the N � 4 leading-color partial amplitude as
[17,24,25]
045014
AN�4
n;1 � iĉ!��2��

X
i;j;k;l

cijklB�i; j; k; l�; (12)

where cijkl is the kinematic coefficient and

ĉ ! �
1

�4��2��
!�1 � ��!2�1 � ��

!�1 � 2��
(13)

is a ubiquitous prefactor, and ��2�� is the trivial scale
dependence of all dimensionally-regulated one-loop am-
plitudes. While the N � 4 theory is ultraviolet-finite, on-
shell amplitudes still have infrared divergences which are
also regulated dimensionally, and sneak in a dependence
on �.

For a given helicity amplitude, the number of box func-
tions, and box coefficients, is the number of unordered
quartets of distinct integers �i; j; k; l� with each integer
running from 1 to n, and all four unequal. This number is
just �n4�. These include,
(i) o
-3
ne-mass boxes shown in Fig. 1(a) (n boxes),

(ii) t
he easy two-mass boxes shown in Fig. 1(b), plus

cyclic permutations (n�n� 5�=2 boxes in total),

(iii) t
he hard two-mass boxes shown in Fig. 1(c) (n�n�

5� boxes),

(iv) t
he three-mass box shown in Fig. 1(d) (n�n� 5��

�n� 6�=2 boxes).
We take the three negative-helicity gluons to be labeled
by m1; m2; m3.
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III. CALCULATIONAL APPROACH

Computing an infinite series of amplitudes would re-
quire computing an infinite number of Feynman diagrams.
The unitarity-based method, however, can reduce such a
computation to a finite one. We use it.

In the unitarity-based method, we reconstruct a loop
amplitude from tree amplitudes by requiring that internal
propagators go on shell. Letting two propagators go on
shell corresponds to extracting the absorptive parts, which
are just phase-space integrals over products of tree ampli-
tudes. In most cases it is convenient to also use generalized
cuts [20–23], where multiple propagators go on shell, such
as the triple cut shown in Fig. 2. Taking a generalized cut
corresponds to extracting those contributions to a loop
amplitude where all cut propagators are required to be
present. The generalized cuts have the property of reducing
the building blocks of loop computations to the simplest
possible set of tree amplitudes. They can even reduce
higher-loop calculations to integrals over products of tree
amplitudes [20,22]. In all cases, one reconstructs the loop
integrals giving rise to the required ordinary or generalized
cuts. In the present calculation, that only requires identify-
ing the appropriate integral in the basis set.

Our coefficients were entirely obtained from the gener-
alized triple and quadruple cuts by augmenting them with
infrared consistency conditions as well as collinear and soft
behaviors. The soft and collinear limits allow us to obtain
unknown coefficients from explicitly computed ones.
When required infinite series of tree-level amplitudes are
known, the unitarity method enables us to compute infinite
series of one-loop amplitudes. The combination of the
various methods allows us to give explicit formulæ for
all coefficients in NMHV n-point amplitudes.

In general, we must compute these cuts inD dimensions.
For one-loop amplitudes in supersymmetric theories, how-
ever, it suffices to compute them in four dimensions
[17,18]. (The reconstructed loop integral is still computed
in D dimensions, of course.) The four-dimensional ampli-
tudes are most efficiently and conveniently handled in a
helicity basis. Starting from tree amplitudes rather than
diagrams means that the extensive cancellations that occur
in gauge theories are taken into account before any loop
integrations are done, which greatly reduces the complex-
ity of the calculations.

In extracting the triple cut, terms which vanish as the cut
propagators go on shell may be dropped. The utility of this
procedure comes from two aspects: the triple cut itself may
be represented as a product of three tree amplitudes; and
the resulting expression isolates coefficients of a more
limited class of integrals than the ordinary (absorptive)
cut. In the calculations we perform, these coefficients
turn out to be the simplest of all integral coefficients (and
even simple in an absolute sense). All three-mass and hard
two-mass box coefficients may be determined from a triple
cut. In an NMHV loop amplitude, each tree amplitude
045014
making up a triple cut will be an MHV amplitude, that is
with two negative-helicity gluons, be they external or (cut)
internal ones.

The quadruple cuts show very simply that all four-mass
box coefficients must vanish in an NMHV amplitude.
These cuts are given by products of four tree amplitudes.
However, there are only seven negative-helicity gluon legs
available: three are external gluons, and four are gluons
crossing the cuts (one for each of the four cuts). Hence at
least one of the four tree amplitudes must have fewer than
two negative-helicity gluons, and will therefore vanish.

Having determined the three-mass and hard two-mass
box coefficients from the triple cuts (or equivalently the
ordinary cuts), we can determine the easy two-mass and
one-mass coefficients in two independent ways. The first is
to return to the ‘‘ordinary’’ cuts, and compute them. In this
case, we will have the product of an MHV and an NMHV
amplitude forming the cut. Depending on the configuration
of the external negative-helicity gluons (and on the channel
we cut), contributions will come either from gluons alone
circulating in the loop (a ‘‘singlet’’ contribution) or from
all states in the N � 4 multiplet (‘‘nonsinglet’’). The tree-
level CSW rules make it easy to write down analytic
expressions for the NMHV amplitudes, but unfortunately
the form they yield—containing off-shell momenta either
in the original CSW form or in the modified ‘‘projected’’
form—is not directly suitable for use in the unitarity-based
method, because it is not clear what propagators should be
reconstructed from these unusual denominators. For the
gluon amplitudes, however, a corresponding expression in
terms of on-shell spinor products and invariants alone is
known [12], and it is this expression we have used in
computing the cuts. This provides a computation of the
(subset of) easy two-mass and one-mass box coefficients
that have singlet cuts, that is which have a cut that isolates
all three negative helicities on one side of the cut. The
calculation starts with an octagon integrand, which reduces
to a sum of box integrands via spinor algebra and the
introduction of appropriate ‘‘cubic’’ invariants [23].
Brute-force integral reduction techniques (e.g. Brown-
Feynman or Passarino-Veltman [42]), which introduce
nasty spurious Gram-determinant denominators, were not
required.

The other method of determining these coefficients is to
use the infrared consistency equations. These equations
arise from confronting our knowledge of the structure of
infrared singularities in the amplitude with the presence of
singularities in individual box functions. On general
grounds [26], we know that only nearest-neighbor two-
particle invariants can appear in infrared-singular terms,
which have the form,

AN�4
n;1 j� pole � �

ĉ!

