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We show that the BFT embedding method is problematic for mixed systems (systems possessing both
first and second class constraints). The Chern-Simons theory as an example is worked out in detail. We
give two methods to solve the problem leading to two different types of finite order BFT embedding for
Chern-Simons theory.
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I. INTRODUCTION

Canonical quantization of constrained systems is fully
established in the framework of Dirac theory [1]. As is
well-known, in the case of second class systems one should
convert Dirac brackets to quantum commutators; while for
first class systems one constructs the quantum space of
states as some representation of all quantized operators
(i.e. phase space coordinates) and then imposes the con-
ditions �ajphys> � 0, where �a are first class constraints
and jphys> means physical states.

Working with first class systems seems to be appealing
for some reasons; firstly, because the symmetries and
covariance of the classical theory are manifestly demon-
strated; secondly, since converting Dirac brackets to quan-
tum commutators sometimes implies factor ordering
problem and quantization of these models is not formal;
thirdly, because inverting the matrix of Poisson brackets of
constraints, which is necessary for writing the Dirac brack-
ets, is not generally an easy task; and finally the most
important reason is that the construction of a BRST charge
is possible only for first class systems [2,3]. Therefore,
there are some efforts to convert a second class system to a
first class one [4–6]. The method, recognized as the BFT
method, is based on extending the phase space to include a
set of new variables and then writing the constraints, as
well as the physical quantities, as power series in terms of
these added variables.

However, as we will explain in the following, the tradi-
tional BFT method is formulated only for pure second class
systems [7], while in the general case both first and second
class constraints may emerge in the same model. An
important example of this case, i.e. mixed constrained
systems, is the Chern-Simons theory (abelian and nonabe-
lian). After a brief review in the next section of the finite
order BFT method, as proposed in [8] for a pure second
class system, we will show in Sec. III that in fact it is not
possible to embed the second class constraints in a larger
space separately. That is, when one tries to convert the
second class constraints into first class ones via embed-
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ding, the algebra of the original first class constraints may
change; in other words, they will not necessarily remain
first class.

We will investigate the origin of this violence and search
for conditions that can guarantee the embedding of second
class constraints without violating the involuting algebra of
first class ones. We show that the nonabelian Chern-
Simons theory is a special example which exhibits this
violence. In Sec. IV we propose two distinct methods
that help us to solve the problem. The first method con-
cerns redefining the constraints so that their algebra fulfill
the required condition. In the next method we suggest that
at first stage one may convert the first class constraints into
second class ones by means of adding some auxiliary
variables, and then one is able to run the procedure of the
usual BFT method. We will show that this suggestions
enables us to construct BFT embedding for Chern-
Simons theory.
II. FINITE ORDER BFT EMBEDDING

Consider a pure second class constrained system de-
scribed by the Hamiltonian H0 in some phase space with
coordinates �qi; pi� where i � 1; 2; . . .K. Assume we are
given a set of second class constraints, 	�0�
 
 � 1; . . .m,
satisfying the algebra



� � f	�0�
 ; 	�0�� g (1)

where f; g means Poisson bracket and 

� is an invertible
matrix. To convert this second class system into a gauge
system, i.e. a first class system, one should extend the
phase space by introducing the same number of auxiliary
variables as that of second class constraints. We denote
these variables by 
 and assume that they obey the
following algebra;

f
; �g � !
� (2)

where !
� is an antisymmetric invertible matrix which
may be proposed arbitrarily. The first class constraints in
the extended phase space �q; p� �  are defined as
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�q; p; � �
X1
n�0

	�n�
 
 � 1; 2; . . . ; m (3)

where 	�n�
 is of order n with respect to 
’s and

	�0�
 � 	
�q; p; 0�: (4)

In the abelian BFT embedding method one demands that
these extended constraints be strongly involuting:

f	
; 	�g � 0: (5)

Substituting Eq. (3) into Eq. (5) leads to a set of recursive
relations. Vanishing of the term independent of  gives:

f	�0�
 ; 	�0�� g 	 f	�1�
 ; 	�1�� g�� � 0; (6)

and vanishing of the term of order n with respect to 
’s
for n 
 1 gives

f	�1�
�
 ; 	

