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Semiclassical approximation to supersymmetric quantum gravity
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We develop a semiclassical approximation scheme for the constraint equations of supersymmetric
canonical quantum gravity. This is achieved by a Born-Oppenheimer type of expansion, in analogy to the
case of the usual Wheeler-DeWitt equation. The formalism is only consistent if the states at each order
depend on the gravitino field. We recover at consecutive orders the Hamilton-Jacobi equation, the
functional Schrödinger equation, and quantum gravitational correction terms to this Schrödinger equation.
In particular, the following consequences are found: (i) the Hamilton-Jacobi equation and therefore the
background spacetime must involve the gravitino, (ii) a (many-fingered) local time parameter has to be
present on super Riem � (the space of all possible tetrad and gravitino fields), (iii) quantum super-
symmetric gravitational corrections affect the evolution of the very early Universe. The physical meaning
of these equations and results, in particular, the similarities to and differences from the pure bosonic case,
are discussed.
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I. INTRODUCTION

The consistent accommodation of the gravitational in-
teraction into the framework of a quantum theory remains
to be completed. Among the major approaches are string
theory and canonical quantum gravity, cf. [1–3] and the
references therein. It is generally assumed that supersym-
metry [4] is a major ingredient of string theory. This is also
one of the motivations for the study of a supersymmetric
version of the canonical quantization of gravity, indepen-
dent of the search for a unified theory of all interactions. In
addition, the implementation of supersymmetry (SUSY)
into canonical quantum gravity may simplify the formal-
ism in a specific aspect: If the quantum constraint algebra
closes, the (more complicated) Hamiltonian constraint is
automatically fulfilled once the (simpler) SUSY con-
straints hold. The formalism is especially simplified if
suitable choices are made regarding the canonical conju-
gate momenta, leading to simplifications in the SUSY
constraints and therefore the Hamiltonian constraint. This
has led to a detailed study of supersymmetric canonical
quantum gravity, see [5,6] and the references therein for an
introduction and review. Pertinent applications include
black-hole physics [7] and quantum cosmology [5,6,8].

Research in supersymmetric quantum cosmology (SQC)
provides the means to investigate some relevant problems
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concerning the evolution of the very early Universe,
namely, (a) relating exact solutions found for spatially
isotropic and anisotropic cosmologies with those obtained
from the use of specific boundary conditions in usual
quantum cosmology [9], (b) probing how the symmetry
properties of dualities in superstring theory can be induced
into the quantum states [10] and (c) analyzing the possi-
bility of inflation occurrence and structure formation [11–
13]. The essential feature is that SQC subscribes to the idea
that treating both quantum gravity and SUSY effects as
dominant would give an improved description of the early
Universe. Such an approach can bring profound conse-
quences for the wave function of the Universe: the quan-
tum state can be written as an expansion in linearly
independent fermionic sectors, each associated with a spe-
cific bosonic functional (of the same type as those satisfy-
ing the Wheeler-DeWitt equation). Besides the pertinent
question of how to interpret the meaning of such quantum
states [14], investigating whether conserved currents and a
positive probability density can be obtained in this setting
[15] must be performed by taking into account the enlarged
structure for the wave function. Moreover, any cosmologi-
cal evolution determined within SQC must eventually be
consistent with a mechanism for SUSY breaking [11,16].
Nevertheless, in spite of all the progress achieved so far,
further efforts are required to find new states determining a
consistent dynamical path from a supersymmetric quantum
cosmological to a classical cosmological stage [6].

It is in the context of the above description that the
purpose of the present paper can be seen: investigate the
semiclassical approximation of supersymmetric canonical
quantum gravity. The viability of such a scheme is crucial
for the framework of quantum gravity in the presence of
-1  2005 The American Physical Society
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supersymmetry. In the bosonic case, a formal Born-
Oppenheimer type of approximation scheme has been
successfully applied to the Wheeler-DeWitt equation [1].
This has led, in particular, to the derivation of quantum
gravitational corrections terms which modify the limit of
quantum theory on a fixed background spacetime [17–19].
Here we extend this formalism to the supersymmetric case.
We restrict ourselves to the theory of N � 1 supergravity
(SUGRA) in four spacetime dimensions.1 Compared with
the case of the bosonic Wheeler-DeWitt equation, this
leads to equations of the same type, bearing similarities
as well as various important differences arising from the
presence of fermions (via SUSY). The framework and
results presented herewith may constitute an efficient
means to study the influence of SUSY in the physics of
the very early Universe.

Our article is hence organized as follows. In Sec. II the
Hamilton-Jacobi equation for supergravity is recovered. It
is shown that the presence of the gravitino field is manda-
tory at each order of the approximation. The gravitino thus
has to appear already at the order of the classical back-
ground spacetime. Section III presents the derivation of the
functional Schrödinger equation for nongravitational
fields, that is, the limit of quantum field theory on a given
background. In Sec. IV we then derive supersymmetric
quantum gravitational correction terms to this equation.
Section V conveys a summary and discussion of our work
and results, together with an outlook of subsequent future
research to be followed. In order to assist the reader, some
appendixes have been included. In Appendix A we review
the formalism of supersymmetric canonical quantum grav-
ity. The Born-Oppenheimer scheme for the bosonic case is
briefly reviewed in Appendix B. Technical calculations
referring to Secs. II, III, and IV are relegated to
Appendixes C and D.
II. RECOVERY OF THE HAMILTON-JACOBI
EQUATION

The purpose of this section is the application of the
semiclassical approximation scheme, previously devel-
oped for the nonsupersymmetric case, to canonical quan-
tum gravity with SUSY. Readers who are not familiar with
semiclassical gravity, or with the canonical formalism for
SUSY quantum gravity, may wish to consult
Appendixes A, B, and C, see also [20].

We start by mentioning a well known general feature of
all supersymmetric theories, namely, that the commutator
of a primed and an unprimed SUSY transformation yields a
coordinate transformation in spacetime. This translates
into the anticommutator expression
1N � 1 SUGRA in four spacetime dimensions is the simplest
SUSY extension of general relativity. It is related to the theory of
N � 1 SUGRA in 11 spacetime dimensions, to which super-
strings are associated in the context of M-theory.
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�SA�x�; �SA0 �y��� � 4�G@H AA0 �x�
�x; y�; (1)

where SA�x� and �SA0 �y� are the constraints corresponding to
the SUSY transformations. For consistency, then, H AA0

should also vanish as a constraint. This constraint is in fact
related to the generators of spacetime transformations. We
shall make use of the decomposition

H AA0 � �nAA0H? � eiAA0H i; (2)

where nAA0 and eiAA0 are the spinorial versions of the normal
vector and the dreibein, respectively, cf. Appendix A; H i
and H? denote, respectively, the gravitational momentum
and Hamiltonian constraints. In particular, H? is the
normal projection of the constraint H AA0 . We obtain it
from (2) after multiplication and contraction with �nAA

0
.

Explicitly we have (in a quantum mechanical representa-
tion; the quantities are introduced and explained in
Appendix A),
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where V�e� �
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p
3sR=16�. For the semiclassical approxi-

mation developed here we employ this version (1)–(3) of
the constraints instead of those extracted directly from the
action, cf. [5,6]. This has the advantage that the (formal)
closure of the algebra, cf. also Eq. (A21), is automatically
implemented. Expression (3) can be written in a less
symmetric, but somewhat simplified form. For the fermi-
onic part of the fifth line in (3), one can write
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we find that the terms containing 3sDj�
� A0k� cancel out.

The normal projection of the remaining term containing
3sDj 

A
k is given by, cf. (A15) and (A16),
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For later use we introduce for the normal projection of the
expression �ilmDB
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We then get the following expression from (3):
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Since in the parts (i) and (ii) of (5) the functional derivative

=
eAB

0

j can also act on DB
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calculate these derivatives (see Appendix C). We find
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The ‘‘divergence’’ 
�0� arises from the functional deriva-
tive at the same space point. It has to be regularized in a
rigorous way, which is beyond the scope of this article. For
the semiclassical approximation, addressing this issue is of
less relevance, since it just corresponds to a factor ordering
ambiguity. In the rest of this article we shall suppress 
�0�.