�2

Xn
i�1

�
�2

�si;i�1

�
�
� Atree

n ; (14)

where � is an arbitrary scale. On the other hand, the box
-4
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functions listed in appendix B contain singularities with
coefficients s�� for a much larger set of invariants s. In
general, Eq. (14) implies that the coefficient of any given
ln��si;i�1�=� must be equal to the tree; and the coefficient
of any other ln��si...j�=� must vanish. Both types of equa-
tion are nontrivial. There are n�n� 3�=2 such equations
corresponding to the number of independent kinematic
invariants. Each box function, listed in appendix B, con-
tains various ln��si;i�1�=� and ln��si;i�1;i�2�=� terms
with coefficients 0, �1 or � 1

2 . The constraints arising
from Eq. (14) thus become simple linear relations among
the coefficients, some of which involve the tree amplitude.
As mentioned at the end of Sec. II there are a total of n one-
mass boxes and n�n� 5�=2 easy two-mass boxes, which
together precisely match the number of infrared consis-
tency equations.

It turns out that for n odd the system of equations is
nondegenerate (verified numerically up to n � 29), so
using the infrared consistency equations we can solve for
all easy two-mass and one-mass box coefficients in terms
of the three-mass and hard two-mass ones. For n even it
turns out that there is one redundant equation, so that we
can solve for all but one easy two-mass or one-mass box
coefficient. Of course, once we have obtained the solution
for odd n, we can confirm that the solution also holds for
even n by taking collinear limits, as we shall mention in
Sec. V. The solutions obtained from the infrared consis-
tency equations, as it turns out, yield a simpler analytic (but
numerically identical) form for the singlet coefficients than
the direct computation discussed above. We have also used
these infrared consistency equations to obtain the nonsing-
let easy two-mass and one-mass coefficients.

IV. RESULTS

In this section we present the results for the box coef-
ficients cijkl appearing in Eq. (12). It is convenient to label
the coefficients in terms of clusters. For X � A;B;C, let X1

denote the first massless momentum in X, and X�1 the last
massless momentum.

As mentioned in the previous section, from the general-
ized quadruple cuts we see that the four-mass box coef-
ficients all vanish.

The three-mass box coefficients are all given by a single
‘‘term’’. This simplicity is tied to the very constrained
twistor-space structure of such coefficients. A three-mass
FIG. 3. The box integral functions labeled by the clusters of
masses.
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box integral has a unique massless ‘‘singlet’’ leg s, fol-
lowed clockwise around the loop by three massive clusters
A, B and C, as shown in Fig. 3(d). (The momenta within
each cluster are of course also ordered clockwise.) Then
the three-mass box coefficient is given by,

c3m�m1; m2; m3; s; A; B;C�

�
H �m1; m2; m3; s; A; B; C��4

h12ih23i � � � hn1iK2
B

�
hA�1B1i

hs�jK6 CK6 BjA�
�1ihs

�jK6 CK6 BjB�
1 i

�
hB�1C1i

hs�jK6 AK6 BjB
�
�1ihs

�jK6 AK6 BjC
�
1 i
; (15)

where all the dependence on themi is contained within H .
In the cases where the singlet leg s has positive helicity, we
find,

H � 0; m1;2;3 2 A; (16)

� 0; m1;2;3 2 B; (17)

� hm1m2ihs
�jK6 CK6 Bjm

�
3 i; m1;2 2 A;m3 2 B;

(18)

� hm1m2ihsm3iK
2
B; m1;2 2 A;m3 2 C; (19)

� hm1m2ihs
�jK6 CK6 Bjm

�
3 i; m1;2 2 B;m3 2 A;

(20)

� hm1m2ihs�jK6 AK6 Bjm�
3 i � hm3m2ihs�jK6 CK6 Bjm�

1 i;

m1 2 A;m2 2 B;m3 2 C; (21)

plus cases obtained by exchanging A and C (using reflec-
tion/flip symmetry). An alternative form for the last case is,

H � hsm1ihm�
3 j�k6 s � K6 C�K6 Bjm�

2 i � hsm3i

� hm�
1 jK6 AK6 Bjm

�
2 i; m1 2 A;m2 2 B;m3 2 C:

(22)

In the cases where the singlet leg has negative helicity, s �
m3, we find,

H � 0; m1;2 2 A; (23)
-5
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� hm1m2ihs
�jK6 CK6 Bjs

�i; m1;2 2 B; (24)

� hsm1ihs
�jK6 CK6 Bjm

�
2 i; m1 2 A;m2 2 B; (25)

� hsm1ihsm2iK2
B; m1 2 A;m2 2 C; (26)

plus cases obtained by exchanging A and C.
All the other box coefficients are given by appropriate

sums of c3m quantities. In many instances, Eq. (15) will
then be required when the set A or C ‘‘degenerates’’ to a
single leg. (X1 � X�1 � X if the cluster degenerates to a
single massless momentum.) The formula is perfectly
well-defined in this limit. On the other hand, the set B
will never be allowed to degenerate to a single leg, because
the K2

B factor in the denominator of Eq. (15) would then

ZVI BERN, LANCE J. DIXON, AND DAVID A. KOSOWER
FIG. 4 (color online). Schematic depiction of the easy two-
mass box coefficients, expressed as a double sum over three-
mass box coefficients.
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vanish. In the following equations, m1;2;3 do not play any
distinguished role, and for simplicity we shall suppress
these arguments.

The hard two-mass boxes are defined by two adjacent
singlet legs, s1 and s2, followed by two adjacent massive
clusters A and B, as shown in Fig. 3(c). Their coefficients
are given simply by the sum of two c3ms:

c2mh�s1; s2; A; B� � c3m�s1; fs2g; A; B�

� c3m�s2; A; B; fs1g�: (27)

In Sec. V we will confirm this formula using soft limits.
The easy two-mass boxes are defined by a singlet leg s1

followed cyclicly by a massive cluster A, then another
singlet leg s2, then a final massive cluster B, as shown in
Fig. 3(b). They are given by a pair of double sums over c3m

coefficients. In the first sum, leg s1 is treated as a singlet,
the first massive cluster must include s2, and the second
massive cluster must not degenerate to a massless leg.
Otherwise there are no restrictions on the sum. The second
sum can be obtained from the first sum by exchanging the
roles of s1 $ s2 and A$ B. The result is,
c2me�s1; A; s2; B� �
XM�s1;s2�

k�0

XM�s1;s2��k

l�0

c3m�s1; Â�s1; s2; k�; B̂�s1; s2; k; l�; Ĉ�s1; s2; k; l��

�
XM�s2;s1�

k�0

XM�s2;s1��k

l�0

c3m�s2; Â�s2; s1; k�; B̂�s2; s1; k; l�; Ĉ�s2; s1; k; l��; (28)
where

Â�s1; s2; k� � fs1 � 1; . . . ; s2 � kg; (29)

B̂�s1; s2; k; l� � fs2 � k� 1; . . . ; s2 � k� l� 2g; (30)

Ĉ�s1; s2; k; l� � fs2 � k� l� 3; . . . ; s1 � 1g; (31)

and

M�s1; s2� � n� 4 � �s2 � s1�mod n�: (32)

A schematic depiction of the double sum (28) is pro-
vided in Fig. 4. Note that there is a certain cyclic ‘‘handed-
ness’’ to the sum, in that the ‘‘buried’’ leg s2 is clockwise
from the singlet leg s1 in the first sum, and similarly in the
second sum. There is an alternative representation where
this handedness is reversed, which we have numerically
verified to be equivalent.