�n	1�
�� g�� 	 B�n�


� � 0 n 
 1 (7)

where

B�1�

�  f	�0�

�
 ; 	
�1�
�� g; (8)

B�n�

� 

1

2
B�
�� 

Xn
m�0

f	�n�m�

 ; 	�m�

� g

	
Xn�2

m�0

f	�n�m�

 ; 	�m	2�

� g�� n 
 2: (9)

The suffix  in the above equations means that the Poisson
brackets must be evaluated with respect to  variables
only, otherwise they are calculated in the basis �q; p�.
The above equations are used iteratively to obtain the
correction terms 	�n�. Since 	�1� is linear with respect to
 we may write

	�1�
 � ��

�q; p��: (10)

Substituting this expression into Eq. (6) and using Eqs. (1)
and (2) we obtain:



� 	 ��

!���

�
� � 0: (11)

This equation contains two sets of unknown elements; ��



and !
�. One should at first assume a suitable antisym-
metric matrix for !
� and then solve Eq. (11) to determine
the coefficients ��


. Since 

� and !
� are antisymmetric

matrices, there exist totally m�m�1�
2 independent equations

for ��

, while the number of ��


 ’s is m2. Therefore, an
infinite number of solutions for ��


 can be found and we are
allowed to chose any solution we wish. Using this possi-
bility, ��


’s can be chosen such that the process of deter-
mining the correction terms 	�n� terminates at this stage,
i.e. 	�2� vanishes. We will come to this point later. It can be
shown [7,9] that the general solution of Eq. (7) is given by
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	�n	1�

 � �

1

n	 2
�!����1�

� B�n�
�
; n 
 1 (12)

where !
� and ��1�

 are inverse of !
� and ��




respectively.
To construct the corresponding Hamiltonian H�q; p; �

in the extended phase space we demand

H �
X1
n�0

~H�n� (13)

such that

H�q; p; 0� � H0�q; p� f	
;Hg � 0; (14)

where H�n� is of order n with respect to 
’s. Substituting
from Eqs. (3) and (13) in the second line of Eq. (14) gives:

f	�1�
 ;H�n	1�g�� 	G�n�

 � 0; n 
 0 (15)

where G�n�

 as the generators of the H�n	1� are defined as the

following

G�0�

  f	�0�
 ;H�0�g (16)

G�1�

  f	�1�
 ;H�0�g 	 f	�0�
 ;H�1�g 	 f	�2�
 ;H�1�g�� (17)

G�n�

 

Xn
m�0

f	�n�m�

 ;H�m�g 	

Xn�2

m�0

f	�n�m�

 ;H�m	2�g��

	 f	�n	1�

 ;H�1�g��; n 
 2: (18)

It can be shown that the general expression for H�n� is

H�n	1� � �
1

n	 1
�!

����1�
� G�n�

� : (19)

This completes the BFT method of converting a second
class system to a strongly involuting first class one. As can
be seen the correction terms 	�n�
 and H�n� are derived
iteratively from Eqs. (12) and (19). Generally, there is no
guarantee that the series terminate at some definite order.
However, the series will terminate if B�n�


� and G�n�

 vanish

for a certain order n. If the 
-matrix in (1) is constant this
goal can be reached simply. In this case it is easily seen that
the choice

! � �
 � � 1 (20)

solves the basic Eq. (11). With this choice we have 	�1�
 �


 and B�1�

� � 0 (see Eq. (8)). Then from Eq. (9) all other

B�n�

� for n > 1 vanish. This leads to the following finite

order embedding for the constraints

	
 � 	
 	 
: (21)

One can show that in this case the embedding series for
Hamiltonian will also truncate provided that H�0� be a
polynomial function of phase space coordinates [8].
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III. THE PROBLEM WITH MIXED SYSTEMS

Consider a mixed constrained system which is described
by the Hamiltonian H�0��q; p�. Suppose the system pos-
sesses a set of first class constraints �i as well as the
second class ones 	�0�
 . The problem is to find an embed-
ding in such a way that the extended Hamiltonian H, and
the extended constraints 	
 and ~�i have vanishing Poisson
brackets altogether. In other words in addition to Eqs. (5)
and (14) we expect that

fH; ~�ig � 0: (22)

