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Anomalous axion interactions and topological currents in dense matter
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Recently an effective Lagrangian for the interactions of photons, Nambu-Goldstone bosons and
superfluid phonons in dense quark matter has been derived using anomaly matching arguments. In this
paper we illuminate the nature of certain anomalous terms in this Lagrangian by an explicit microscopic
calculation. We also generalize the corresponding construction to introduce the axion field. We derive an
anomalous axion effective Lagrangian describing the interactions of axions with photons and superfluid
phonons in the dense matter background. This effective Lagrangian, among other things, implies that an
axion current will be induced in the presence of magnetic field. We speculate that this current may be
responsible for the explanation of neutron star kicks.
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I. INTRODUCTION

It has been recently realized [1] that some very unusual
effects may take place in dense matter QCD in the presence
of topological defects and/or external magnetic field. It is
known that at large baryon density many global symme-
tries of QCD are spontaneously broken [2,3]. In particular,
it is expected that the chiral symmetry will be spontane-
ously broken. This leads to the appearance of pseudoscalar
Goldstone bosons, which are generated out of the vacuum
by axial chiral currents. The spontaneous breaking of
global symmetries also leads to the existence of topologi-
cal defects: domain walls and strings in dense QCD [4,5].
In a recent paper [1] it was shown that the effective
Lagrangian for the interaction of Goldstone bosons with
the electromagnetic field in the presence of chemical po-
tential � contains terms, which imply that topological
defects such as axial vortices and domain walls in dense
QCD carry electric current and magnetization, respec-
tively. The corresponding effective Lagrangian was de-
rived in [1] in a formal way by treating the fermion
chemical potential as the zeroth component of a fictitious
vector gauge field V� and appealing to chiral anomalies
induced by V�.

The main goal of this paper is twofold. First, we observe
that one of the terms in the effective Lagrangian derived in
[1] implies that flux tubes in dense quark matter carry an
axial current. We investigate the microscopic origin of this
current. Second, we generalize the derivation [1] to include
the axion field which, if exists, may play an important role
in astrophysics and cosmology.

This paper is organized as follows. In Sec. II, we will be
studying axial currents on flux tubes in dense matter. We
will confirm the existence of these currents in three ways:
(a) by appealing to the effective Lagrangian derived in [1],
(b) directly from the chiral anomaly due to the fictitious
field V�, (c) from a microscopic calculation. These three
methods agree.
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In Sec. III, we derive the anomalous axion effective
Lagrangian using previously established methods. The
corresponding effective Lagrangian describes the interac-
tions of axions with photons and superfluid phonons in the
dense matter background. We speculate regarding some
phenomenological implications of the obtained results.
II. AXIAL CURRENT ON MAGNETIC FLUX TUBES

A. Short overview

The appearance of fermion zero modes on topological
defects is a mathematically rich phenomenon with links to
index theory of elliptic operators and quantum anomalies,
see original papers [6] and review [7]. In particular, it is
known [6–8] that flux tubes in 2� 1 dimensional QED
possess fermion zero modes, whose existence can be
proved using trace identities and 2-dimensional
Euclidean chiral anomaly equations. In the context of 2�
1 dimensional QED these zero modes lead to a degeneracy
of the flux tube ground state and induction of a Chern-
Simons term in the effective bosonic action. However,
when we consider massless QED in 3� 1 dimensions,
the zero modes are free to move up or down the flux
tube, depending on their chirality and polarization. We
show in this paper, that for massless Dirac fermions in 3�
1 dimensions at finite fermion chemical potential � and
temperature T in the background of a magnetic flux tube,
the zero modes generate an axial current of J �
�e�=2�2�� along the flux tube, where e is the fermion
charge and � is the total magnetic flux. The current is
topological in nature as it depends only on the total flux and
not on the particular details of distribution of the magnetic
field. This result is exact (at least if the magnetic flux does
not fluctuate) as the contribution of all, but the zero modes
to the axial current vanishes.