The one-mass boxes are defined by three adjacent singlet
legs, s1, s2 and s3, followed by a massive cluster A, as
shown in Fig. 3(a). Their coefficients are given by the
degeneration of the easy two-mass formula, plus a single
additional term:

c1m�s1; s2; s3; A� � c2me�s1; fs2g; s3; A�

� c3m�s2; fs3g; A; fs1g�: (33)

Many of the above coefficients also carry over to the
corresponding amplitudes in QCD. We can apply the gen-
eralized cuts to determine which coefficients in QCD are
identical to those given above. Many types of integral
functions beyond those appearing in the N � 4 results
also contribute to the full QCD results—scalar triangle
integrals, scalar and tensor bubble integrals—and their
coefficients are of course undetermined by the calculations
in this paper. Let us assume that we are working in a basis
of integrals where the only box integrals appearing are
those in D � 4 � 2�. Whenever a box coefficient can be
determined from a (generalized) cut in which only gluons
are allowed to propagate around the loop, then the fermion
and scalar contributions are absent, and the QCD coeffi-
cient is exactly the same as the coefficient in N � 4
-6
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super-Yang–Mills theory. Suppose, for example, a box
integral has a massive leg out of which only positive-
helicity gluons flow. Inspecting the cut which separates
that leg from the rest of the amplitude, we see that only
gluons can contribute. Thus having an ‘‘all-plus mass’’ is a
sufficient condition for a box coefficient in QCD (or in the
pure-glue theory) to be determined by the N � 4 formula
given in this section. It is worth noting that amongst the
three-mass boxes, the only case which does not satisfy this
condition is m1 2 A, m2 2 B, m3 2 C (Eq. (21)). In the
cases of the hard two-mass and one-mass boxes, for QCD
and N � 4 super-Yang–Mills theory to give the same
result, another sufficient condition is that two adjacent
massless legs have the same helicity.
FIG. 5 (color online). An easy two-mass box where positive-
helicity legs a and b are buried inside a cluster.
V. CONSISTENCY OF THE RESULTS

We have performed a number of nontrivial checks on the
amplitudes. One simple check is against all previously
computed [17,23,32] N � 4 amplitudes, when the num-
ber of legs n is taken to be six or seven. Another check,
discussed in Sec. III and valid beyond n � 7, is our com-
putation of many of the easy two-mass and one-mass box
coefficients in two independent ways, using the infrared
consistency conditions and also direct computation.

Amplitudes are constrained by a variety of nontrivial
requirements. Their analytic properties are tightly con-
strained because all kinematic poles and cuts must corre-
spond to propagation of physical particles. They must also
have infrared singularities corresponding to the universal
emission of soft and collinear gluons.

In the collinear region, ka ! zkP, kb ! �1 � z�kP,
where kP is the momentum of the quasi-on-shell inter-
mediate state P, with helicity h. In this limit, massless
color-ordered tree amplitudes behave as

Atree
n !

akb X
h��

Splittree�h �z; a
ha ; bhb�Atree

n�1�. . . �a� b�h . . .�;

(34)

where Splittree�h are tree-level splitting amplitudes [39]. At
one loop, the generalization is,

A1�loop
n;1 !

akb X
h��

�Splittree�h �z; a
ha ; bhb�A1�loop

n�1;1 �. . . �a� b�h . . .�

� Split1�loop
�h �z; aha ; bhb�Atree

n�1�. . . �a� b�h . . .��;

(35)

where the Split1�loop
�h are one-loop splitting amplitudes,

which are tabulated in the second appendix of Ref. [17].
This reference also contains a discussion of the behavior of
the collinear limits of one-loop amplitudes and integral
functions. We will refer to the original amplitude as the
‘‘parent’’ and the resulting amplitude appearing in the
collinear limit as the ‘‘daughter’’ amplitude.
045014
Besides providing nontrivial checks, collinear limits
also allow us to fill a small gap in our calculation of
coefficients using the infrared consistency conditions,
which appears when the number of legs is even. Recall
that as discussed in Sec. III, for even n there is one
redundant equation, and accordingly we are missing one
equation needed to completely determine the easy two-
mass and one-mass box coefficients (which we collectively
refer to as ‘‘easy-class’’). For odd n we have exactly the
right number of equations. One simple way around this
problem is to prove the correctness of coefficients for even
n by taking the collinear limits of the �n� 1�-point (odd)
case. Because we are missing only one equation, the con-
firmation of even a single easy-class coefficient is suffi-
cient to prove that our solution is complete. We can
therefore choose the simplest collinear limits to evaluate.
A suitably simple limit arises when the two color-adjacent
legs becoming collinear, a and b, both have positive he-
licity, and are buried inside a cluster in the parent easy two-
mass box-coefficient, as shown in Fig. 5. If a or b is
adjacent to one of the massless legs of the easy two-mass
box, the analysis is more complicated, but we do not need
to consider such cases.

According to Eq. (35), there are contributions propor-
tional to the one-loop splitting function Split1�loop as well
as those proportional to the tree splitting function Splittree.
Let us examine the latter terms, because their contributions
are entirely dictated by the collinear behavior of the box
coefficients c2me.

To understand the collinear limits we need to inspect the
easy two-mass box coefficients. These coefficients are
sums of three-mass box coefficients, as given in Eq. (28).
In a given term in the sum, if a and b belong to a single
mass of the coefficient c3m with three or more legs in the
mass, it maps very simply into the terms in the daughter
sum because only sums of momenta in the parent cluster
appear in the formula (15), i.e., ka � kb ! kP in the
daughter coefficient. We obtain an overall tree splitting
amplitude factor of 1=�

�����������������
z�1 � z�

p
habi�, coming from the

1

h12ih23i � � � hn1i
(36)

prefactor of the coefficient.
-7
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There are, however, some special cases to consider.
Suppose that in the given term under consideration in the
sum, a and b are the only legs in one of the massive cluster
arguments to c3m. If the �a; b� cluster is A or C, corre-
sponding to Fig. 3, then the limit works as above, because
massless legs are allowed in the sum over three-mass
coefficients if they are in the A or C position. If a and b
are the only members of B, then in the collinear limit there
is no corresponding daughter coefficient in the sum, so all
such coefficients must be nonsingular in the collinear limit.
An investigation of the numerator factors, using Eqs. (16),
(19), (23), and (26), shows that they are indeed nonsingular
and therefore do not contribute. Finally, for the term in the
three-mass sum where a and b straddle two adjacent
massive legs, either A and B, or B and C, there is also no
collinear singularity due to the factors of hA�1B1i and
hB�1C1i in Eq. (15).