The SUSY version of the Wheeler-DeWitt equation is
then found to read

�H? �Hm
?� � 0; (8)

where H? (see discussion above) denotes the gravita-
tional SUSY contribution to the Hamiltonian constraint,
and Hm

? is the contribution from nongravitational (‘‘mat-
ter’’) fields. For definiteness we shall take for Hm

? the
Hamiltonian density of a minimally coupled scalar field�,
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where hij denotes the three-metric, h its determinant, and
the self-coupling potential U��� is left unspecified. The
more realistic (and more complicated) case of supermatter
should be treated in a future work, cf. [5,6]. The state  of
SUSY quantum gravity is a wave functional defined on the
space of all tetrad and gravitino fields (plus possible other
fields) on a spatial hypersurface �. We shall call this space
super Riem�, extending the notion Riem� for the space of
all three-metrics in canonical quantum gravity [1].

Similarly to the bosonic case, we shall use an ansatz of
the form (see Appendix B)

�e;  ;�� � exp
�
i
@
S�e;  ;��

�
; (10)

and expand S into a power series with respect to G,

S�e;  ;�� �
X1
n�0

Sn�e;  ;��Gn�1: (11)

By means of this procedure, we then investigate the ex-
pansion of (8) in powers of G. The lowest order is G�2. As
in the bosonic case, this yields the independence of S0 on
the matter field �, that is, S0 � S0�e;  �, cf. Appendix B.

At order G�1 we find contributions which determine the
Hamilton-Jacobi equation of supersymmetric quantum
gravity. It reads
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Let us begin by investigating the question whether the
Hamilton-Jacobi equation,

1

2
Gijkl
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S0

hkl

� Vg � 0; (13)

of the bosonic case is contained in (12). For this purpose
we ignore all terms involving the gravitino and reformulate
the remaining part in terms of the three-metric hij.

If we assume that S0�e� can be rewritten as S0�hij�, we
can use Eq. (C29) to transform the functional derivatives.
In addition, we have to take into account that the expansion
parameter used in Appendix B (where the conventions of
the bosonic case are used) differs by a factor 32� from the
one we use here. Moreover, we have the following rela-
tions:

V�e� � �
1

32�
Vbos�hij�; (14)

and
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1

32�
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This, then, leads to
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A comparison with (13) shows that there is almost a total
equivalence. Only the second term in (16) has no counter-
part there. Its presence can be traced back to the following
observation.

As described in detail in [5,6], the constraints of super-
symmetric quantum gravity can be established either
(i) directly from the N � 1 SUGRA action by means of a
variational principle or (ii) by further simplifying those
mathematical expressions through a sensible choice of, for
example, the canonical conjugate momenta in their (quan-
tum) operator representation; this leads to much more
tractable expressions. It is the anticommutator of the
SUSY constraints within (ii) that produces the much sim-
pler form of H AA0 and therefore of H? and H i [see
Eqs. (1)–(3)]. If we had directly applied the approximation
scheme to the quantum version of H? within (i), the
second term in (16) would be absent. One can interpret
this term as originally belonging to the momentum con-
straints H i.

In the bosonic version of the semiclassical approxima-
tion one starts with the constraints as they are derived from
the action. This is why there a term analogously to term (iv)
in (5) is absent from the very beginning. Therefore, to
facilitate the comparison with the bosonic case and to
concentrate on the intrinsic differences, we shall not take
into account term (iv),
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in the following. Nevertheless, if one wanted, one could
carry term (iv) through all the following expressions; this
would, however, not have any consequences for the main
results.

Since the Hamilton-Jacobi equation of pure general
relativity, Eq. (13), can be recovered in this way, one
may try to decompose the full Eq. (12) into a part depend-
ing only on the tetrad and a mixed part. We impose in
addition the requirement that we must find the standard
classical spacetime background in our approximation.
Therefore we make the ansatz,

S0�e;  � � B0�e� � F0�e;  �; (18)

for the lowest order in the expansion (11). On the level of
the WKB wave functional, this corresponds to the factori-
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corresponding to the Hamilton-Jacobi equation (13). A
solution B0 then determines the condition for the part F0,
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(20)

which is automatically fulfilled if S0 is a solution of (12)—
without the omitted term (17)—and F0 � S0 � B0.

It is now appropriate to interpret the solutions of the
Hamilton-Jacobi equation (12). A particular aspect, distin-
guishing this equation from its bosonic analogue (see
Appendix B) is the presence of the gravitino in the first
and third terms. This means that it will generically be
present in S0 (or in F0)—see Eq. (18) above. Moreover,
one can indirectly prove that S0 must depend on the grav-
itino. The argument goes as follows.

It is known from the full theory that a pure bosonic
solution, �e�, to the full set of constraints cannot exist
[21]. In fact, this argument can be extended in a straight-
forward way to each term in the semiclassical expansion,
as we shall show now. In analogy to the full theory we act
-4
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with the Hermitian conjugated SUSY constraint on  [see
Appendix A and, in particular, Eq. (A19)] and multiply it
with ���1. With the ansatz  � exp�i�S0G�1 � S1 �
S2G� . . .�=@� we obtain in the lowest order G0:

���1 �SA0 �
O�G0�

�ijkeAA0i
3sDj 

A
k � 4�i Ai
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i

� 0:

(21)

Similar to the full theory this must hold for arbitrary fields
 Ai and eAA

0

i . First we find that (21) does not allow trivial
solutions, that is, S0 must at least depend on eAA

0

i .
Otherwise we would get the condition
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which cannot hold for all fields. Let us now assume that S0
does not depend on the gravitino field  Ai . Integrating (21)
with an arbitrary continuous spinorial test function ��A

0
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From �I0 � I0 � I00 � 0 one gets the same contradiction
as in the full theory, since

�I0 �
Z
d3x�ijkeAA
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i �x� ��A
0
�x� Ak�x�@j!�x� � 0

cannot hold for all fields. In higher orders, the calculation
turns out to be simpler than in the lowest order. For n  1
we obtain

���1 �SA0 �
O�Gn�

�4�iGn Ai

Sn

eAA

0

i

� 0: (22)

There are two possible conclusions. The first possibility is
to assume that Sn does not depend on the bosonic field eAA

0

i .
This would be very restrictive and, moreover, no proper
bosonic limit would exist. We therefore dismiss this option
as irrelevant for the semiclassical approximation. The sec-
ond possibility to satisfy (22) is to introduce a dependence
on the gravitino field at each order. Hence we must have
Sn � Sn�e;  � for all n. The consequence is that the
Hamilton-Jacobi equation—and therefore the now re-
trieved ‘‘background spacetime’’—must necessarily in-
volve the gravitino, a conclusion identical to what
045006
followed from the SUSY Hamilton-Jacobi equation (12),
or (19) and (20).

Let us now elaborate more on this important feature. As
shown in [22,23] (cf. also [1] and Appendix B) for the pure
bosonic case (that is, for pure general relativity), a solution
of the Hamilton-Jacobi equation conveys a classical space-
time which can serve as the appropriate background for the
higher orders. This is due to the fact that such a solution is
equivalent to the field equations originating from the
Einstein-Hilbert action. This constitutes DeWitt’s interpre-
tation [22]: Every solution S0 describes a family of solu-
tions to the classical field equations. For every three-
geometry there is one member of this family with a space-
like hypersurface being equal to this three-geometry. But,
as mentioned, the situation in the semiclassical approxi-
mation of supersymmetric quantum gravity has a particular
difference: the presence of the gravitino.