As already noted, the appearance of axial current on flux
tubes can be derived by using a somewhat different aspect
of chiral anomalies. Here the anomaly resides directly in
3� 1 dimensions and appears when one thinks of the
fermion chemical potential as the zeroth component of a
-1  2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.72.045011


2As was shown in [4], all instanton effects are suppressed in
high-density QCD and at very large baryon chemical potential
the explicit breaking of the formally anomalous symmetry U�1�A
becomes very weak.

1This need not be the ‘‘’’ boson of QCD.
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fictitious vector gauge field V�. Such a gauge field, as well
as the ordinary electromagnetic field A�, contributes to the
anomalous nonconservation of axial current. If the chiral
symmetry is spontaneously broken in the system under
consideration (say in dense QCD) and a corresponding
Goldstone boson  appears, one requires the effective
Lagrangian for  to reproduce the axial current noncon-
servation. As will be shown below, the effective
Lagrangian for , originally derived in [1], then implies
the appearance of axial current on flux tubes, which agrees
with the microscopic zero mode result. We also show that,
alternatively, one can obtain this result starting directly
from the axial current nonconservation equation, without
appealing to the effective Lagrangian for the  boson. This
later method, as well as the microscopic derivation, imply
that axial current on flux tubes appears even if the chiral
symmetry is not broken spontaneously.

We note that although the presence of zero modes on
flux tubes in QED and the symmetry of higher energy
states, which makes the microscopic calculations of this
paper possible, have been previously known [8], the prob-
lem of calculation of axial current on flux tubes at finite
chemical potential and temperature, to our knowledge, has
not been considered before. Moreover, the computation
of the axial current at finite chemical potential using
fictitious anomalies in 3� 1 dimensions is certainly a
new trick. This work confirms the validity of this trick
by an explicit microscopic calculation, thus, supporting
the original derivation of the anomalous effective
Lagrangian [1]. We note the similarity of computation of
axial current on flux tubes in QED undertaken in the
present paper to the recent computation of electric current
on cosmic strings at finite chemical potential [9], which
was also motivated by the anomalous terms in the effective
Lagrangian for Goldstones in dense QCD. Both calcula-
tions rely on the idea of zero modes with fixed quantum
numbers running along a 2-dimensional topological object
uniform in the 3rd direction and yield similar results for the
current.

B. Anomalous terms

Here we briefly review the anomaly based arguments of
[1], which indicate that when an axial-like symmetry is
spontaneously broken at finite fermion chemical potential,
the effective Lagrangian for the corresponding Goldstone
mode receives a correction, topological in nature. We show
that in the presence of a background magnetic field, this
correction leads to the appearance of axial current on
magnetic flux tubes.

Consider QCD at large baryon chemical potential. As is
well known, such a system spontaneously breaks various
global symmetries of QCD [2,3], leading to the existence
of Goldstone bosons, whose number and form depends on
the number of light (massless) quark flavors Nf. Here, we
045011
consider a general neutral Goldstone boson ,1 with the
following transformation properties under one of the di-
agonal axial symmetries of QCD2:

 a ! eiQa��5
 a; ! � �: (1)

HereQa denotes the flavor content of the Goldstone boson,
a � 1 . . .Nf, and  is created out of the vacuum by the
current,

j� �
X
a

Qa
� a���5 a: (2)

As is well known, it is useful to represent quark chemi-
cal potentials as the zeroth components of a fictitious
vector gauge field V� � �1; ~0�. Then the coupling of
quarks to V� and to the usual electromagnetic gauge field
A� takes the form

L �
X
a

��aV� � eaA�� a�� a; (3)

where �a and ea are quark chemical potentials and elec-
tromagnetic charges, respectively. The anomaly equation
for the current j� in the background of fields V� and A�
takes the form

@�j
� � ������CAAF��F�� � CAVV��F��

� CVVV��V���; (4)

where the field tensors F��, V�� are defined as F�� �
@�A� � @�A�, V�� � @�V� � @�V�, and the coefficients,

CAA � �Nc
X
a

e2aQa

16�2 ; CAV � Nc
X
a

ea�aQa

8�2 ;

CVV � �Nc
X
a

�2
aQa

16�2 :

(5)

The anomalous current nonconservation (4) must be repro-
duced in the effective Lagrangian for the neutral Goldstone
boson . Thus, as was shown in [1], the effective
Lagrangian for  picks up the following anomalous term
describing its interaction with the fields A� and V�:

L � L0
 � 2@��

�����CAAA�F�� � CAVV�F��

� CVVV�V���: (6)

Here L0
 is the standard, nonanomalous part of the effective

Lagrangian for , which transforms as L0 ! L0 � j�@��
under (1). We now restore the fictitious field V� to its true
-2
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value V� � �1; ~0�. Then the last term in (6) vanishes3, and
we are left with

L � L0
 � CAA�

����F��F�� � 4CAVr 	 ~B; (7)

where ~B is the magnetic field. The first anomalous term in
Eq. (7) describes the usual anomalous decay of a Goldstone
boson to two photons, and is absent on the classical level, if
there is no background electric field present. We now
concentrate on the second anomalous term in (7), which
does not occur in vacuum (at � � 0):

L � L0
 � 4CAVr 	 ~B: (8)

One effect of the new anomaly term originally discussed in
[1] is the magnetization of the domain walls formed by the
 field [such domain walls are possible, say, if  is
associated with spontaneous breaking of the U�1�A sym-
metry, which is also explicitly slightly broken by instan-
tons [4]]. Here we discuss a different consequence of this
term. Let us vary the action obtained from Lagrangian (8),
with respect to ! � �, to derive the classical equa-
tions of motion. By construction, L0 ! L0 � j�@��,
hence,

#S �
Z
d4x��j�@��� 4CAVBi@i��

�
Z
d4x@�j

���
Z
dt

Z
@R
dSi��j

i � 4CAVB
i��:

(9)

Here the surface integral is over the boundary of the region
R where our dense matter is realized. So, as r 	 ~B � 0, the
anomalous term does not contribute to the equation of
motion @�j� � 0. However, if we do not restrict � to
vanish on the boundary, we also obtain a boundary condi-
tion,

~j 	 d ~S � 4CAV ~B 	 d ~S: (10)

Now, in the steady state situation, there is no buildup of
axial charge, and we have r 	 ~j � 0. Hence for any cross
section S of the region R let Sb be the part of @R such that
@S � @Sb. Then,

Z
S
d ~S 	 ~j �

Z
Sb
d ~S 	 ~j � 4CAV

Z
Sb
d ~S 	 ~B

� 4CAV
Z
S
d ~S 	 ~B � Nc

X
a

ea�aQa

2�2 �; (11)

where � is the total magnetic flux through the cross section
3However, as shown in [1] this term can become important if
the quark matter is rotating and/or superfluid vortices appear.
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S. So we see that the anomalous term in Eq. (8) implies the
existence of an axial current flowing through the dense
matter which is proportional to the magnetic flux.

At this point we make the following important remark
regarding the formula (11): the final expression for the
current does not depend on the specific properties of the
pseudo-Goldstone boson , such as its coupling constant
f. This is not due to our choice of units, and this is not a
typo, so it leads us to weaken our assumption of sponta-
neous chiral symmetry breaking and existence of the 
Goldstone.

Indeed, the result (11) can be derived in the following
way for a generic system of massless fermions at finite
chemical potential in the magnetic field, without appealing
to the effective Lagrangian for the  Goldstone boson. Let
us return to the anomaly Eq. (4). We can think of the
fictitious field V0, as taking the value ‘‘1’’ inside the region
Rwhere the quark matter is realized and ‘‘0’’ outside (if we
have a quark star, this is actually rather close to reality,
since the interface between quark matter and vacuum is
very narrow). Then, again, if no electric field is present,
and if the axial charge density is time independent, Eq. (4)
takes the form

r 	 ~j � 4CAVr 	 �V0
~B�: (12)

The right-hand side of Eq. (12) vanishes both inside and
outside R, yielding r 	 ~j � 0. However, integrating (12)
over a small Gaussian pillbox on the boundary of R, and
recalling that in the vacuum outside R, ~j � 0, we obtain on
the inner boundary of R,

~j 	 d ~S � 4CAV ~B 	 d ~S: (13)

This is the same result (10) that we obtained by minimizing
the action for the Goldstone. From this, we readily obtain
the expression (11) for the total current across any cross
section of R.