There are also contributions to the loop splitting func-
tions. These terms arise from discontinuities in the inte-
FIG. 6 (color online). The three-mass box integrals that may
be used to verify all hard two-mass coefficients. Leg s becomes
soft.

045014
grals, and also from hard two-mass and one-mass box
integrals [43]. The latter terms are easily identifiable be-
cause the box integral function does not reduce to a daugh-
ter integral function (instead it reduces to a contribution to
the loop splitting function). The issue of contributions
proportional to the loop splitting function is separate
from the contributions proportional to the tree splitting
function, so it is not directly relevant to determining the
lower-point coefficients. (It could of course be used as an
additional check on the amplitudes.)

The soft limit, in which the momentum of one gluon is
scaled to zero, provides another check on our results. (The
soft limit may be phrased in a Lorentz-invariant way as the
simultaneous limit sas; ssb ! 0 when �a; s; b� are a sequen-
tial triplet of external momenta.) This limit also provides
an alternative way to obtain the relation (27) between the
hard two-mass and three-mass coefficients. The soft limit
of an amplitude obeys an equation very similar to that for a
collinear limit. At one loop, as ks ! 0,
A1�loop
n;1 �. . . ; s� 1; s; s� 1; . . .� !

ks!0
Stree�s� 1; shs ; s� 1�A1�loop

n�1;1 �. . . ; s� 1; s� 1; . . .�

� S1�loop�s� 1; shs ; s� 1�Atree
n�1�. . . ; s� 1; s� 1; . . .�; (37)
where Stree and S1�loop are tree and one-loop soft func-
tions. The tree soft functions are just eikonal factors [39],

Stree�a; s�; b� �
habi

hasihsbi
;

Stree�a; s�; b� � �
ab�

as�sb�
:

(38)

As was the case for the collinear limits, the contributions
proportional to the loop soft functions are easily separated
from the ones proportional to the tree soft function. In the
N � 4 theory, the loop soft functions arise entirely from
discontinuities in the box functions, or from box functions
that do not reduce properly (map smoothly) to daughter
integral functions. (Discontinuities arise because of infra-
red divergences [43]). To obtain relations between �n� 1�-
and n-point coefficients using soft limits, we need not
consider the loop soft functions. (Again, they can be used
to provide additional consistency checks.)
Consider now the coefficients of the two three-mass
boxes displayed in Fig. 6. As the positive-helicity leg s
becomes soft, it is precisely these two box functions that
reduce to the hard two-mass box function obtained by
simply eliminating leg s. Matching the coefficient of this
box function in the soft limit (37) gives the constraint,

c3m�s1; fs; s2g; A; B�

� c3m�s2; A; B; fs1; sg� !
ks!0

S�s1; s; s2�c2mh�s1; s2; A; B�:

(39)

On the other hand, an inspection of our solution of the
three-mass coefficients reveals that

c3m�s1; fs; s2g; A; B� � c3m�s2; A; B; fs1; sg� !
ks!0

S�s1; s; s2�

� �c3m�s1; fs2g; A; B� � c3m�s2; A; B; fs1g��: (40)

Comparing Eqs. (39) and (40) then confirms Eq. (27) for
the hard two-mass box in terms of three-mass coefficients.

The behavior of the NMHV amplitudes under multi-
particle factorization has an intricate structure which also
is useful as a check. Here we do not perform a full analysis,
but merely indicate some salient properties. Let K� denote
the cyclicly-adjacent sum of r momenta given by K� �
�ki � ki�1 � � � � � ki�r�1�

�. The factorization properties
for one-loop amplitudes in the limit K2 ! 0 are described
by [43],
-8
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A1�loop
n;1 !

K2!0 X
h��

�
A1�loop
r�1;1 �ki; . . . ; ki�r�1; K

h�
i

K2 A
tree
n�r�1���K�

�h; ki�r; . . . ; ki�1�

� Atree
r�1�ki; . . . ; ki�r�1; Kh�

i

K2 A
1�loop
n�r�1;1���K�

�h; ki�r; . . . ; ki�1�

� Atree
r�1�ki; . . . ; ki�r�1; K

h�
i

K2 A
tree
n�r�1���K�

�h; ki�r; . . . ; ki�1�ĉ!F n�K
2; k1; . . . ; kn�

�
; (41)
where the one-loop factorization function F n is indepen-
dent of helicities. (The precise form of F n will not concern
us here.) For supersymmetric NMHV amplitudes, if the
number of negative-helicity gluons in the set fi; i�
1; . . . ; i� r� 1g is either 0 or 3, then the right-hand side
of Eq. (41) vanishes. This happens because one of the two
amplitudes in each term then has at most one negative-
helicity gluon, and such amplitudes are zero in supersym-
metric theories. If the number of negative-helicity gluons
on one side of the pole is 1 or 2, then exactly one of the two
values of the intermediate helicity h gives a nonvanishing
contribution to each term in Eq. (41), of the form MHV �
MHV. The box coefficients for the MHV one-loop ampli-
tudes are simply given by the tree amplitude (8) in the case
that the box is an easy two-mass, or one-mass box, and zero
otherwise [17]. Hence we expect to find a limiting behavior
for the NMHV box coefficients of,

Atree
r�1�ki; . . . ; ki�r�1; Kh�

�
1

K2 A
tree
n�r�1���K�

�h; ki�r; . . . ; ki�1�; (42)

in appropriate nonvanishing limits.
Before addressing which limits should be nonvanishing,

we inspect the two possible sources of multiparticle poles
in the building blocks c3m given in Eq. (15). The first
source is the manifest 1=K2

B factor, where B is the mass
diagonally opposite the massless leg s. The second source
only arises when either mass A or C degenerates to a single
massless leg. Suppose A has a single element. Then we can
simplify one of the spinorial denominator factors in
Eq. (15) to

hs�jK6 CK6 BjA
�
�1i � hs�j�K6 C � k6 s��k6 A � K6 B�jA

�i

� ��KC � ks�2hsAi; (43)

exposing the second type of multiparticle pole.
Next we examine the residues of these poles. First

suppose all negative helicities are on one side of the
pole. In the case of the 1=K2

B pole, this means that either
m1;2;3 2 B, for which H vanishes according to Eq. (17),
or else no negative helicity belongs to B, for which
Eqs. (16), (19), and (26) show that the would-be pole is
killed by factors of K2

B in the numerator H 4. In the case of
the 1=�KC � ks�

2 pole from Eq. (43), when all negative
helicities are on one side the factor H vanishes identically,
except for the case m1;2 2 B, m3 2 A in Eq. (20), for
which it is proportional to the vanishing denominator:
045014
hs�jK6 CK6 Bjm�
3 i � hs�jK6 CK6 BjA�

�1i. Thus we have verified
the ‘‘trivial case’’ where no multiparticle pole was
expected.