In order to address this feature it may prove relevant to
mention the following. The use of strictly bosonic back-
grounds constitutes the sole procedure in general relativity
and has also been the norm when dealing with classical
black-hole solutions in SUGRA and superstring theories
[3,4]. Being more specific, it is required that those back-
grounds, while satisfying the equations of motion, be
invariant under SUSY transformations. This leads to con-
ditions, namely, that the parameters of the SUSY trans-
formation must satisfy a Killing spinor equation.
Nevertheless, there have been some notable exceptions,
see, for example, [24–26] and in particular [27]. In [24]
an exact, asymptotically flat, stationary solution of the field
equations of a SUGRA theory was found, constituting a
supersymmetric generalization of a black-hole geometry.
Subsequently, another type of solutions describing super-
partners to the bosonic configurations was presented in
[25]. In these solutions, the role of the classical configura-
tion (e.g., the black hole) is played by a solution with
certain fermionic (i.e., gravitino) field excitations. The
full metric solution consists of a supermultiplet, formed
by supertranslated partners to the purely bosonic configu-
ration (see [25] for more details).

It is in this context that we can interpret our results for
the SUSY Hamilton-Jacobi equation (12), inducing a
spacetime background with both tetrad (graviton) and
fermionic (gravitino) terms. Being more concrete, such a
supersymmetric configuration will be a solution of the
equations of motion of the theory, with a metric being
written as

g � gB � gS; (23)

where the term gB denotes the ‘‘body’’ and gS the ‘‘soul,’’
adopting the definitions and nomenclature introduced by
DeWitt in [27]. It should be noticed that gB and gS corre-
spond, respectively, to the purely bosonic and fermionic
sectors. In other words, a spacetime configuration induced
from a solution of (12) will constitute a Grassmann-alge-
-5
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bra-valued field that can be decomposed into the body
which takes values in the domain of real or complex
numbers and a soul which is nilpotent [27]. Moreover,
we take the point of view that the body of the
Grassmann-valued field must be given an operational in-
terpretation and identified with a standard classical bosonic
configuration. This overall description corresponds to the
scenario of supermanifolds (and therefore
superRiemannian geometries) thoroughly described in
[27].2

A solution of the SUSY Hamilton-Jacobi equation (12)
will thus correspond to a spacetime (yielding an appropri-
ate background for the higher orders), whose metric in-
cludes the standard classical bosonic sector plus
corrections in the form of gravitino terms. Therefore,
DeWitt’s interpretation could again be employed: Every
such solution S0 describes a family of solutions to the
classical field equations. For every three-geometry there
is one member of this family with an appropriate spacelike
hypersurface. The important additional feature is that we
will then be dealing with a configuration defined on the
space of all possible spatial tetrads and gravitino fields,
super Riem �. The standard classical background for
Eq. (12) and the expansion (18) can be interpreted as
follows: B0 together with (19) and a condition obtained
from the expansion of the other constraints yields a stan-
dard classical spacetime without gravitino. The part F0 and
(20) would then provide corrections to this. Such an inter-
pretation, however, does not close the discussion on the
issue and further analysis is certainly required. Finally, and
although perhaps surprising at first glance, the presence of
the gravitino (even at higher orders of approximation) is
not necessarily in conflict with observation. Long ago,
Pauli has performed a WKB approximation for a Dirac
electron, which has some similarities to the present scheme
[28]: The semiclassical approximation of the Dirac equa-
tion leads, in the leading order, to a Hamilton-Jacobi
equation for a spinless classical relativistic particle (where
the mass is given by the electron mass). Only the next order
(order @) contains information about the electron spin. In
the same way one might expect that the spin-3=2 nature of
the gravitino does not play a role at the leading order of our
semiclassical expansion scheme, that is, at the order of the
Hamilton-Jacobi equation, but that it comes into play only
at the following orders.
III. RECOVERY OF THE FUNCTIONAL
SCHRÖDINGER EQUATION

We shall now proceed with the semiclassical expansion
of (5) and (8). At order G0 we expect to recover the func-
2A related discussion is made in [26], with the introduction of
a line element ds2 � gABdz

AdzB, where zA � �x'; ()�, and ()

being Grassmannian coordinates. The metric can then be divided
in sectors such as, e.g., Bose-Bose g'*, and Fermi-Fermi g)+.
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tional Schrödinger equation. Neglecting the contribution of
term (iv) in (5), we find
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(24)

In analogy to Appendix B we simplify this equation by
introducing the wave functional

# � W�e;  � exp
�
i
@
S1�e;  ;��

�
; (25)

cf. Eq. (B7), by demanding the following condition for the
WKB prefactor W:
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We can then rewrite this condition in the form
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We recognize that the right-hand side of Eq. (27) prevents
it to be interpreted as a conservation law [see Eq. (B8)] in
the context of super Riem �. As expected, only in the very
special case of a vanishing dependence of S0 and W on the
gravitino can a conservation law be formulated. By assum-
ing that S0�e� and W�e� can be rewritten as S0�hij� and
W�hij�, we then obtain a simpler expression from (27), in
the form of a conservation equation,

nAA
0 



eAB
0

j

�
DBB0

ij

S0

eBA

0

i

W�2

�
� 0: (28)

However, as we have seen above, S0 must depend on the
gravitino.

Inserting (25) and (26) into (24), we find the Tomonaga-
Schwinger equation,
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The time functional ,�x; e;  � is defined by
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(30)

For clarity we show the arguments �y� of the functional
derivatives on the left-hand side. Note that, of course, all
quantities involving the tetrad or the gravitino on this side
depend on y. The functional Schrödinger equation is found
from (29) after integration over space.

One may wish to separate (29) into a bosonic and a
fermionic part, in analogy to the treatment of (12). In
addition to the already decomposed S0 we try the ansatz,

S1 � B1�e;�� � F1�e;  ;�� (31)

and assume a product ansatz for the WKB prefactor,

W�e;  � � Wb�e�Wf� �:
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The wave functional # can be factorized as

# � ~#/; (32)

where

~# � Wb exp
�
i
@
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�
i
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�
: (33)

Now we see that an expansion of (29) with decomposed S0
and S1 contains a part of the form
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(34)

To demand that these terms vanish is not possible, since F0
is already determined by the Hamilton-Jacobi equation (12)
and ~# should be a solution of the reduced local Schrödinger
equation (35), see below. This suggests that the require-
ment for a local Schrödinger equation that does not depend
on the gravitino is impossible to achieve. We could of
course simply demand that

�4��i@�i
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(35)

holds with a redefined time functional ~,. But in order to
obtain this, we have to impose various additional condi-
tions, namely, for the factors Wb and Wf, as well as for the
part F1 that depends on the solution ~# of (35). In particular,
the part F1 would be determined by the matter field, since
(34) does not vanish in general. This should be carefully
analyzed in view of the ansatz (31). Furthermore, addi-
tional conditions are hard to justify and may be without any
physical meaning. The lesson learned from this is that the
presence of the gravitino is mandatory for the definition of
the time functional as well as for the Schrödinger equation.

Nevertheless, the interpretation of the time functional
should be similar to the one given in Appendix B: It defines
a local (‘‘many-fingered’’) time parameter. However, this
should now be on the space of all possible spatial tetrad and
gravitino fields, super Riem �. The question of how to
interpret a classical background containing the gravitino,
inducing this type of time functional, would require the
discussion and proposed interpretation presented in the last
section.