The last derivation does not use anywhere the sponta-
neous breaking of chiral symmetry and the existence of the
 Goldstone, and relies solely on chiral anomalies. Thus,
when the dynamics of our problem are such that a
Goldstone boson  exists, the appearance of axial current
on flux tubes can be extracted from the effective
Lagrangian (8) for the  field. However, the existence of
such axial current does not depend on spontaneous chiral
symmetry breaking, but rather on the mere existence of
chiral symmetry. This observation is confirmed micro-
scopically in the next subsection, where the result (11) is
reproduced in a simple QED-like system.

C. Microscopic arguments

We will show in this section that the appearance of
current on magnetic flux tubes at finite chemical potential
derived in the previous section using the anomalous effec-
tive Lagrangian for , can be understood very simply
-3



4There are known examples [7], such as fermion number
appearing on domain walls, when this is not strictly speaking
true. Indeed, some of the energy levels of HR are continuous
rather than discreet and the correspondence discussed above
between the eigenstates of H? and HR need not preserve the
density of states. However, for the particular Hamiltonian HR, it
can be shown that if B�x� ! 0 as x! 1 sufficiently fast, this
problem does not arise.
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microscopically within the following model. As we already
saw at the end of the previous section, the existence of axial
currents on flux tubes does not rely on spontaneous chiral
symmetry breaking. Thus, we choose to ignore all the
strong interaction effects leading to formation of the
Goldstone field , and consider only the following
Lagrangian,

L �  i�@� � ieA���� �m  �� �0 ; (14)

which describes the interactions of a single light quark  of
mass m with a background electromagnetic field A�, at
finite baryon chemical potential �. Hence, the discussion
in this section actually applies to any QED-like system at
finite chemical potential.

We are interested in the case of magnetic flux tubes, i.e.
A� is static and the magnetic field ~B � r
 ~A � B�x; y�ẑ
is uniform in the third direction z. Our goal is to compute
the total axial current J35 �

R
d2xh �3�5 i along the flux

tube. The Dirac Hamiltonian is,

H � �i�@i � ieAi��
0�i �m�0; (15)

and the Dirac equation becomes

�HR L �m R � E L; (16)

m L �HR R � E R; (17)

where we use the conventions of Peskin and Schroeder and,

HR � ��i@i � eAi��
i: (18)

So,  L � �1=m��E�HR� R, where

�H2
R �m2� R � E2 R: (19)

Hence every eigenstate  R of HR with eigenvalue � gen-
erates two solutions of the Dirac equation with energies
E � 

������������������
�2 �m2

p
and,

  �

�
 L
 R

�


� �4�m2 � �2���1=4
�
��m2 � �2�

1
2 � ��

1
2 R

��m2 � �2�
1
2  ��

1
2 R

�
: (20)

Now we concentrate on the right sector HR R � � R.
Because of invariance with respect to translation in the z
direction, we go to momentum eigenstates �i@3 R �
p3 R (we take the third direction to be periodic of length
L, and take the limit L! 1 at the end of the calculation).
In each momentum sector, the operator HR takes the form

HR � p3�3 �H?; (21)

H? � ��i@a � eAa��
a; a � 1; 2: (22)

We note that f�3; H?g � 0. Hence, if j�i is a properly
normalized eigenstate of H? with eigenvalue � then �3j�i
is a properly normalized eigenstate of H? with eigenvalue
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��. So, all eigenstates ofH? with nonzero eigenvalues are
of the form j�i; j � �i � �3j�i, where � > 0. Also, �3

maps zero eigenstates of H? to zero eigenstates of H? and
hence we can classify all zero modes of H? by their
eigenvalue under �3.