If one or two negative helicities are on one side of the
pole, for either the 1=K2

B pole or the 1=�KC � ks�
2 pole,

then we find that such a c3m coefficient always has the limit
(42). For example, if m1;2 2 B, m3 2 A, then in the limit
K2
B ! 0 we have,

H � hm1m2ihs�jK6 CK6 Bjm�
3 i

! hm1m2ihs
�jK6 CjB

�ihBm3i: (44)

Because hs�jK6 AjB
�i � �hs�jK6 CjB

�i in this limit, the
four spinor strings in the denominator of Eq. (15) cancel
the factor of hs�jK6 CjB�i4 from the numerator. Thus c3m

behaves as,

c3m !
1

h12ih23i � � � hn1iK2
B

�
hm1m2i

4hBm3i
4hA�1B1ihB�1C1i

hBA�1ihBB1ihBB�1ihBC1i

� i
hBm3i

4

h12i � � � hA�1BihBC1i � � � hn1i

�
1

K2
B

i
hm1m2i

4

h��B�B1i � � � hB�1��B�i
; (45)

which is the desired form (42). The other partitionings of
negative helicities work similarly, for both the 1=K2

B and
1=�KC � ks�2 poles.

No three-mass boxes appear in the residues of the multi-
particle poles, because the K2

B ! 0 limit forces the three-
mass boxes containing that pole to become easy two-mass
boxes in the daughter amplitude. Indeed, this behavior
directly reproduces the daughter easy two-mass boxes
where K � KB is a singlet leg. If instead K is buried in a
massive leg of the daughter easy two-mass box, then this
type of term typically originates from the 1=K2

B pole in a
c3m contributing to an easy two-mass box coefficient (28)
in the parent amplitude. Figure 4, illustrating the double
sum for c2me, exposes the poles: Locations of K counter-
clockwise from s1 and clockwise from s2 generally come
from the left sum in Fig. 4 (in the parent amplitude), where
K can be identified with KB for some set B. The ones
clockwise from s1 and counterclockwise from s2 generally
come from the right sum. However, if K is counterclock-
wise from s1 and adjacent to it (or similarly located with
respect to s2), then K cannot be identified with a KB. There
-9
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is no room for even a single-leg A or C argument. In this
case, the daughter term arises from a pole of the type
1=�KC � ks�2, in a degenerate case of c3m where A or C
has a single element. (In the alternative representation of
easy two-mass box coefficients with reversed ‘‘handed-
ness’’, the sources of some poles get exchanged.)

Additional checks are possible from other methods of
performing the calculation. Very recently, Britto, Cachazo
and Feng have found an elegant and effective means for
obtaining box coefficients from the quadruple cuts, even
when legs of the box integrals are massless, by utilizing a
�� ���� signature for space-time [36]. We have applied
this technique to some of our coefficients, and have found
agreement with our direct calculation.

VI. NEW REPRESENTATIONS OF TREE
AMPLITUDES

As we have discussed in Sec. III, the infrared consis-
tency equation (14) can be used to compute some of the
box coefficients. As we have seen in Sec. IV, it yields a
simple and regular form for the resulting coefficients. As a
by-product, it also yields a variety of new representations
of the n-point tree amplitudes. Because the fermions and
scalars do not contribute to n-gluon tree amplitudes, these
representations are valid in all massless gauge theories,
including QCD. To instantiate one of these representations,
we simply collect the coefficients of all boxes with an
infrared singularity in any given two-particle invariant.
For example, focusing on the ln��s12�=� singularity, and
inspecting Fig. 7, we obtain, for any helicity configuration,
the following form for the n-gluon tree amplitude,

2Atree
n � 2c1234 � 2c123n � 2c134n � c1345 � c13�n�1�n

�
Xn�1

j�5

c123j �
Xn�1

j�6

c134j �
Xn�2

j�5

c13jn: (46)

(When an amplitude has more than three negative-helicity
gluons, four-mass boxes will appear in the one-loop am-
plitude, however because these boxes are infrared finite
they do not contribute to Eq. (46).) Other representations
may be obtained by cyclicly permuting the labels in
Eq. (46). We may also shift terms around by using the
n�n� 5�=2 additional identities obtained from the absence
of infrared singularities in multiparticle channels, namely
ln��si::j�=�, j > i� 1.

These new representations of n-point tree amplitudes
have features reminiscent of amplitudes built from CSW
diagrams [10]. In particular, for the NMHV case most
terms have only a single multiparticle pole, coming from
the 1=K2

B in c3m in Eq. (15). The CSW diagrams have the
same property. The exception is if a c3m appearing in the
expressions for c2mh or c2me in Eqs. (27) and (28) has
‘‘degenerate’’ kinematics where one of the masses van-
ishes, then, as mentioned in Sec. V, such terms can contain
two different multiparticle poles. The appearance of spu-
045014
rious denominators of the form hs�jK6 CK6 BjA
�
�1i is again

reminiscent of the CSW approach. (These denominators
are ‘‘spurious’’ in the sense that the S-matrix has no
singularities corresponding to their vanishing.) However,
in the CSW representation of the tree amplitudes, the
spurious denominators depend explicitly on a single arbi-
trary reference momentum '; for example, strings like
hC�B�i � h'�jK6 CK6 Bj'

�i can appear (although this par-
ticular length string first appears in N2MHV tree ampli-
tudes). In the box-coefficient representation, only physical
external momenta appear, and no single external momen-
tum can play the role of ' in all terms. The variety of
different representations for the tree amplitudes, each with
its own set of spurious denominators, suggests the exis-
tence of an even more general formalism for obtaining tree
amplitudes than the one found by CSW.
VII. TWISTOR-SPACE PROPERTIES

A. Overview

The target space for Witten’s candidate topolog-
ical string theory is CP3j4, otherwise called projective
(super-)twistor space. Points in twistor space correspond
to null momenta or equivalently to light cones in space-
time. The correspondence is specified by a ‘‘half-Fourier’’
transform. More precisely, if we represent a null momen-
tum by the tensor product of a spinor (a and a conjugate
spinor ~( _a, then twistor quantities are obtained by Fourier-
transforming with respect to all the ~( _a.

Amplitudes in twistor space, as it turns out, have rather
simple properties. At tree level, they are nonvanishing only
on certain curves. This implies that they contain factors of
delta functions (or derivatives thereof) whose arguments
are the characteristic equations for the curves. The coef-
ficients of the delta functions, however, have been quite
difficult to calculate directly from the topological string.