Finally, let us indicate that the functional Schrödinger
equation can only be recovered in this way if a real solution
S0 to the Hamilton-Jacobi equation is chosen. One would
not have been able to derive it from, for example, a
superposition / �exp�iS0� � exp��iS0��. This problem
arises, of course, already in the nonsupersymmetric case
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where it was shown that the components in such a super-
position become effectively independent due to decoher-
ence by additional degrees of freedom [29]. The same is
expected to hold here. Decoherence should be efficient
during the greatest part of the evolution of the Universe.
In some regions (such as the Planck regime or the region
corresponding to a classical turning point) the various
semiclassical components may interfere with each other
and thereby spoil the validity of the approximation scheme
presented here [30].
IV. CORRECTIONS TO THE SCHRÖDINGER
EQUATION

We shall now continue with the semiclassical expansion
scheme. At the order G1 we find the following equation:
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(36)

In order to obtain the Schrödinger equation with correc-
tions of orderG, we must perform various steps on a formal
level, which are very similar to those applied in [17]. The
derivation is straightforward but lengthy. We therefore
relegate some of the calculations to Appendix D and
present here only the results and their physical discussion.
045006
First we use Eqs. (D1)–(D8) to rewrite the expressions
containing S1 in (36) in terms of # and W. We also use the
definition (30) of the time functional ,�x; e;  � and make
the decomposition

S2�e;  ;�� � 12�e;  � � 2�e;  ;�� (37)

in order to separate the pure gravitational parts of (36) from
those containing the matter field [17]. By demanding the
following condition for 12�e;  �:
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which is motivated by the analogous step in the standard
quantum mechanical WKB expansion [31], we can rewrite
(36) as
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Up to the current order the wave functional has assumed
the form

 � exp
�
i
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�1 � S1 � S2G�
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: (40)

Since we have already fixed the pure gravitational phase12
in (38), and we are mainly interested in the matter part, we
can restrict our attention to

� � # exp
�
i
@
2G

�
; (41)

which contains the functional # and the not yet determined
part 2 of S2. Now we multiply the uncorrected Eq. (29)
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in Sec. II. The minus sign appears due to our convention for the
definition of (43).
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with exp�i2G=@� and add it to Eq. (39) multiplied by
�G# exp�i2G=@�. Using (D9) and (D10), we can perform
the next steps and obtain the local Schrödinger equation
with corrections up to the order G1:
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On a formal level, the terms in the fourth and fifth lines
have the same structure as those which already appeared in
the expansion of the Wheeler-DeWitt equation [17].

For further treating (42), we apply the idea of the de-
composition into a ‘‘normal’’ and a ‘‘tangential’’ part [17],
where normal means normal to hypersurfaces S0 �
constant (thus being directed along the classical spacetimes
defined by S0), and tangential means tangential to S0 �
constant, see below. For this purpose it is appropriate to
introduce a metric G on the space super Riem �, which we
shall call ‘‘super-DeWitt metric’’ and whose properties still
have to be investigated. This metric should be the super-
symmetric analogue of the DeWitt metric Gijkl. The main
difference to Appendix B is that we must consider now
super Riem �, the direct sum of the tetrad space and the
gravitino space. It contains vectors of the form
�eAA

0i;  Bj � � qa. Henceforth, the Latin indices starting
with a are ‘‘condensed’’ superindices which run through
all bosonic and fermionic degrees of freedom.

The metric G reads in block form

G ab �
B S1
S2 F

� �
: (43)

The blocks B and F denote the pure bosonic and pure
fermionic part, respectively; S1 and S2 are the mixed off-
diagonal parts. We determine the blocks by the require-
ment that the metric applied to the vectors 
S0=
qa �
�
S0=
e

AA0

i ; 
S0=
 
B
j � and 
#=
qb yields all terms con-

taining two derivatives in the local Schrödinger equa-
tion (29). The explicit form of the blocks can be read off
immediately. For B one gets

B � �4�i�nAA
0
DBB0

ij � nBB
0
DAA0

ji �: (44)

Since (29) contains no terms with a double derivative with
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respect to  Ai , the lower diagonal block F vanishes,

F � 0:

For S1 and S2 we get

S 1 � 4�inBB
0
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With arbitrary vectors
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; (46)

we then obtain
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For reasons of consistency, the upper diagonal part should
contain the DeWitt metric. Of course, it cannot be exactly
the DeWitt metric due to the change of the fundamental
bosonic field from hij to eAA

0

i . In some sense it is a tetrad
version of it, as we can easily see. We just have to apply the
transformation (C29). Let a�e� and b�e� be two arbitrary
functionals that can also be written as a�hij� and b�hij�. We
then have
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(48)

Therefore, we see that for quantities on superspace that can
be written in terms of the three-metric hij and the gravitino
the block B is the DeWitt metric.3

For further abbreviation and a clearer notation we in-
troduce the operator

A :�
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 Bl

: (49)

Using these definitions, the Hamilton-Jacobi equation (12)
without the omitted term (17) assumes the condensed form

1

2
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� A�S0� � V � 0: (50)

We also obtain a short form of the local Schrödinger
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equation (29),
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The corrected local Schrödinger equation (42) then reads
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If the potential term V vanished, this would be the mathe-
matical expression with which we would have to work. In
our case of nonvanishing V it makes sense to decompose
the correction terms in a normal and a tangential part, as
mentioned above [17]. The directions are defined with
respect to hypersurfaces super Riem � in which S0 �
constant holds. The normal part is given by a vector
parallel to 
S0=
qa and the tangential part by a vector
orthogonal to 
S0=
qa. In other words, we consider a
trajectory of a classical spacetime4 in configuration space
and split it into a part in the direction of the evolution and a
part transverse to it (see Appendix B and references therein
for more details).

For the decomposition of the first correction term in
(52), Gab
#=
qa
W=
qb, we make the ansatz
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� 6Gab
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� Tb: (53)

Therein, 6 denotes a factor which we determine as follows.
For the tangential part Tb,
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Multiplication of (53) by 
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qb yields
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Making use of (50) and (51) we get

6 �
�Hm

? � i@A�#

2i@ ~V
; (56)

where ~V � �V � AS0� denotes a modified potential.
4Let us remind the reader that we use a notion of ‘‘classical
spacetime,’’ as an element of super Riem �, which for our
configuration involves the gravitino (see Sec. II and discussion
at the end). More precisely, our background spacetime could be
interpreted as a ‘‘classical spacetime with correction terms
involving gravitinos.’’
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The second-derivative terms in (52) can be decomposed
by differentiating (53) with respect to qb,
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where ~T denotes the sum of the tangential parts. We now
rewrite the condition (26) in terms of the metric Gab and
the operator A,
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Using (53), (57), and (58), we can write the correction
terms in the form

G@2

#

�
1

W
Gab


#

qa


W

qb

�
1

2
Gab


2#

qa
qb

�
4����
h

p eBA
0

i

#


eBA
0

i

� 4�i
�
3i���
h

p  Ck �  Bj�jkln
CB0
elBB0

�

#


 Ck

�
�

� Cn � Ct:

(59)

We do not consider the tangential partCt any further. It was
discussed in the nonsupersymmetric case in [19], where
technical and physical interpretations can be found.
Because of the complicated formalism of supergravity,
we restrict ourselves to the normal part Cn, which in
analogy to the bosonic case is expected anyway to contain
the dominating terms. To obtain an explicit form of it, we
need a decomposition of the third and fourth term on the
left-hand side of (59). It is obtained by defining

wa :�
�
i���
h

p eBA
0

i ;
3i���
h

p  Ck �  Bj�jkln
CB0
elBB0

�
(60)

and writing

wa

#

qa

� 6wa

S0

qa

� wa ~T
a; (61)

where ~Ta is the tangential part. Making use of all prepara-
tions, we find that in the normal part many terms cancel
out, and we obtain the form
-10
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Cn �
G@2

#

�
�6

�AW�

W
�
1

2
Gab


S0

qa


6

qb

�

�
G

4 ~V#

�
�Hm

?�
2 � i@


�Hm
? � i@A�


,

�
i@
~V

�

 ~V

,

� �A ~V�
�
�Hm

? � i@A�

�
2�AW�

W
�Hm

? � i@A� �
3AH m

?

i@
� 2A2

�
#:

(62)

The definition (41) of the wave functional � leads to the
following relation for arbitrary derivatives:


�

q

�

#

q

exp
�
i
@
2G

�
�O�G� �


#

q

�

#
�O�G�: (63)

Therefore, the same relation holds for all higher deriva-
tives:


n�

qn

�

n#

qn

�

#
�O�G�: (64)

This enables us to rewrite all expressions containing # in
(62) in terms of �. We then obtain the final result for the
normal part of the corrected local Schrödinger equation,

i@

�

,

�Hm
?��

G

4 ~V#

�
�Hm

?�
2� i@


�Hm
?� i@A�


,

�
i@
~V

�

 ~V

,

��A ~V�
�
�Hm

?� i@A�

�
2�AW�

W
�Hm

?� i@A��
3AHm

?

i@
�2A2

�
�: (65)

It would yield a considerable simplification if we had a
vanishing operator A. In particular, the term containing W
would be absent. For a negligible A one would reduce the
previous expression to

i@

�

,

� Hm
?��

4�G���
h

p
3sR

�
�Hm

?�
2 � i@


Hm
?