The eigenstates of HR can now be expressed in terms of
eigenstates of H?. Clearly, �HR;H

?2� � 0, so HR only
mixes states j�i; j � �i. For � > 0, we write

 R � c1j�i � c2�
3j�i (23)

where c1; c2 satisfy:

�
� p3

p3 ��

��
c1
c2

�
� �

�
c1
c2

�
: (24)

Hence � � 
�����������������
�2 � p2

3

q
and,

�
c1
c2

�

� �4��2 � p2

3��
�1=4




�
sgn�p3����2 � p2

3�
1=2  ��1=2

���2 � p2
3�

1=2 � ��1=2

�
: (25)

So each eigenstate of H? with an eigenvalue � > 0 gen-
erates two eigenstates of HR.4

The zero modes ofH? are simultaneously eigenstates of
HR with eigenvalue,

� � p3�
3: (26)

Hence, when the mass m! 0, zero modes of H? become
gapless modes of H capable of traveling up or down the
flux tube depending on the sign of �3 and on the chirality.
We will shortly see, that at finite chemical potential, pre-
cisely these modes carry an axial current along the flux
tube.

The following quantity will be of particular importance
to us: N � N� � N�, where N� and N� are the numbers
of zero modes of H? with �3 � 1 and �3 � �1 respec-
tively. Observe, that if j�i is a zero mode ofH? with j�i �
�u; v� then,

Dv � 0; Dyu � 0; (27)

where,

D � �i@1 � @2 � e�A1 � iA2�: (28)
-4
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Hence N� � dim�ker�Dy��, N� � dim�ker�D��, and,

N � index�H?� � N� � N�

� dim�ker�Dy�� � dim�ker�D��: (29)

The index of the elliptic operatorH? has been computed
in numerous works [6–8] using two types of methods: (i)
complex analysis methods, (ii) trace identities and axial
Euclidean anomaly in 2 dimensions (this is particularly
interesting in the light of our using 4 dimensional anoma-
lies above to derive axial currents on flux tube at finite �).
The zero modes have also been computed exactly for some
simple configurations of the gauge field [8]. In general the
index is given by

index �H?� �
e�
2�

; (30)

� �
Z
d2xB3�x�: (31)

Hence the index measures the number of flux quanta
through the xy plane, which is in essence a topological
quantity.

Now let us proceed to compute the axial fermion current
induced at finite chemical potential �. For further general-
ity, we also include the effects of nonzero temperature T.
The axial current density in the third direction is given by

j35�x� �  �x��3�5 �x� �  y
L�

3 L�x� �  y
R�

3 R�x�:

(32)

We wish to compute the expectation value of the total
current along the flux tube, J35 �

R
d2xhj35�x�i. At finite

chemical potential and temperature we have,

hj35�x�i �
X
E

n�E� y
E�x��

0�3�5 E�x�

�
X
�

�n���2 �m2�1=2�

� n����2 �m2�1=2�� y
R��x��

3 R��x�: (33)

Here, n�E� � �sgn�E�=�e2�E���sgn�E� � 1�� is the usual
Fermi-Dirac distribution,  E are eigenstates of H with
energy E,  R� are eigenstates of HR with eigenvalue �,
and we have used Eq. (20). The explicit form of  R� in
terms of eigenstates of H? implies,

hJ35i �
1

L

X
p3

X
�>0

X
s�

�n���2 � p2
3 �m2�1=2�

� n����2 � p2
3 �m2�1=2��


 h sR��; p3�j�
3j sR��; p3�i (34)
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�
1

L

X
p3

X
��0

�n��p2
3 �m2�1=2�

� n���p2
3 �m2�1=2��h�j�3j�i: (35)

Here � > 0 label eigenstates of H?, which generate eigen-
states  

R ��; p3� of HR with momentum p3 and eigenvalue

��
����������������
�2�p2

3

q
, while ��0 label the zero modes of H?.

Now, let us evaluate the matrix element h sR��;p3�

j�3j sR��;p3�i for � > 0. Using Eq. (23) and dropping
the subscripts �, p3, s, we obtain, h Rj�3j Ri � �jc1j2 �
jc2j

2�h�j�3j�i � �c�1c2 � c1c
�
2�. Noting, h�j�3j�i� h�j�

�i�0 for �>0, and using the explicit formula (25) for c1,
c2, we obtain, h Rj�3j Ri � sp3��

2 � p2
3�

�1=2. This ma-
trix element is odd in both p3 and s, hence the sum over all
� > 0 in Eq. (34) vanishes , and only the zero modes ofH?