As Witten pointed out in his original paper [1], however,
we do not need the twistor-space amplitudes in order to
establish the structure of the delta functions they contain.
-10
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In momentum space, the Fourier transform turns the
characteristic-equation polynomials into differential op-
erators (polynomial in the (i, and derivatives with respect
to the ~(i), which will annihilate the amplitude. One par-
ticularly useful building block for these differential opera-
tors is the line annihilation operator, expressing the
condition that three points in twistor space lie on a com-
mon ‘‘line’’ or CP1. If the coordinates of the three points,
labeled i; j; k, are ZIi � �(ai ; �

_a
i �, etc., then the appropriate

condition is

�IJKLZIiZ
J
jZ

K
k � 0; (47)

for all choices of L. Choosing L � _a, and translating this
equation back to momentum space using the identification
� _a $ �i@=@~( _a, we obtain the operator,

Fijk � hiji
@

@~(k
� hjki

@

@~(i
� hkii

@

@~(j
: (48)

Two important sufficient conditions for Fijk to annihilate
an expression, i.e. for it to have support only when i; j; k lie
on a line in twistor space, are [1]
(1) T
he expression is completely independent of ~(i, ~(j,
and ~(k, or
(2) ~(
i, ~(j, ~(k appear only via a sum of momenta con-
taining them, of the form

Pa _a � �� � � � ki � kj � kk � � � ��a _a

� � � � � (ai ~( _a
i � (aj ~( _a

j � (ak ~( _a
k � � � � (49)
FIG. 8 (color online). The twistor-space configuration for the
three-mass-box coefficients c3m given in Eq. (15) is depicted on
the right. The corresponding three-mass integral is shown on the
left. All points lie in a plane.
The first condition is obvious from the definition (48); the
second holds because of the Schouten identity,

hiji(k � hjki(i � hkii(j � 0: (50)

The tree-level MHV amplitude (8), for example, is an-
nihilated by Fijk, because it is independent of the ~(i. Any
possible delta functions vanish for generic momenta, be-
cause they take the form ��hiji�. At one loop, Cachazo,
Svrček, and Witten [29] pointed out that such delta func-
tions, arising from the spinor analog of the fact that
@z�1=z� � 0, do arise. They must be taken into account
for a proper analysis of the twistor-space structure of
amplitudes.

We will not compute the relevant ‘‘holomorphic anom-
aly’’ terms for the amplitudes in this paper, and so we will
not be able to fully exhibit their twistor-space structure.
While the ‘‘anomaly’’ terms enter into the action of the
differential operators on the box integrals, their action on
the coefficients is unaffected by it. The properties of the
coefficients are also important, so we focus on these.

In addition to the line operator Fijk, we will employ the
planar operator [1],
045014
Kijkl � "IJKLZ
I
iZ

J
jZ

K
k Z

L
l

� hiji" _a _b @

@~( _a
k

@

@~(
_b
l

� 5 permutations�; (51)

whose vanishing implies that four points lie in a plane (or
CP2) in twistor space.

B. Twistor properties of three-mass box coefficients

As discussed in Sec. IV, the three-mass box coefficients
c3m given in Eq. (15) are the basic building blocks for the
NMHV amplitudes. All other box coefficients can be ex-
pressed as sums of various c3m. Therefore we need only
determine the twistor-space properties of the three-mass
box coefficients, in order to obtain the general twistor-
space properties of all the box coefficients.

The most general twistor-space property of the NMHV
box coefficients is that all points lie in a plane. That is,
Kmnpq for every choice of m; n; p; q annihilates every one-
term coefficient, and hence, by linearity, it annihilates
every box coefficient cijkl. We first observed the planarity
of a special class of three-mass box coefficients in
Ref. [23]. The complete coplanarity for all coefficients
was proven for general one-loop NMHV amplitudes
[23,33], along the same lines used by Cachazo to demon-
strate a certain degree of colinearity [31].

Since we have computed all NMHV coefficients, it is
straightforward to confirm directly that the required pla-
narity property holds. The coplanarity of s, A, and C can be
demonstrated relatively easily, however the coplanarity
with B requires more work. In appendix A we present an
analytic demonstration of planarity of all three-mass box
coefficients. This in turn implies that all remaining coef-
ficients are sums of planar functions since they are sums of
three-mass coefficients and their degenerate limits.

Another intriguing property of the nonvanishing coeffi-
cients is the universality of the distribution of points on the
three lines, independent of the identity of the three
negative-helicity legs. As illustrated in Fig. 8, the location
of the points is entirely dictated by the three-mass box
under consideration. The helicity independence may be
understood simply by considering the triple cuts of the
-11
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three-mass box. As argued by Cachazo [31] for the more
standard double cut, the fact that the holomorphic anomaly
freezes the phase-space integral [29,30] implies that the
box integral coefficients are annihilated by the same col-
linear operators Fijk that annihilate the trees on either side
of the cut. A similar argument for the triple cut shows that
the coefficient of a three-mass box must be annihilated by
the same collinear operators that annihilate each of the
three trees. For all nonvanishing three-mass box coeffi-
cients the three tree amplitudes appearing in the triple cut
are all MHV. Thus for each of the three clusters A, B and C
the points must be on a line, independent of the location of
the negative helicities, since this is a property of the MHV
tree amplitudes. (The presence of the point s at the inter-
section of the two lines containing A and C follows from
the existence of two distinct triple cuts: one cut where s is a
point in the tree amplitude containing the A and one where
it is a point in the tree containing the C.) We find it
extremely appealing that the simplicity of the structure
displayed in Fig. 8 is reflected in the NMHV one-loop
amplitudes computed here.

It is worth noting that a similar property holds for the
N2MHV (next-to-next-to-MHV) n-point amplitudes. The
quadruple cut shows that each cluster in a four-mass box
coefficient must always lie on a straight line, since once
again each of the four clusters in the quadruple cut is an
MHV tree amplitude if the coefficient does not vanish.
Moreover, in the triple cut either MHV trees or NMHV
trees made up of nearest-neighbor clusters are found. The
NMHV trees formed by two nearest-neighbor clusters are
supported on two intersecting lines. Stepping through the
four triple cuts then implies that nearest-neighbor clusters
are localized on intersecting lines. This picture agrees with
the properties of the eight-point coefficient of the four-
mass box obtained by Britto, Cachazo and Feng [36]. For
larger numbers of negative-helicity legs, one can no longer
conclude that the points in each cluster lie on straight lines,
because the quadruple cuts are no longer products of MHV
amplitudes. We may expect the structure of Fig. 9 to
generalize, however, with each of the line segments re-
placed by the twistor-space duals to higher-degree vertices
FIG. 9 (color online). The twistor-space configuration for the
four-mass-box coefficient of an N2MHV amplitude is depicted
on the right. The corresponding four-mass integral is shown on
the left. The points need not lie in a plane, but lie in the
intersection of two planes.
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[14,44], that is appropriate collections of intersecting line
segments.

The twistor-space structure of the one- and two-mass
box coefficients in the NMHV amplitudes is of course
completely determined by the structure of the three-mass
coefficients, using eqns. (27), (28), and (33). Each term in
these sums will have its support in a plane (that is, a CP2)
in twistor space, though not necessarily the same plane for
all terms. Each term has all points lying on three lines
within a single plane; and one of the intersections of the
lines always contains one of the n points.
VIII. CONCLUSIONS AND OUTLOOK

In this paper we computed all the next-to-MHVone-loop
gluon amplitudes in N � 4 super-Yang–Mills theory. The
coefficients of the box integral functions appearing in the
amplitudes can be written as simple terms built out of
spinor strings, or sums of such terms, where each term
exhibits a simple twistor-space structure.