The set of Eqs. (5), (14), and (22) should be solved simul-
taneously. It may seem that an embedding for the second
class constraints suffices; i.e. one may consider ~�i the
same as �i and extend only 	�0�
 and H�0� into 	
 and H
respectively. The point is that in general there is no guar-
antee that the first class constraints remain still first class.
In other words, the constraints �i may no longer have
vanishing Poisson brackets with the embedded
Hamiltonian. To see this better, suppose in the original
theory the secondary first class constraints, �s, have been
emerged from the consistency of some primary first class
constraints, �p. Since in the embedded model some terms
should be added to the Hamiltonian, it is possible that the
Poisson brackets f�p;Hg may no more give the same �s.
They may have been changed to ~�s such that the new set of
constraints �p and ~�s are second class. Therefore, the
process of embedding may destroy the gauge symmetry
generated by the set of first class constraints �p and �s.

Now let us go through the details to see when this may
happen. We know from Eq. (13) that ~�i � �i will solve
Eq. (22) if

fH�n�; �ig � 0: (23)

Considering Eq. (19) for a finite order BFT embedding in
which !
� and ��

� are chosen as in Eqs. (20), shows that
Eq. (23) will be satisfied if

fG�n�

 ;�ig � 0: (24)

For n � 0 we have from Eq. (16)

fG�0�

 ;�ig � ff	�0�
 ;Hcg; �ig: (25)

In a second class system the Poisson brackets of constraints
with the canonical Hamiltonian vanish weakly except for
the constraints of last level. This may be better understood
in chain by chain approach [10], where the constraints are
collected as chains and within each chain the consistency
of every constraint gives the next one, i.e.

f	�0�
�1; Hcg � 	�0�
 
 � 1; . . .A: (26)

Since 	�0�
 are second class, at the last level 	�0�A should have
nonvanishing Poisson bracket at least with one of the
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primary constraints. However, nothing can be said about
f	�0�A ;Hcg; it may vanish, may be constant or may be any
function of phase space coordinates which may or may not
commute with first class constraints �i. Therefore, one
way to guarantee Eq. (24) for n � 0 is to demand that

f	�0�A ;Hcg � constant (27)

where 	�0�A is the terminating element of any constraint
chain.

Returning to Eq. (24) for n � 1, the generator G�1�

 is

defined in Eq. (17). From Eq. (20) the first and third terms
in Eq. (17) vanish in a simple way. According to Eq. (19),
the remaining term f	�0�
 ;H�1�g is proportional to a summa-
tion of terms f	�0�
 ; 	�0�� g � 

�. Remembering that we
have considered systems with constant 
-matrix, we see
that the condition (27) results that G�1�


 are constants and
H�2� is a function of ’s only. Hence, Eq. (24) is also valid
for n � 1. Looking carefully at different terms in Eq. (18)
shows that under the considered conditions the subsequent
terms G�n�


 for n > 2 vanish, giving finally

H � H�0� 	H�1� 	H�2� (28)

We see that the constancy of Poisson brackets of the second
class constraints and the Hamiltonian is sufficient to have
an elegant truncation of the embedded Hamiltonian.
Moreover, it help’s to construct the embedding in such a
way that the involuting algebra of first class constraints
with other constraints and with the Hamiltonian is not
violated. It should be noted that this conclusion remains
valid for BFT embedding with chain structure [11], since it
differs with abelian embedding only in additional terms
	�n�
	1 in the definitions of G�n�


 which commute with first
class constraints.

On the other hand, if in a certain model Eq. (27) does not
hold, then there is no guarantee that the embedding of
second class constraints is possible without violating the
involuting algebra of first class constraints. The problem is:
what should we do to satisfy (27)? We will give our
propositions to solve this problem in the next section,
specially for the Chern-Simons theory. Before that let us
take a look at this theory, its constraint structure and the
problem of its embedding.