,
�

i@���
h

p
3sR

�

�

���
h

p
3sR�


,
Hm

?

�
�:

(66)

On a formal level this is exactly the result that has been
obtained from the expansion of the Wheeler-DeWitt equa-
tion. However, there is a difference: The definition of the
time functional is different due to the involvement of the
gravitino. But it can be seen that a vanishing gravitino
would yield exactly the same time functional as in the
pure bosonic case. In addition, using the definition (49),
this would lead to a vanishing operator A. Therefore, the
‘‘bosonic limit’’ of supersymmetric quantum gravity yields
up to the first order of correction terms bosonic canonical
quantum gravity. This is a strong argument for the overall
consistency of the supersymmetric theory.
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As in [17], the presence of Hm
? in the above corrections

allows one to estimate their importance. For a Friedmann
universe with scale factor a we can roughly estimate the
ratio of the second (and third) to the first correction term in
(66),

@

�H m
?�
2


Hm
?


,
�

@ _a

�Hm
?�
2

dHm
?

da
�
@H0
E

; (67)

where E is a typical energy associated with the matter field.
For E � 700 GeV and H0 � 70 km=�sMpc� we obtain
approximately 10�44. Therefore the quadratic matter
Hamiltonian is usually the most important correction
[17,19]. Interesting exceptions could be very light
particles.

Let us add that a violation of unitarity due to the purely
imaginary terms cannot be immediately concluded. This
would require an inner product that we have not defined
here, cf. [1]. Equation (65) is not independent of the chosen
factor ordering. The explicit representation (49) depends
on the factor ordering, since a commutation of  Ai with its
derivative changes this term. Future investigations will
deal with the application of (65) in the context of quantum
cosmology and structure formation.

V. DISCUSSION AND OUTLOOK

The purpose of this was paper was to establish a semi-
classical approximation scheme for supersymmetric quan-
tum gravity. This has been achieved by extending the Born-
Oppenheimer method from the bosonic to the supersym-
metric case. We have considered N � 1 SUGRA in four
spacetime dimensions [4] and performed an expansion of
the Hamiltonian constraint in powers of the gravitational
constant by employing its quantum mechanical operator
representation acting on a wave functional of the form (10)
and (11). We have derived, at consecutive orders, the
Hamilton-Jacobi equation, the functional Schrödinger
equation, and quantum gravitational correction terms to
this Schrödinger equation.

Within such a framework some relevant features have
emerged. We have obtained explicit formulas to compute
the quantum supersymmetric gravitational corrections that
affect the evolution of the very early Universe during a
phase where SUSY plays a crucial role. This would be of
particular relevance for the quantum-to-classical transition
and the ensuing structure formation [13]. We have also
found that (i) the Hamilton-Jacobi equation and therefore
the background spacetime must involve the gravitino, and
(ii) a (many-fingered) local time parameter is present on
super Riem �, the space of all tetrad and gravitino fields
(plus possible other fields) on a spatial hypersurface �.

A possible interpretation for that was introduced and
extensively discussed at the end of Sec. II. Summarizing it,
the SUSY Hamilton-Jacobi equation (12) induces a space-
time background with both tetrad (graviton) and fermionic
(gravitino) terms. It corresponds to a spacetime metric that
-11



CLAUS KIEFER, TOBIAS LÜCK, AND PAULO MONIZ PHYSICAL REVIEW D 72, 045006 (2005)
will be a solution of the equations of motion of the theory,
constituting a Grassmann-algebra-valued field that can be
decomposed into the body which takes values in the do-
main of real or complex numbers and a soul which is
nilpotent [24–27]. This description was introduced by
DeWitt in the context of supermanifold configurations
and is thoroughly described in [27]. Hence, a solution of
the SUSY Hamilton-Jacobi equation (12) will correspond
to a (classical) spacetime, in the sense of a classical space-
time with fermionic (gravitino) corrections, leading to a
spacetime which can serve as the appropriate background
for the higher orders.

Nevertheless, the proper interpretation of these issues
require more study. A detailed investigation would, per-
haps, require us to follow and extend the work of Gerlach
[23]. More precisely, we should proceed to consider func-
tionals of the form � eiS=@ and aim to derive the com-
plete set of the equations of motion of N � 1 SUGRA in
four spacetime dimensions, with S being a solution of the
SUSY Hamilton-Jacobi equation (12). A directly obtained
set of equations should be the Hamiltonian equations of
motion with the presence of Tomonaga’s local (many-
fingered) time parameter. Integrating these equations on
some special hypersurface should give the usual SUGRA
equations of motion. The overall procedure should thus be
checked with respect to the limiting case without gravitinos
(and torsion), that is, with respect to general relativity. This
would provide us with a better understanding of how and
what type of spacetime background with fermionic correc-
tions emerges, elucidating on the physical meaning of
these deviations with respect to the case of canonical
general relativity [1,22,23]. We intend to address this issue
in a future research work.

Somewhat related with the above, there are two addi-
tional lines of work to be considered. In Sec. IV we have
derived the quantum gravitational corrections to the
Schrödinger equation, namely, normal and tangential cor-
rection components. Regarding the former, it would be of
interest to investigate it further, applying it to illustrative
minisuperspace case studies, and aiming to determine
which type of effective quantum field theory and vacuum
state are obtained as corrections regarding the general
relativity case [17,18], in particular, to analyze if any shift
in expectation values of, for example, energy levels in a
matter Hamiltonian can be produced through a SUSY
quantum gravitational origin. This would constitute a defi-
nite prediction from SQC, that is, the SUSY Wheeler-
DeWitt equation. Even without addressing the issue of
regularization, such correction terms could lead to quan-
tum gravitational induced shifts, observable in principle in
the spectrum of the cosmic background radiation.
Concerning the tangential correction component (which
was not studied in this paper), it would be of interest to
check if and how it would reflect a breakdown of the
classical background picture [17], probing the superspace
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environment near a classical solution of the SUGRA equa-
tions. Moreover, and following the footsteps of [19], per-
haps the use of all constraints, interconnected by their
constraint algebra, together with these component correc-
tions, would allow one to generate a Feynman diagram-
matic technique involving graviton and gravitino loops and
vertices, revealing explicitly the backreaction effects. It
could point as well to a correspondence between the frame-
work of canonical and covariant SUGRA in a semiclassical
limit. This is surely a rather ambitious line to investigate
but we think it will provide most elucidating features for
quantum gravity in general.

Another pertinent issue to address in the sequence of the
framework present in this paper is the validity of minis-
uperspace approximation in SQC [6]. Different attempts in
standard quantum cosmology can be found in [32,33]. In
particular, it was pointed out that the minisuperspace ap-
proximation in quantum cosmology is valid only if the
production of gravitons is negligible [33]. Hence, it would
be fairly interesting to establish if the presence of fermions
(gravitinos) and SUSY can either bring additional restric-
tive features on the validity of minisuperspace approxima-
tion or enlarge the range (through some regularization
feature) where it can be employed. We intend to report
on this issue in a future publication.

Finally, the introduction of the super-DeWitt metric in
Sec. IV suggests the following possible work. In [34], a
connection between the sign of the Wheeler-DeWitt metric
and the attractivity of gravity was studied. The structure of
super Riem � and its projection down to the true configu-
rations space was studied for the bosonic case in [35]. It
would be of interest to investigate what consequences the
extra fermion (gravitino) correction terms would bring into
this context.
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APPENDIX A: CANONICAL QUANTIZATION OF
N � 1 SUGRA

The canonical quantization scheme of general relativity
starts with the 3� 1 decomposition of spacetime and the
reformulation of the classical action in terms of three-
metric and extrinsic curvature. The central role is played
-12
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0
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tional, the indices are often omitted for simplicity. For example,
we write S�e;  � instead of S�eAA

0
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by constraints which reflect the invariances of the classical
theory. Upon quantization these constraints lead to restric-
tions on the allowed wave functionals [1]. In quantum
geometrodynamics the central equations are the quantum
Hamiltonian constraint or Wheeler-DeWitt equation and
the diffeomorphism (or momentum) constraints.