To obtain the four-, three- and hard two-mass box co-
efficients we used generalized cuts [20–23] in the unitarity
method [17–20]. The four-mass box coefficients all vanish
in the NMHV case, as easily determined from quadruple
cuts. We also showed how to obtain hard two-mass box
coefficients from the three-mass box coefficients using the
known behavior of amplitudes as external momenta be-
come soft. The easy two-mass and one-mass coefficients
were then obtained efficiently by solving the constraints
that the infrared singularities of the amplitudes (as regu-
lated by dimensional regularization) match the known
universal form [26]. We also confirmed some of these
coefficients by direct computation of ordinary cuts. For
odd n, the infrared consistency equations suffice to obtain
all these coefficients. For even n, a lone infrared consis-
tency equation is missing. We computed the missing coef-
ficient from the requirement that amplitudes have the
correct collinear limits. The solution to the infrared con-
sistency equations yields a very regular form for the easy
two-mass and one-mass coefficients.

We may also apply the structure of the generalized cuts
to determine some terms of the corresponding amplitudes
in QCD. Many types of integral functions beyond those
appearing in the N � 4 results contribute to the full QCD
results—scalar triangle integrals, scalar and tensor bubble
integrals—and their coefficients are of course undeter-
mined by the calculations in this paper. However, many
of the box coefficients are the same as those given in
Sec. IV. As a particular example, the coefficient of any
box integral where only positive-helicity gluons form one
of the massive legs is identical in QCD and the N � 4
theory (and in the pure-glue theory as well).

The infrared consistency equations also provide us with
new representations of n-gluon NMHV tree-level ampli-
tudes. The form in which the amplitudes appear is similar
to the one obtained using MHV vertices [10]. There are,
-12
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however, a number of differences. The variety of different
representations for the tree amplitudes, each with their own
set of spurious denominators, suggests a more general
formalism for obtaining tree amplitudes exists than the
one found by Cachazo, Svrček, and Witten.

We also performed a variety of checks, including verify-
ing that amplitudes have the correct behavior in various
collinear, soft, and multiparticle factorization limits. As a
final check, we also used the observation of Britto,
Cachazo, and Feng [36] last week, that generalized qua-
druple cuts freeze the loop integrals, allowing for an ele-
gant and simple algebraic solution of box coefficients. The
utilization of a nonconventional �� ����-signature met-
ric, allows quadruple cuts to be applied even when some of
the box function’s external legs are massless.

The planarity of the NMHV box coefficients is a very
intriguing result. The complete planarity was demonstrated
for general one-loop NMHV amplitudes [23,33], along the
same lines used by Cachazo to demonstrate a certain
degree of colinearity [31]. The explicit calculation of the
coefficients presented here confirms these arguments. In
twistor space, the points in the three-mass box coefficients
fall into three lines lying in a plane, and two of the lines
always intersect at one of the n points, as depicted in Fig. 8.
In particular, the split-up is independent of the particular
NMHV helicity configuration, and only depends on the
kinematics of the particular three-mass box. As described
in the paper, this structure is easy to understand using the
generalized cuts together with the twistor-space properties
of the tree amplitudes appearing in the cuts.

The simplicity of the amplitudes, found here and in
Refs. [17,18,23,31,32,35–37], suggests that the complete
one-loop S-matrix of all four-dimensional cut-
constructible gauge theories will be obtained soon. Their
simple twistor-space structure also suggests the search for
a string interpretation will be fruitful.
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APPENDIX A: EXPLICIT DEMONSTRATION OF
PLANARITY OF COEFFICIENTS

The planarity of any box coefficient in any one-loop
NMHV amplitude has already been proven on general
045014
grounds [23,33]. Nevertheless, it is interesting to see how
it works explicitly, now that the complete NMHV results
are known. Because every NMHV box coefficient is a sum
of the three-mass box coefficients c3m given in Eq. (15)
(and the coplanarity operator K is a linear operator), it
suffices to show that this expression is completely planar;
that is has its support in a CP2 subspace.

First we recall the two important sufficient conditions
for Fijk to annihilate an expression, described below
Eq. (48). Using these, the only way dependence on anti-
holomorphic spinors ~(i appear in Eq. (15) is via K6 A, K6 B,
and K6 C. Furthermore, K6 A and K6 C always appear next to
hs�j, so that they may be rewritten as k6 s � K6 A and k6 s �
K6 C, respectively. Thus, using Eq. (49), we see that c3m in
Eq. (15) has support only when all points in each of the
following three sets are collinear: fsg [ A; B; and fsg [ C.

The colinear constraints are shown in Fig. 8. The point s
belongs to two lines, A and C. This fact implies that lines A
and C lie in a plane. Hence our task is to show that line B
also lies in this plane. It suffices to show that

Ka1a2b1b2
c3m � 0; (A1)

for any two points a1; a2 2 A and any two points b1; b2 2
B. We can use momentum conservation to replace KA !
�ks � KB � KC in Eq. (15). Then the terms in Ka1a2b1b2

containing derivatives with respect to ~(a1
and ~(a2

vanish,
and Eq. (A1) reduces to

ha1a2i" _1 _2 @

@~( _1
b1

@

@~(
_2
b2

c3m � 0: (A2)

So we just need to show that the double derivative in
Eq. (A2) vanishes.

The first derivative is simple to evaluate, using

@

@~( _1
bi

hs�jK6 CK6 BjX
�i � hbiXi�hs

�jK6 C� _1; (A3)

@

@~( _1
bi

hs�jK6 AK6 BjX�i � �hbiXi�hs�jK6 C� _1

� hsXi�hb�i jK6 B� _1; (A4)

@

@~( _1
bi

K2
B � �hb�i jK6 B� _1: (A5)

The derivative depends on the helicity configuration,
through H . Here we will present the most complicated
case, m1 2 A, m2 2 B, m3 2 C, for which H is given by
Eq. (21). The other cases can be worked out analogously.
We find that

@

@~( _1
b1

c3m � V _1�b1� � c3m; (A6)

where
-13
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V _1�b1� �
4

H
�hm3m2ihb1m1i � hm1m2ihb1m3i��hs�jK6 C� _1 � hm1m2ihsm3i�hb�1 jK6 B� _1� �

�hb�1 jK6 B� _1

K2
B

�
hb1A�1i�hs�jK6 C� _1

hs�jK6 CK6 BjA�
�1i

�
hb1B1i�hs�jK6 C� _1

hs�jK6 CK6 BjB�
1 i

�
hb1B�1i�hs�jK6 C� _1 � hsB�1i�hb�1 jK6 B� _1

hs�jK6 AK6 BjB�
�1i

�
hb1C1i�hs�jK6 C� _1 � hsC1i�hb�1 jK6 B� _1

hs�jK6 AK6 BjC�
1 i

: (A7)
The second derivative has two types of terms,

" _1 _2 @

@~( _1
b1

@

@~(
_2
b2

c3m �

�
" _1 _2 @

@~(
_2
b2

V _1�b1�

� " _1 _2V _1�b1�V _2�b2�

�
� c3m;