The nonabelian Chern-Simons theory in �1	 2� dimen-
sions is governed by the Lagrangian density [12]

L �
1

2
k"���

�
Aa
�@�Aa

� 	
1

3
fabcAa

�Ab
�Ac

�

�
(29)

where Aa
� are dynamical fields, fabc are the structure

constants of some nonabelian Lie algebra, "��� refer to
the totally antisymmetric tensor and k is a constant. From
the definition of canonical momenta three (sets of) primary
constraints emerge as follows
-3
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�a0  #a0 � 0

�ai  #ai �
1

2
k"ijAa

j � 0 i � 1; 2: (30)

The canonical Hamiltonian can be written as

Hc � �k
Z
d2x

�
Aa
0"

ij@iAa
j 	

1

6
"���fabcAa

�Ab
�Ac

�

�
:

(31)

The consistency condition of �a0 gives the following
secondary constraint

�a3  k"ij@iA
a
j 	

k
2
"ijfabcAb

i A
c
j � 0: (32)

No additional constraint is obtained from the consistency
of the constraints �ai and �a3. It seems that there exist 3 s
class constraints �ai and �a3, but one can combine the
constraints to find 2 s class and two first class constraints as
follows

�a0 � �a0 �a1 � �a1 �a2 � �a2

�a3 � �a3 	 @i�
ai

(33)

In Eqs. (33) �a1 and �a2 are second class and �a0 and �a3

are first class constraints. To find the redefinitions ex-
plained in Eqs. (33) systematically we could first determine
the unknown Lagrange multipliers �ai in the total
Hamiltonian

HT � HC 	 �a0�
a0 	 �ai�

ai (34)

and then use it for the consistency of the remaining con-
straint �a0. In this way we find

�ai � @iAa
0 	

1

2
fabcAb

i A
c
0: (35)

Inserting �ai in the total Hamiltonian (34) gives

HT � H�0� 	 �a0�
a0; (36)

where

H�0� � HC 	

�
@iAa

0 	
1

2
fabcAb

i A
c
0

�
�ai: (37)

Now the consistency of the primary constraint �a0, using
this modified H, gives

��a3 � f�a0; Hg �
k
2
"ij@iAa

j 	 @i#ai 	 fabcAb
i #

ci

(38)

which is the same as �a3 in the definitions (33). Since
f��a3; Hg � 0, no more constraints would emerge. As is
demonstrated in Eq. (33), there are three constraint chains,
one first class (including two elements �a0 and �a3) and
2 s class, each containing just one element. In fact, �a1 and
�a2 are the first and last elements of the corresponding
chains.
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Suppose we want to construct an embedding for Chern-
Simons theory. The 
-matrix of second class constraints
reads


ai;bj�x; y�  f�ai�x; t�;�bj�y; t�g � )ab"ij)�x; y�: (39)

Since the 
-matrix is constant we can choose the finite
order embedding (21) as

	ai � �ai 	 ai i � 1; 2: (40)

The embedded Hamiltonian can also be found (see
Eqs. (13)–(19)) as

H � H�0� 	H�1� 	H�2� (41)

where

H�1� � *ija
i @jA

a
0 	

1

2
fabc*ija

i A
b
jA

c
0

H�2� � �
1

4
fabca

i 
biAc

0

(42)

As it is apparent the constraints �a0 and �a3 have no more
vanishing Poisson brackets with the embedded
Hamiltonian even weakly. In other words, assuming �a0 �
#a0 (for all a) as the primary constraints, we will find some
chains of second class constraints, due to additional terms
H�1� and H�2� in the Hamiltonian. This shows that the initial
gauge symmetry A ! A	 dA generated by the first class
constraints �a0 and �a3 is no more present in the em-
bedded model. Technically this has happened since �a1

and �a2 as the last elements of the corresponding chains
have nonvanishing Poisson brackets with the Hamiltonian
(36). Therefore the requirement of vanishing the expres-
sion given in Eq. (25) is not fulfilled. In fact, one may see
that f�ai; Hg contain terms with one or two A-fields; hence,
they do not commute with first class constraints �a0 and
�a3. Direct investigation of the embedded Hamiltonian
(60) also shows that it no more commutes with the first
class constraints of the model. This is really the origin of
the problem of BFT method for some of the mixed con-
straint systems such as Chern-Simons.
IV. SOLUTION