In the following we shall summarize the canonical for-
mulation of N � 1 SUGRA and its quantization. Details
can be found in [5,6] and the references therein.

Dealing with general relativity in the presence of fermi-
ons requires that one has to work with a tetrad formalism
instead of the metric. This formalism is therefore also
needed for SUGRA where bosons and fermions are treated
symmetrically: for the N � 1 case we shall have the grav-
itino as the fermionic partner to the graviton. More spe-
cifically, at every point of the spacetime manifold we
introduce a pseudo-orthonormal basis e'a of the tangential
space and the corresponding basis ea' of the cotangential
space, where a is the flat index of the tetrad and runs from 0
to 3. Indices a; b; c; . . . are raised and lowered with 2ab and
2ab, respectively, where 2ab has the signature
��;�;�;��. Spacetime indices are raised and lowered
with g'* and g'*, respectively. The connection between
the spacetime metric and the internal metric is given by

g'* � 2abe
a
'e

b
* (A1)

and

2ab � g'*ea'e
b
*; (A2)

respectively.
In order to treat the bosonic and fermionic variables as

similar as possible, it is appropriate to introduce a spinorial
representation of the tetrad. This is possible since we can
associate in flat space a spinor to any vector by the Infeld-
van der Waerden symbols 1AA

0

a which are given by

10 � �
1���
2

p I; 1i �
1���
2

p �i: (A3)

Here, I denotes the unit matrix and �i are the three Pauli
matrices. The unprimed spinor indices A;B;C; . . . run from
1 to 2 and the primed spinor indices A0; B0; C0; . . . take the
values 10 and 20. The Latin indices starting with i; j; k; . . .
assume the values 1, 2, and 3. Hence, the spinorial version
of the tetrad reads

eAA
0

' � ea'1
AA0

a : (A4)

To raise and lower the spinor indices the different repre-
sentations of the antisymmetric spinorial metric �AB, �AB,
�A

0B0
and �A0B0 are used. Each of them can be written as the

same matrix given by

0 1
�1 0

� �
:

Details of this formalism can be found, for example, in
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[4,36]. In curved spacetime, every tensor can be associated
with a spinor using the spinorial tetrad, TAA

0
� eAA

0

' T',
with the inverse relation given by T' � �e'AA0TAA

0
.

For the foliation of spacetime into spatial hypersurfaces
we need the future pointing unit normal vector n', whose
spinorial version is

nAA
0
� eAA

0

' n': (A5)

The tetrad is decomposed into the timelike and the spatial
components eAA

0

0 and eAA
0

i . With the relation (A1) we find
the three-metric

hij � �eAA0ie
AA0

j � gij: (A6)

This metric and its inverse are used to lower and raise the
spatial indices i; j; k; . . . . From the definition of nAA

0
as a

future pointing unit normal to the spatial hypersurfaces �
we obtain the relations

nAA0eAA
0

i � 0 and nAA0nAA
0
� 1; (A7)

which allow one to express nAA
0

in terms of eAA
0

i . An
explicit representation is

nAA
0
�

i

3
���
h

p �ijkeAB
0

i eBB0je
BA0

k ; (A8)

where h � dethij. Using the lapse function, N, and the
shift vector,Ni, the timelike component of the tetrad can be
decomposed according to

eAA
0

0 � NnAA
0
� NieAA

0

i : (A9)

Further relations are collected in Appendix C.
The starting point of the formalism is the action of N �

1 SUGRA in four spacetime dimensions [4,37],5

S�e;  � �
Z
d4x

�
1

16�G
det�ea'�R

�
1

2
�'*;1� � A

0

'eAA0*D; A1 �D;
� A

0

1 eAA0* A'�
�
;

(A10)

which includes the Einstein-Hilbert sector (with & � 0)
and the Rarita-Schwinger component for the gravitino field
 A' with spin 3=2. The factor det�ea'� equals the square root
of the determinant,

�������
�g

p
. The covariant derivative D; acts

only on the spinor indices and is defined via the spin
connection forms !A

B; and �!A0

B0;. Their explicit form
can be found in [5]. The action (A10) is invariant under the
following local transformations of the basic fields eAA

0

' and
 A': Local SUSY transformations, local Lorentz transfor-
-13
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algebra of the constraints to have a simpler form; cf. Refs. [5,6]
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mations, and local coordinate transformations
(diffeomorphisms).

The canonical fields for the Hamiltonian formulation of
N � 1 SUGRA are the spatial components of the tetrad
eAA

0

i and the gravitino  Ai and � A
0

i . The momentum con-
jugate to the tetrad is defined by

piAA0 �

S


 _eAA
0

i

; (A11)

where the dot denotes the partial derivative with respect to
the timelike direction. Often a symmetrized version is
used,

�ij � �1
2p

�ij�; pij � �eAA
0jpiAA0 : (A12)

The momenta conjugate to the gravitino read

�iA �

S


 _ Ai
� �

1

2
�ijk � A

0

b eAA0k;

~�iA0 �

S


 _� A
0

i

�
1

2
�ijk AbeAA0k:

(A13)

We denote the momentum conjugate to � A
0

i by ~�iA0 since it
is minus the Hermitian conjugate of �iA. Since no time
derivatives occur here, these are constraints which turn out
to be of second class (since their algebra does not close).
We thus have to formulate Dirac brackets instead of
Poisson brackets [5]. They read

�eAA
0

i �x�; eBB
0

j �x��� � 0;

�eAA
0

i �x�; pjBB0 �y��� � �AB�
A0

B0

j
i
�x� y�;

�piAA0 �x�; p
j
BB0 �y��� � 1

4��
jln BnDAB0kl�ikm � A0m

� �jln AmDBA0lk�
ikm � B0n�
�x� y�;

� Ai �x�;  
B
j �y��� � 0;

� Ai �x�; � 
A0

j �y��� � �DAA0

ij 
�x� y�;

�eAA
0

i �x�;  Bj �y��� � 0;

�piAA0 �x�;  Bj �y��� � 1
2�
ikl AlDB

A0jk
�x� y�;

(A14)

where

DAB0

ik �
�2i���
h

p eAC
0

k eCC0in
CB0
: (A15)

The remaining brackets are obtained by conjugating the
relations containing the field  Ai .

Because the action (A10) is invariant under local
Lorentz, SUSY, and coordinate transformations, the ca-
nonical fields are subject to constraints. Regarding their
quantum representation the following has to be included.
As usual, the classical brackets (here: the Dirac brackets)
are replaced by �i=@ times the commutator or anticom-
mutator of the corresponding field operators. For the Dirac
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brackets (A14) this can be achieved by choosing the fol-
lowing operator representation of the fundamental fields
and momenta6:

� A0

i � �i@DAA0

ji




 Aj
;

piAA0 � �i@




eAA
0

i

�
1

2
i@�ijk AjDB

A0lk




 Bl

:

(A16)

This is, of course, not the only possible choice. We can also
represent  Ai by a derivative with respect to � A

0

i if we
choose a basis consisting of eigenstates of � A

0

i . But since
the Dirac bracket between � A

0

i and � A
0

i does not vanish, it is
not possible to choose a basis of eigenstates with respect to
both of them.