(A8)

Note that

" _1 _2�hs�jK6 C� _1�hs�jK6 C� _2 � �hs�jK6 CK6 Cjs�i

� �K2
Chssi � 0: (A9)

Using this fact, it is easy to see that in the first type of
terms— those coming from the derivative of V _1�b1�— the
045014
terms containing hs�jK6 CK6 BjX�i do not contribute. The
term containing K2

B gives

" _1 _2 @

@~(
_2
b2

�
�
�hb�1 jK6 B� _1

K2
B

�
� " _1 _2

�
1

�K2
B�

2 �hb
�
1 jK6 B� _1

� �hb�2 jK6 B� _2

�
1

K2
B

��1�hb1b2i" _2 _1

�

�
hb1b2i

K2
B

: (A10)

A slightly more complicated term is
" _1 _2 @

@~(
_2
b2

hb1B�1i�hs
�jK6 C� _1 � hsB�1i�hb

�
1 jK6 B� _1

hs�jK6 AK6 B jB
�
�1i

� " _1 _2
�

1

hs�jK6 A K6 BjB�
�1i

2 hb1B�1i�hs�jK6 C� _1 � hsB�1i�hb�1 jK6 B� _1�

� hb2B�1i�hs
�jK6 C� _2 � hsB�1i�hb

�
2 jK6 B� _2� �

" _2 _1hb1b2ihsB�1i

hs�jK6 AK6 BjB�
�1i

	

� �
hsB�1i

hs�jK6 AK6 BjB�
�1i

2 hb1B�1ihs
�jK6 CK6 Bjb

�
2 i � hb2B�1i

� hs�jK6 CK6 Bjb�1 i � hb�1 jK6 BK6 Bjb
�
2 ihsB�1i� � 2

hb1b2ihsB�1i

hs�jK6 AK6 BjB
�
�1i

:

(A11)
In the quantity in brackets (�) on the right-hand side of
Eq. (A11), we use the Schouten identity to combine the
first two terms, and rewrite the third term as hb1b2i�
hs�jK6 BK6 BjB

�
�1i. Then this quantity becomes

hb1b2ihs�j�K6 C � K6 B�K6 BjB�
�1i

� �hb1b2ihs
�jK6 AK6 BjB

�
�1i: (A12)

Inserting this expression into Eq. (A11), we obtain,

" _1 _2 @

@~(
_2
b2

hb1B�1i�hs
�jK6 C� _1 � hsB�1i�hb

�
1 jK6 B� _1

hs�jK6 AK6 BjB
�
�1i

� �
hb1b2ihsB�1i

hs�jK6 AK6 BjB�
�1i

: (A13)

The remaining two nontrivial terms in the derivative of
V _1�b1� work very similarly. Assembling all four terms, we
have

" _1 _2 @

@~(
_2
b2

V _1�b1� � hb1b2i

�
4

hm1m2ihsm3i

hs�jK6 AK6 Bjm�
3 i

�
1

K2
B

�
hsB�1i

hs�jK6 AK6 BjB
�
�1i

�
hsC1i

hs�jK6 AK6 BjC
�
1 i

�
:

(A14)

Terms of the second type arise from the contraction
" _1 _2V _1�b1�V _2�b2�. There are 5 � 5 � 25 terms, although
the terms containing two hs�jK6 CK6 BjX

�i strings do not
contribute. In each of the nonvanishing terms, the
Schouten identity can again be used to extract a factor of
hb1b2i, and the remainder becomes a sum of two (or some-
times just one) of the terms in Eq. (A14). For example,
-14
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using algebra similar to that in Eq. (A11), we get,
" _1 _2
�
hb1B�1i�hs

�jK6 C� _1 � hsB�1i�hb
�
1 jK6 B� _1

hs�jK6 AK6 BjB�
�1i

hb2C1i�hs
�jK6 C� _2 � hsC1i�hb

�
2 jK6 B� _2

hs�jK6 AK6 BjC�
1 i

� �B�1 $ C1�

�

� hb1b2i

�
hsB�1i

hs�jK6 AK6 BjB�
�1i

�
hsC1i

hs�jK6 AK6 BjC�
1 i

�
: (A15)

Computing and assembling all the " _1 _2V _1�b1�V _2�b2� contributions, we get,

" _1 _2V _1�b1�V _2�b2� � hb1b2i

�
hm1m2ihsm3i

hs�jK6 AK6 Bjm
�
3 i

� 16 � 4 � 4 � 4 � 4 � 4� �
1

K2
B

� 4 � 1 � 1 � 1 � 1 � 1�

�
hsB�1i

hs�jK6 AK6 BjB�
�1i

� �4 � 1 � 1 � 1 � 1 � 1� �
hsC1i

hs�jK6 AK6 BjC�
1 i

� �4 � 1 � 1 � 1 � 1 � 1�
	
;

(A16)

where the 6 numbers in each set of brackets correspond to the contribution from the cross term of the term shown with each
of the 6 terms in V _1 in Eq. (A7). The sum of Eqs. (A14) and (A16) is zero, which demonstrates, via Eq. (A8), the planarity
of c3m.

APPENDIX B: BOX INTEGRALS

In this appendix we collect the dimensionally-regulated integral functions appearing in the N � 4 amplitudes; the first
of these integral functions was obtained from Ref. [46] and the remaining ones from Ref. [24]. The reader is referred to
these papers for further details. Through O��0�, in the Euclidean region the integral functions are
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where the ki denote massless momenta and the Ki massive
momenta. The external momentum arguments K1; . . . ; K4

are sums of external momenta ki from the n-point ampli-
tude. The kinematic variables appearing in the integrals are

s � �k1 � k2�
2; t � �k2 � k3�

2; (B7)

or with k relabeled as K for off-shell (massive) legs. The
functions appearing in F4m

4 are

4 �
�������������������������������������������������������������������������
1 � 2(1 � 2(2 � (2

1 � 2(1(2 � (2
2

q
; (B8)

and
045014
(1 �
K2

1K
2
3

�K1 � K2�
2�K2 � K3�

2 ;

(2 �
K2

2K
2
4

�K1 � K2�
2�K2 � K3�

2 :

(B9)

We have rearranged the expressions for F3m and F2mh to
make the poles in � more transparent. We have also cor-
rected some signs in F4m in Ref. [17] and in the published
version of Ref. [24].
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