In this section we give two different methods to over-
come the problem which lead to two different types of
embedding for Chern-Simons model.

i) In Ref. [10] some technics are given which may help
us satisfy the desired condition (27). The main point is that,
by adding terms which vanish on the constraint surface one
can redefine the constraints as well as the Hamiltonian to
satisfy Eq. (27). Suppose we are given 2 s class chains
terminating at noncommutating elements �1 and �2 re-
spectively, such that

f�1;�2g � ) f�1; Hg � % f�2; Hg � �: (43)

Assume the following redefinitions
-4
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�̂1 � ��1 � %�2 �̂2 � ����1�2: (44)

It is easy to observe that

f�̂1; �̂2g � ) f�̂1; Hg � 0 f�̂2; Hg � 1: (45)

In other words, the above redefinitions do not change the
algebra of second class constraints, while their Poisson
brackets with Hamiltonian turn to be constants. The re-
mainder of the problem is straightforward. For nonabelian
Chern-Simons theory this method gives the following re-
defined constraints

�̂ a1 �

�
1

2
k2Aa

2�@1A
a
0 	 fabcAc

0A
b
1� � 1 $ 2

�
(46)

�fk@1Aa
0#

a1 	 k#a1fabcAc
0A

b
1 	 1 $ 2g�̂a2

� �

�
#a2 	

1

2
kAa

1

�
=�k@1A

a
0 	 kfabcAc

0A
b
1�; (47)

where no summation on the repeated index a is assumed.
Instead of Eq. (40), the embedded constraints are

	ai � �̂ai 	 ai i � 1; 2: (48)

Finally according to Eq. (28), the embedded Hamiltonian
is

H � H�0� 	
1

k

X
a

a1 (49)

where H�0� is given in Eqs. (37) and (31).
ii) By adding some auxiliary fields one can first convert

the first class constraints to second class ones and then the
traditional BFT method can be applied to the whole sys-
tem. These new auxiliary fields are different from those of
the formal BFT formalism. To see how this is possible,
suppose we are given K first class two-level chains origi-
nated from K primary first class constraints ��0�

i ; i �
1; . . .K. We can assume that ��0�

i are principally emerged,
in some suitable coordinates, from the definition of the
momenta

pi 
@L
@ _qi

: (50)

One can easily see that the following extensions convert
first class constraints to second class ones:

pi ! pi 	 -i Hc ! Hc 	
1
2

P
i
p2
-i (51)

where -i and p-i are auxiliary conjugate variables. In the
Lagrangian formalism this can be done by the replacement

L ! L� -i _qi 	
1

2

X
i

_-i
2: (52)

It can be shown that the replacement (52) is in fact a gauge
fixing term inserted in the gauge invariant Lagrangian L. In
other words the new Lagrangian, or equivalently the new
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Hamiltonian (51), gives the same equations of motion for
the gauge invariant quantities while destroys the arbitrari-
ness of the gauge dependent variables.

Fortunately most physical models fall in the category of
two-level systems. However, for more complicated sys-
tems it is not too difficult to add suitable variables to
convert first class constraints to second class ones. For
example, if there are four levels of constraints in a given
first class chain beginning with the momentum p, then by
adding two conjugate pairs �-; p-� and �; p� and the
replacements

p ! p	 - Hc ! Hc 	
1
2

2 	 pp-; (53)

one can convert the system to a second class one. In fact it
is not needed to give a detailed procedure for different
cases which may occur, since the process of constructing a
second class system from a first class one can be done
easily for distinct models.