contribute to J35 . The zero modes carry a definite value of
�3, so that h�j�3j�i � �3. Thus, we are left with,

J35 � �N� � N��
1

L

X
p3

�n��p2
3 �m2�1=2�

� n���p2
3 �m2�1=2�� �

e�
2�

nm�T;��; (36)

nm�T;�� �
Z dp3

2�
�n��p2

3 �m2�1=2�

� n���p2
3 �m2�1=2��: (37)

Here, nm�T;�� is just the number density of one-
dimensional two-component (Dirac) fermions of mass m
at finite temperature T and chemical potential �. Hence,
our final result (36) is topological in nature, since for each
value of T and �, it is sensitive only to the total magnetic
flux and is independent of the particular distribution of the
magnetic field.

Several limits of the result (36) are noteworthy. First of
all, in the massless limit m! 0, one has n�T;�� � �

� and,

J35 �
e�

2�2 �: (38)

If there are several species of quarks present, we can sum
Eq. (38) over quark flavors and colors to obtain the current
J3 of Eq. (2), which in the true dense QCD creates the 
boson,

J3 � Nc
X
a

eaQa�a

2�2 �: (39)

This agrees with our result (11) of the previous subsection,
where we explicitly used the factm � 0 (and, hence, chiral
symmetry) in assuming that the axial current conservation
is violated only by anomalies. So, we see that the appear-
ance of axial current on flux tubes, which was derived
somewhat mysteriously in the previous section using the
trick of fictitious chiral anomalies, is microscopically due
to fermion zero modes. Our microscopic approach supports
-5
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the validity of the fictitious chiral anomaly trick and serves
as a check of the anomalous effective Lagrangian derived
in [1].

Let us note that the result (38) is also independent of
temperature form � 0, which is a quite natural feature of a
truly topological phenomenon. More explicitly, this fact is
due to the special property of massless one-dimensional
fermions, namely, their density at finite chemical potential
is temperature independent.

For arbitrary mass m � 0, the density of one-dimension
fermions n�T;�� is generally temperature dependent, so
for simplicity we consider the limit T � 0. Then,

n�0; �� �
�������������������
�2 �m2

p
=� and,

J35 �
e

�������������������
�2 �m2

p
2�2 �: (40)

It is instructive to take the nonrelativistic limit of Eq. (40).
Writing,� � m��nr, where the nonrelativistic chemical
potential �nr � m,

J35 �
e

���������������
2m�nr

p

2�2 �: (41)

In the nonrelativistic setting, J35 is just the spin S3, and for
the case of uniform magnetic field, our result stems from
the familiar fact that all Landau levels are doubly degen-
erate with respect to spin, except the lowest Landau level.
It is amazing that this simple fact has such deep connec-
tions to chiral anomalies in 2 and 4 dimensions.
III. AXION

This section is devoted to the derivation of the anoma-
lous effective Lagrangian including the axion field using
some previously developed methods. While the axion is
considered to be one of the best dark matter candidates (see
original papers [10–13] and reviews [14]), it has not been
discovered yet. We derive novel low energy terms, which
describe the interaction of the axion field with other light
particles: photons and superfluid phonons in dense matter
background. These terms may lead to phenomenologically
important effects related to the axion astrophysics, which
were not discussed previously.

We define the � term in the fundamental QCD
Lagrangian in the standard way, L� �
�g2�=32�2� ~G��aG��a. The existence of the � term implies
a violation of P, CP and T symmetries. However, there is no
experimental evidence for P or CP violation in strong
interactions. For example, CP violation in QCD would
induce electric dipole moments of strongly interacting
particles and there are stringent experimental limits on
those quantities. Thus the absence of CP violating effects
in QCD indicates a very small value for the parameter �:
why is � so small?

The most elegant resolution was proposed by Peccei and
Quinn who assumed that the strong interactions
045011
Lagrangian has a global U�1�PQ chiral symmetry [10].
Weinberg and Wilczek [11] analyzed the consequences
of the Peccei-Quinn symmetry and noticed that the sponta-
neous breaking of a global chiral symmetryU�1�PQ leads to
a light pseudoscalar pseudo-Goldstone boson, called an
axion, that will interact with topological charge density,
�g2=32�2� ~G��aG��a. In papers [12,13] two different types
of the invisible axion models were suggested where it was
demonstrated that the strong CP problem in QCD can be
successfully solved with arbitrarily weak axion coupling
constant.