Upon quantization one encounters the usual factor or-
dering problems. This is of crucial relevance for the con-
struction of the full theory, but of less relevance for the
present issue of semiclassical approximation. We shall
follow here Ref. [5] and do not consider other possibilities.
The quantized Lorentz constraints read

JAB��
i@
2

�
eA

0

Ba




eAA
0

a

�eA
0

Aa




eBA
0

a

� Ba




 Aa
� Aa




 Ba

�
;

(A17)
�J A0B0 � �
i@
2

�
eAB0a





eAA
0

a

� eAA0a





eAB
0

a

�
; (A18)

and the quantized SUSY constraints are given by

�S A0 � �ijkeAA0i
3sDj 

A
k � 4�G@ Ai





eAA
0

i

; (A19)
SA � i@3sDi

�




 Ai

�
� 4�iG@





eAA
0

i

�
DBA0

ji



 Bj

�
: (A20)

Calculating the anticommutator between the SUSY con-
straints yields

�SA�x�; �SA0 �y��� � 4�G@H AA0 �x�
�x; y�; (A21)

with
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H AA0 � 4�Gi@2 Bi




eAB
0

j

�
�ilmDB

B0

mjD
C
A0kl





 Ck

�

� 4�Gi@2




eAB
0

j

�
DBB0

ij




eBA
0

i

�

�
i@
2
�ijk

�
�3sDj Ak�D

B
A0li




 Bl

�  Ai

�
3sDjD

B
A0lk




 Bl

��

� i@3sDi

�




eAA
0

i

�
1

2
�ijk AjD

B
A0lk




 Bl

�

� nAA0

1

G
V�e�; (A22)

where V�e� �
���
h

p
3sR=16�. Note that from 3Dj (denoting

a spatial covariant derivative acting on the spinor indices),

3DjT
AA0

� @jTAA
0
� 3!A

BT
BA0

� 3 �!A0

B0TAB
0
; (A23)

where 3!A
B and 3 �!A0

B0 are the two parts of the spin connec-
tion, see (C15), we obtain, by decomposing the three-
dimensional spin connection 3!AA0BB0

i contained in the
covariant derivative 3Dj into a pure bosonic part and the
contorsion (C13),

3!AA0BB0

i � 3s!AA0BB0

i � 3?AA
0BB0

i : (A24)

The torsion-free derivative is denoted by 3sDj. This also
leads to simpler versions of the SUSY constraints [5],
where �SA0 is the Hermitian conjugate of SA. They guarantee
the invariance of the action under left- and right-handed
SUSY transformations, respectively. Note that no torsion
terms appear there. Moreover, 3R is the three-dimensional
scalar curvature (C17).

The calculation leading to (A21) shows that this factor
ordering does not lead to quantum anomalies, at least not
on a formal level. The expression of the right-hand side of
(A21) can be interpreted as a combination of the
Hamiltonian and momentum constraints obtained from
the action of N � 1 SUGRA through variational methods
plus combinations of the Lorentz constraints. A solution of
the above quantum SUSY constraints must thus automati-
cally obey the other constraints. It is an unsolved issue
whether the full quantum algebra of constraints is free of
anomalies. Calculations in [38] seem to indicate that
anomalies may occur in the commutators of the SUSY
constraints with H AA0 �x�. A definite statement can, how-
ever, only be made after a rigorous regularization scheme
has been employed. We assume in this paper that anoma-
lies are absent. The question of anomalies is an open issue
in all approaches of canonical quantum gravity [39].
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APPENDIX B: THE SEMICLASSICAL
APPROXIMATION SCHEME FOR CANONICAL

QUANTUM GRAVITY

This appendix contains a brief review of the semiclassi-
cal approximation scheme, as it has been applied on a
formal level to quantum geometrodynamics [1]. This will
enable us, in particular, to make a comparison with the
SUSY case discussed herein this article.

Our starting point is the full Wheeler-DeWitt equation
and the momentum constraints,�

�16�G@2Gijkl

2


hij
hkl
�

1

16�G

���
h

p
3R

�Hm
?

�
�hij;��

� 0; (B1)

�
�
2i
@

3rjhik



hjk

�H m
i

�
�hij;�� � 0; (B2)

where� denotes here a general nongravitational field. It is
convenient to introduce the parameter

M �
1

32�G

and perform an expansion with respect to M. Although M
does not have the dimension of a mass (it is proportional to
the Planck mass squared), it brings the Wheeler-DeWitt
equation into a form similar to the Schrödinger equation in
quantum mechanics and thus allows the (formal) applica-
tion of the Born-Oppenheimer scheme [1,18].7 More gen-
erally, the approximation scheme starts with a division into
‘‘slow’’ and ‘‘fast’’ degrees of freedom. An expansion with
respect to M is the simplest way to implement this idea, in
that the gravitational variables are slow and the remaining
(matter) variables (whose Hamiltonian is denoted by H m

?)
are fast. Equation (B1) then becomes�

�
@
2

2M
Gijkl


2


hij
hjk
�MVg �Hm

?

�
 � 0; (B3)

with Vg � �2
���
h

p
3R. For the matter Hamiltonian density

Hm
? we assume for simplicity a minimally coupled scalar

field �.
Making for the wave functional the ansatz,

�hij;�� � exp
�
i
@
S�hij;��

�
(B4)

and expanding

S�hij;�� �
X1
n�0

Sn�hij;��M�n�1;
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we find from (B3) several relevant equations at consecutive
orders of M.

The highest order (M2) expresses the independence of
S0 on the matter field �, that is, S0 � S0�hij�. The next
order (M1) yields the Hamilton-Jacobi equation for the
gravitational field,

1

2
Gijkl


S0

hij


S0

hkl

� Vg � 0: (B5)

Actually, (B5) represents an infinite number of equations,
one at every point of space. In addition we have to expand
the momentum constraints (B2) and obtain

hij3rk

�

S0

hik

�
� 0: (B6)

Every solution of (B5) determines a family of solutions of
the classical field equations. Equations (B5) and (B6) are
equivalent to Einstein’s field equations [22,23].

The next order (M0) can be simplified by defining the
wave functional

# � D�hij� exp
�iS1�hij;��

@

�
: (B7)

Choosing for the ‘‘WKB prefactor’’ D the ‘‘conservation
law’’ (which in quantum mechanics would just express the
conservation of probability)

Gijkl



hij

�
1

D2

S0

hkl

�
� 0; (B8)

the equation at this order becomes the ‘‘Tomonaga-
Schwinger equation’’ or ‘‘local Schrödinger equation’’

i@Gijkl

S0

hij


#

hkl

� i@

#

,

� Hm
?#; (B9)

where the time functional , is implicitly defined by

Gijkl�x�

S0


hij�x�


,�y; hij�


hkl�x�
� 
�x� y�: (B10)

‘‘Time’’ is thus defined through the chosen solution S0 of
the Hamilton-Jacobi equation. In fact, , is not a spacetime
scalar, but the semiclassical scheme can nevertheless be
consistently defined [41]. The (functional) Schrödinger
equation is found upon integrating (B10) over three-
dimensional space.

The next order (M�1) yields quantum gravitational cor-
rection terms to (B9). In [17] only those correction terms
were considered that act along the chosen classical space-
time; those terms appear to be the dominating one. In [19]
all correction terms were treated in great detail. In the
present case we followed the treatment in [17] in order to
show the essential features of the semiclassical approxi-
mation scheme.
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APPENDIX C: FORMULAS USED FOR THE
CALCULATION OF SUPERSYMMETRIC

EXPRESSIONS

1. General formulas

In Appendix A, we have chosen the signature of the
four-metric g'* as ��;�;�;��. Therefore, the metric hij
on the spacelike hypersurfaces has the signature ��;�;��
which gives a positive determinant. Thus the three-
dimensional total antisymmetric tensor density can be
defined by �123 � �123 � �1. Using this definition, we
have for the timelike normal vector nAA0 and the tetrad
eAA

0

i the relations

nAA0nAB
0
� 1

2�A0
B0
; (C1)

nAA0nBA
0
� 1

2�A
B; (C2)

eAA0ie
AB0

j � �1
2hij�A0

B0
� i

���
h

p
�ijknAA0eAB

0k; (C3)

eAA0ie
BA0

j � �
1

2
hij�A

B � i
1���
h

p �ijknAA0eBA
0k; (C4)

eAA0ieiBB0 � nAA0nBB0 � �AB�A0B0 : (C5)