To apply this method to Chern-Simons theory one can
make the following replacement in the original Lagrangian
(29)

L ! L� -a _Aa
0 	

1

2

X
a

� _-a�2 (54)

where -a are auxiliary fields in the configuration space. It
is obvious that the gauge symmetry A ! A	 df is lost in
the Lagrangian (54), while it can be shown that the gauge
invariant quantities are remained invariant. The
Hamiltonian (31) would consequently admit the following
replacement

Hc ! Hc 	
1

2

X
a

�pa
-�

2: (55)

By these replacements the primary and secondary con-
straints would change to

�̂a0  �a0 	 -a �̂a1  �a1 �̂a2  �a2

�̂a3  �a3 	 pa
-: (56)

In this way we have a pure second class system for which
the ordinary finite order BFT method is applicable. The

-matrix now reads


a�;b��x; y� �

0
BBB@

0 0 0 1
0 0 k 0
0 �k 0 0
�1 0 0 0

1
CCCA)ab)�x� y� (57)

where �; � � 0; . . . 3 are row and column indices of the
above 4� 4 matrix, respectively. Again the 
-matrix is
constant and one may write the following finite extensions
for the constraints

	a� � �̂a� 	 a� � � 0; . . . 3: (58)

The embedded Hamiltonian can also be found (see
-5
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Eqs. (13)–(19)) as

H � H�0� 	
1

2

X
a

�pa
-�

2 	H�1� 	H�2� 	H�3� (59)

where H�0� is defined in Eq. (37) and

H�1� �
�1

k
a
1G

a�0�
2 	

1

k
a
2G

a�0�
1 	 a

3G
a�0�
0

H�2� �
�1

k
a
1G

a�1�
2 	

1

2k
a
2G

a�1�
1 	

1

2
a
3G

a�1�
0

H�3� �
1

3
fabc�a

1
b
2

c
3 	 a

2
b
3

c
1�

(60)

in which

Ga�0�
0 � k*ij@iAa

j 	
k
2
fabc*ijAb

i A
c
j

Ga�0�
i � k*ij@jAa

0 	 k*ijfabcAb
jA

c
0 i � 1; 2

Ga�1�
0 � @ia

i 	 fabc�Ab
1

c
1 	 Ab

2
c
2�

Ga�1�
1 � fabcb

1A
c
0 � k@2a

3 � kfabcc
3A

b
2

Ga�1�
2 � �fabcb

2A
c
0 	 k@1a

3 	 kfabcc
3A

b
1 :

One can easily check that this Hamiltonian and the set of
constraints (58) construct a first class system.

It is worth noting that the above results are valid for
abelian Chern-Simons theory by imposing fabc � 0.

V. CONCLUDING REMARKS

We showed that the BFT embedding method although
applicable to pure second class systems, is not guaranteed
to work well for systems possessing both first and second
class constraints. The Chern-Simons theory is a distin-
guished example in this regard. As we saw, the bottle-
neck condition is the requirement that at the last level of
consistency the second class constraints have constant
Poisson brackets with the Hamiltonian. This condition
045004
guarantees that the algebra of first class constraints is not
violated during embedding of second class ones. However,
we should admit that this condition is actually stronger to
some extent than what is needed. In fact in concrete
examples one may be able to find different solutions in
which the first class constraints commute with the gener-
ators of the embedded Hamiltonian (i.e. Gn


 in Eqs. (16)–
(18)). So we think that the problem is open in this regard.

However, if one insists that the critical condition (27)
should be satisfied in any case, then several methods can be
found to redefine the constraints to reach this goal. We
suggested just one possibility in Eqs. (44). It may be
possible to give other (or better) solutions for this require-
ment. The problem is also open in this direction. To sum
up, in this approach one tries to find the origin of this
violation in the involuting algebra of first class constraints
and remove it.

As a second approach we gave another solution with a
different character. In this method we first convert the first
class constraints into second class ones by means of adding
suitable variables and then use the ordinary BFT method to
embed the resulting pure second class system into a first
class one. It is not usually a difficult task to construct a
second class system out of a first class one. We think that
this will be easily done in each concrete example and thus
it is not needed to give general prescriptions for that.

According to these methods, we gave two different types
of embedding for nonabelian Chern-Simons theory which
includes the abelian case easily by imposing fabc � 0. The
embedding of the abelian Chern-Simons theory was pre-
viously considered in [13] by using an infinite number of
auxiliary fields. However, as far as we know, because of the
mixed character of its constraint structure, no finite order
BFT embedding has been given for Chern-Simons theory
so far.
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