The only information which is relevant for us in what
follows is the transformation properties of quarks under
U�1�PQ chiral symmetry,

 a ! ei7Q
PQ
a �5

 a; (42)

where QPQ
a is the PQ charge for quark species  a. We

should note that leptons and Higgs bosons have also non-
trivial transformation properties under U�1�PQ symmetry,
however this part is not essential for the present paper. We
note that the axion interacts with gluons through a triangle
diagram, Lagg �

a
fa

g2

32�2
~G��aG��a. It also interacts with

photons La�� � ga��a ~F
��F�� with a coupling constant

ga�� � 1=fa
P
aQ

PQ
a e2a expressed in terms of electric ea

and PQ charges QPQ
a of all quarks and leptons. In what

follows, we identify the axion field with the dimensionless
phase 7�x� (42). Physical, dimensional field a� fa7.

A. Anomalous axion Lagrangian

The key observation here is as follows. The relevant for
this work transformation properties of quarks under chiral
rotations (1) and under PQ rotations (42) are very similar,
Qa ! QPQ

a . Therefore, we can literally follow our previous
calculations (Sec. II) in order to derive the anomalous
effective Lagrangian for the axion field (which replaces
the Goldstone field) in the presence of chemical potential
�. We use the same trick [1] in this derivation by repre-
senting quark chemical potential as the zeroth component
of a fictitious field V�. The result of this calculation is
almost identical to (6),

L7 � L0
7 � 2@�7������C7��A�F�� � C7�VV�F��

� C7VVV�V���; (43)

where L0
7 describes all nonanomalous terms including the

axion kinetic term f2a�@�7�
2, as well as different interac-

tion terms of the axion with quarks and leptons.
Coefficients C7��, C7�V , C7VV can be easily extracted
from the calculation of the triangle diagram and are given
by
-6
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C7�� � �
X
a

e2aQ
PQ
a

16�2 ; C7�V �
X
a

ea�aQ
PQ
a

8�2 ;

C7VV � �
X
a

�2
aQ

PQ
a

16�2 ;

(44)

where label a runs over all species (colors) of particles with
nonzero PQ charges including quarks and leptons. The first
term �C7��7 ~F��F�� in Eq. (43) is the well known inter-
action between the axion and photons.5 In particular, this
term describes the axion decay into two photons. It also
describes the axion $ � transitions in the presence of the
magnetic field B. The corresponding effect plays a crucial
role in most axion search experiments. We shall not discuss
this term in the present paper.

Two other terms are new, and as far as we know, these
terms have never been discussed in the literature. The last
term in Eq. (43) vanishes in the topologically trivial back-
ground. However, in the presence of superfluid vortices
similar to the case discussed in [1], this term, among other
things, describes the axion $ superfluid phonon transi-
tions. It might be phenomenologically important in rotat-
ing neutron stars.

B. Possible applications

Let us concentrate on the middle term in brackets in
Eq. (43). We rewrite it in terms of the physical fields in the
following way:

L7 � 4C7�V ~r7 	 ~B: (45)

This interaction explicitly shows that a Peccei-Quinn cur-
rent corresponding to the Peccei-Quinn symmetry will be
induced in the presence of an external magnetic field.
Indeed, one can literally follow the derivation (11) to get
the following expression for the Peccei-Quinn current,

JPQ �
Z
S
d ~S 	 ~j � 4C7�V

Z
S
d ~S 	 ~B �

X
a

ea�aQ
PQ
a

2�2 �;

(46)

where � is the total magnetic flux through the cross section
S, and we have neglected the lepton chemical potentials.
So we see that the anomalous term in Eq. (45) implies the
existence of a Peccei-Quinn current (46) flowing through
the dense matter, which is proportional to the magnetic
flux.