From Eqs. (C3) and (C4) we obtain by contracting with
�ijl,

nAA0eAB
0l � �nAB

0
ekAA0 �

i

2
���
h

p �ijleAA0ieAB
0

j ; (C6)

nAA0eBA
0l � �nBA

0
ekAA0 � �

i

2
���
h

p �ijleAA0ieBA
0

j : (C7)

The three-dimensional torsion-free spin connection
3s!AA0BB0

i can be expressed in terms of nAA
0

and eAA
0

i [5],

3s!AA0BB0

i � eBB
0j@�je

AA0

i� � 1
2�e

AA0jeBB
0keCC

0

i @jeCC0k

� eAA
0jnBB

0
nCC

0
@jeCC0i � nAA

0
@in

BB0
�

� eAA
0j@�je

BB0

i� � 1
2�e

BB0jeBB
0keCC

0

i @jeCC0k

� eBB
0jnAA

0
nCC

0
@jeCC0i � nBB

0
@in

AA0
�:

(C8)

The four-dimensional torsion is given by

SAA
0

'* � �4�iG � A
0

�' 
A
*�; (C9)

and its tensorial version reads

S;'* � �e;AA0SAA
0

'* : (C10)

The contorsion tensor ? is defined by

?'*; � S*'; � S;*' � S'*;: (C11)

The three-dimensional contorsion is simply obtained by
restriction of the four-dimensional quantity,
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3?ijk � ?ijk: (C12)

With the spinorial contorsion 3?AA
0BB0i � eAA

0jeBB
0

k
3?jki �

�3?BB
0AA0i, the spin connection reads

3!AA0BB0

i � 3s!AA0BB0

i � 3?AA
0BB0

i : (C13)

It can be decomposed into a primed and an unprimed part:

3!AA0BB0

i � 3!AB
i ��A

0B0
� 3 �!A0B0

i �AB: (C14)

Using the antisymmetry 3!AA0BB0

i � �3!BB0AA0

i , we obtain
the symmetries 3!AB

i � 3!BA
i and 3 �!A0B0

i � 3 �!B0A0

i and the
explicit representations

3!AB
i � 1

2
3!A

B0i
BB0
; 3 �!A0B0

i � 1
2
3!Bi

A0BB0
: (C15)

Analogous relations hold for 3s!AA0BB0

i and 3?AA
0BB0

i . The
components of the three-dimensional curvature in terms of
the spin connection read

3RABij � 2�@�i3!AB
j� � 3!A

C�i
3!CB

j� �;

3 �RA
0B0

ij � 2�@�i
3 �!A0B0

j� � 3 �!A0

C0�i
3 �!C0B0

j� �:
(C16)

Because of the symmetry of 3!�AB�
i � 0 and 3 �!�A0B0�

i � 0,
the chosen notation 3!A

Bi and 3 �!A0

B0i is unambiguous. The
horizontal position of the indices does not need to be fixed.
The scalar curvature is given by

3R � eiAA0e
j
BB0 �3RABij ��

A0B0
� 3 �RA

0B0
�AB�: (C17)

The same procedure performed on 3s!AA0BB0

i leads to the
torsion-free scalar curvature,

3sRABij � 2�@�i
3s!AB

j� � 3s!A
C�i
3s!CB

j� �;

3s �RA
0B0

ij � 2�@�i3s �!A0B0

j� � 3s �!A0

C0�i
3s �!C0B0

j� �;
(C18)

and

3sR � eiAA0e
j
BB0 �3sRABij �

A0B0
� 3s �RA

0B0
�AB�: (C19)
2. Equations used in Sec. II

In Sec. II we need the explicit form of the expressions

�ilmnAA
0 



eAB
0

j

�DB
B0

mjD
C
A0kl� (C20)

and

nAA
0 



eAB
0

j

DBB0

ij : (C21)

To evaluate these terms we first need an explicit form of

nAA

0
=
eBB

0

j . Of course, for this purpose relation (A8),
which expresses nAA

0
in terms of the tetrad, can be used,

but it is more convenient to start from nAA
0
eAA0i � 0:
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0 � eCC
0i 
n

AA0
eAA0i


eBB
0

j

� nCC
0
nAA0


nAA
0


eBB
0

j

� �A
C�A0

C0 
nAA
0


eBB
0

j

� eCC
0jnBB0 :

(C22)

In addition we have


nAA
0


eBB
0

j

�

nCC

0
nCC0nAA

0


eBB
0

j

� 2nCC0nAA
0 
nAA

0


eBB
0

j

�

nAA

0


eBB
0

j

(C23)

and obtain


nAA
0


eBB
0

j

� eAA
0jnBB0 : (C24)

We often need the derivative of the determinant h of the
three-metric,

@h
@hij

� hijh: (C25)

Therefore we get


h


eAA
0

i
� �2heiAA0 : (C26)

Using this as well as (C1)–(C5), we are able to calculate
expressions (6) and (7):

nAA
0
�ilm





eAB
0

j

�DB
B0

mjD
C
A0kl�

� �4nAA
0
�ilm





eAB
0

j

�
1

h
eBj

D0
eDD0mn

DB0
eCE

0

l eEE0kn
E
A0

�

� �B
C
ik

i���
h

p

�
1� 1�

1

2
�
1

2

�
�
2i���
h

p �2eCB
0ieBB0k

� eiBB0eCB
0

k �

�
�3i���
h

p 
ik�B
C � 2hij�jklnCB

0
elBB0 ;

(C27)

nAA
0 



eAB
0

j

DBB0

ij � �2inAA
0 



eAB
0

j

�
1���
h

p eBC
0

j eCC0in
CB0

�

� �
2i���
h

p nAA
0
nBC

0
eAC0i:

(C28)

In order to compare the results in Secs. II, III, and IV
with those in Appendix B, we need some rules for the
transformation of formulas in terms of the tetrad eAA

0

i into
formulas in terms of the three-metric hij. Let F �e� be a
functional depending on the tetrad. Indeed, hij can be
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expressed in terms of the tetrad, since we have the relation
hij � �eAA

0

i eAA0
j
, but an inverse relation does of course not

exist. We have therefore to restrict the functional F . We
must demand that it can be written in the form F �hij�.
Then we find for the transformation of the functional
derivatives, by using the chain rule,


F


eAA
0

i

�

F

hjk


hjk

eAA

0

i

� �

F

hjk

�BC�B0C0


eBB
0

j eCC
0

k


eAA
0

i

� �

F

hik

�AC�A0C0eCC
0

k �

F

hji

�BA�B0A0eBB
0

j

� �2

F

hij

eAA0j:

(C29)

Using eAA
0ieAA0j � �
ij, the inverse relation can be read

off immediately. It holds for an arbitrary functional G�hij�
without any restrictions, since it is always possible to
rewrite G�hij� in the form G�e�,


G

hij

�
1

2
eAA

0j 
G


eAA
0

i

: (C30)
APPENDIX D: RELATIONS USED FOR THE
CORRECTIONS OF THE SCHRÖDINGER

EQUATION

In Sec. IV we have calculated the corrections of the
Schrödinger equation at order G1. To obtain the explicit
form of the correction terms, the following relations are
used. For the treatment of terms (i), (ii), (iii), and (iv) in
(36) we need

1

#

2#


eAB
0

j 
 Ck
�
1

W

2W


eAB
0

j 
 Ck
�

i
@W


W


eAB
0

j


S1

 Ck

�
i
@W

�

S1

eAB

0

j


W


 Ck
�
i
@


2S1

eAB

0

j 
 Ck
�
1

@
2


S1

eAB

0

j

�

S1

 Ck

;

(D1)

1

#

#


 Ck
�
1

W

W


 Ck
�
i
@


S1

 Ck

; (D2)
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and
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For parts (v)–(viii) of (39), we use
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and
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To perform the next step we need

i@

�

,

� i@ exp
�
i
@
2G

�

#

,

�G# exp
�
i
@
2G

�

2

,

: (D9)

The last term in (39) is part of the expression

H m
?� � exp

�
i
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�
H m
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i@G

2
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p

�
2

#

#

�


2
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22


�2

�
��O�G2�: (D10)

Since we are only interested in corrections of order G, we
neglect terms of order G2.
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