A few remarks are in order. First, as we noticed previ-
ously, the result (46) does not depend on fa similar to the
previous case (11) when the result did not depend on f. It
may look very suspicious because one can make fa arbi-
trarily large, which corresponds to an arbitrarily small
5In the literature devoted to the axion [14] one typically
includes in C7�� the effects due to the mixing of the axion
with Goldstone fields such as the pion. We ignore this mixing for
all qualitative discussions in what follows.
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interaction of the original fermions with the axion.
However, the point is that the current (46) corresponds to
the equilibrium state in an infinitely large bulk of matter.
The relevant question for the present case is: what is the
formation time for such a current? It is obvious that with fa
increasing, the formation time also increases, such that
there is no contradiction with Eq. (46) being independent
of fa.

Our next remark is that the Peccei-Quinn (46) as well as
the axial current (11) are unique due to their topological
nature. Indeed, even in the strongly interacting theory the
axial current (11) is persistent and nondissipating. It means
that even in such an unfriendly environment as the dense
quark/nuclear matter in neutron stars the current does not
dissipate due to rescattering and can be effectively used to
deliver information across the bulk of the star. Therefore,
there is a unique opportunity here to use our topological
currents (11) and (46) for delivering the asymmetry pro-
duced in the bulk of the star to solve the problem of neutron
star kicks [15,16].

The problem can be explained as follows. As is known,
pulsars exhibit rapid proper motions characterized by a
mean birth velocity of 450 90 km=s. Their velocities
range from 100 to 1600 km=s [15], while their distribution
leans toward the high-velocity end, with about 15% of all
pulsars having speeds over 1000 km=s [16]. Pulsars are
born in supernova explosions; therefore, it would be natu-
ral to look for an explanation in the internal dynamics of
the supernova. However, three-dimensional numerical
simulations [17] show that even the most extreme asym-
metric explosions do not produce pulsar velocities greater
than 200 km=s. Therefore, a different explanation should
be found. The origin of these motions has been the subject
of intense study and several possible explanations have
been proposed. Many of the suggested mechanisms are
capable (‘‘in principle’’) to produce the required asymme-
try. Indeed, in the presence of an external magnetic field,
the produced neutrinos are automatically asymmetric with
respect to the direction of ~B. However, the main common
problem suffered by most suggested mechanisms is the
difficulty of delivering the produced asymmetry to the
surface of the star. Only in this case, the asymmetry may
result in producing the proper motion of the entire star. To
overcome the difficulty with delivery of the produced
asymmetry to the surface, some proposals, for example,
are based on new particles (such as a sterile neutrino),
which could escape from the bulk of the neutron star and
deliver the asymmetry to the surface, see e.g. [18,19].6 Our
realization of the idea [19] that the magnetic field may be
correlated with the momentum of a very weakly interacting
particle, which can easily escape the star (Majoron or sterile
neutrino as suggested in [19]). Dynamics, more precisely, anom-
aly, does the job of correlating the magnetic field with the weakly
interacting axion current.
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main observation here is that due to their topological
nature, the currents (11) and (46) may be capable of
delivering the required asymmetry (produced in the inte-
rior of the star) to the surface without dissipation [20].
IV. CONCLUSION AND FUTURE DIRECTIONS.

In this paper we have discussed the appearance of axial
current on magnetic flux tubes at finite fermion chemical
potential using several approaches. All of these approaches
are weaved together by chiral anomalies. Microscopically,
the current can be understood in terms of fermion zero
modes on the flux tube. These fermion zero modes are in a
certain sense themselves due to anomaly in 2 dimensional
Euclidean field theory and have implications for the 2� 1
dimensional QED. Thus, we see that our trick with ficti-
tious anomalies at finite chemical potential in 3� 1 di-
mensions, in a sense continues the propagation of anomaly
from 2 to 3 to 4 dimensions. This is a common pattern in
the study of anomalies.
045011
We anticipate a number of different applications of the
derived anomalous effective low energy Lagrangian for the
Goldstone bosons and axion in dense matter. Some of them
were mentioned in the original paper [1], others were
mentioned in the present text. One specific application,
which we believe deserves further study is the explanation
of neutron star kicks [20]. In addition, novel anomalous
effective Lagrangian including the axion field might be
quite important for analysis of a number of astrophysical
problems, which would be the subject of a future work.
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