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Improving the ultraviolet behavior in baryon chiral perturbation theory
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We introduce a new formulation of baryon chiral perturbation theory which improves the ultraviolet
behavior of propagators and can be interpreted as a smooth cutoff regularization scheme. It is equivalent to
the standard approach, preserves all symmetries, and therefore satisfies the Ward identities. Our
formulation is equally well defined in the vacuum, one-nucleon, and few-nucleon sectors of the theory.
The equations (Bethe-Salpeter, Lippmann-Schwinger, etc.) for the scattering amplitudes of the few-
nucleon sector are free of divergences in the new approach. Unlike the usual cutoff regularization, our
‘‘cutoffs’’ are parameters of the Lagrangian and do not have to be removed.
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1So far, dimensional regularization has only been used for a
very restricted number of cases when the equations are exactly
solvable.
I. INTRODUCTION

Weinberg’s work in 1979 [1] originated effective field
theory (EFT) as one of the most important theoretical tools
for investigating strong-interaction processes in the low-
energy regime. The key progress due to Weinberg’s ap-
proach was the development of a perturbative scheme not
in terms of a coupling constant, but rather in terms of
external momenta and the pion mass [1]. In the traditional
sense, effective field theories are nonrenormalizable theo-
ries. However, as long as one includes all of the infinite
number of interactions allowed by symmetries, from the
point of view of removing divergences there is no differ-
ence between the so-called nonrenormalizable theories and
renormalizable theories [2]. Infinities encountered in the
calculation of loop diagrams are removed by a renormal-
ization of fields and the infinite number of free parameters
of the most general effective Lagrangian.

The ideas of Weinberg were further developed and
comprehensively applied to the vacuum sector of QCD
by Gasser and Leutwyler in Refs. [3,4]. Chiral perturbation
theory (ChPT) in the mesonic sector has been successfully
applied to calculations of various physical quantities (for a
recent review see, e.g., Ref. [5]). Processes involving one
nucleon in the initial and final states were first considered
by Gasser, Sainio, and Švarc [6]. They observed that
higher-loop diagrams can contribute to terms as low as
O�q2�, where q generically denotes a small expansion
parameter such as, e.g., the pion mass. This problem has
widely been interpreted as the absence of a systematic
power counting in the manifestly Lorentz-invariant formu-
lation of baryon chiral perturbation theory (BChPT). As an
alternative the heavy-baryon formulation (HBChPT) was
suggested [7,8]. Most of the calculations in the one-baryon
sector have been performed in this framework using di-
mensional regularization in combination with the modified

minimal subtraction scheme (gMS) of ChPT (for an over-
view see, e.g., Refs. [5,9]). The advantage of this approach
is that it leads to a straightforward power counting.
Meanwhile it has been realized that, choosing an appro-
05=72(4)=045002(12)$23.00 045002
priate renormalization condition, one can restore the power
counting in the original manifestly Lorentz-invariant for-
mulation of BChPT [10–19].

A generalization to the few-nucleon sector was sug-
gested in Weinberg’s papers on constructing nuclear forces
from effective field theory [20,21]. For processes involving
N > 1 nucleons, Weinberg proposed applying the power
counting to the potential, which is defined as the sum of
all N-nucleon-irreducible diagrams. The scattering ampli-
tudes are then calculated by solving the Lippmann-
Schwinger (LS) or Schrödinger equation.

The application of these ideas has encountered various
problems. They originate from the renormalization of the
LS equation with nonrenormalizable potentials (i.e. the
iteration of the potential generates divergent terms with
structures which are not included in the original potential).
A consistent subtractive renormalization requires the in-
clusion of the contributions of an infinite number of coun-
terterms which, in most cases, turns out to be technically
unfeasible. As a practical solution of the problem, one can
perform the calculations in cutoff EFT. This approach
reproduces the results of the subtractively renormalized
theory to a given order, provided that the value of the cutoff
parameter is suitably chosen [22–29]. While this approach
has been successful in various applications [29–33], the
applied cutoff regularization scheme breaks certain sym-
metries of the theory and therefore special care has to be
taken. The application of cutoff regularization schemes to
effective theories has been of interest for a long time [34–
42]. A symmetry-preserving lattice regularization of ChPT
in the presence of at most a single baryon has been con-
sidered in Ref. [43]. Although this regularization could, in
principle, also be applied in the few-nucleon sector, to the
best of our knowledge the question of preserving symme-
tries in calculations of few-nucleon processes still remains
open.1 Therefore, the construction of a symmetry-
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preserving formulation of BChPT which renders equations
free of divergences is of great interest.

In this work we use an old idea by Slavnov [44], who
introduced chirally invariant terms with higher derivatives
as a regulator of the nonlinear sigma model. We include
symmetry-preserving higher-derivative terms in the effec-
tive Lagrangian of baryon chiral perturbation theory which
modify the ultraviolet behavior of the pion and baryon
propagators. To regularize the still remaining infinite num-
ber of primitively divergent diagrams [44], we apply di-
mensional regularization. This ensures that all loop
diagrams are regulated. The advantage of this approach is
that it can be applied to individual Feynman diagrams as
well as to equations of the few-nucleon sector.

Our work is organized as follows. In Sec. II we provide
the terms which we add to the standard effective
Lagrangian. The nucleon mass is calculated within our
new approach in Sec. III. In Sec. IV we demonstrate that
the new scheme satisfies the U(1) Ward identity, while in
Sec. V it is shown that in HBChPT, analogously to the
manifestly Lorentz-invariant formulation, the existence of
a consistent power counting depends on the applied renor-
malization condition. Section VI considers an application
to simple examples of the nucleon-nucleon scattering prob-
lem. A summary is given in Sec. VII, while the appendix
contains the expressions for the required loop integrals.
II. THE MODIFIED EFFECTIVE LAGRANGIAN

The standard effective Lagrangian consists of the sum of
the purely mesonic and the �N, NN, etc. Lagrangians,
respectively,

L eff � L� �L�N �LNN � � � � : (1)

The terms in Eq. (1) are organized in a (chiral) derivative
and quark-mass expansion [1,3,4,6,45–49]. Counting the
quark-mass term as O�q2� [3,50], the mesonic Lagrangian
contains only even powers, whereas the baryonic
Lagrangian involves both even and odd powers due to the
additional spin degree of freedom. We choose to not show
the counterterms explicitly. Instead we accompany the
Feynman rules with the subtraction rules within a fixed
renormalization condition. In particular, we use the ex-
tended on-mass-shell (EOMS) renormalization of
Ref. [16].

The lowest-order mesonic Lagrangian reads [3]

L 2 �
F2

4
Tr�D	U�D	U�y� �

F2

4
Tr��Uy �U�y�; (2)

where U is a unimodular unitary �2	 2� matrix containing
the Goldstone boson fields. The covariant derivative is
defined as

D	U � @	U 
 ir	U � iUl	;

where
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r	 � v	 � a	; l	 � v	 
 a	;

� � 2B�s� ip�:

Here, v	, a	, s, and p are external vector, axial-vector,
scalar, and pseudoscalar sources, respectively. In Eq. (2), F
denotes the pion-decay constant in the chiral limit: F� �
F�1�O�m̂�� � 92:4 MeV. We work in the isospin-
symmetric limit mu � md � m̂, and the lowest-order ex-
pression for the squared pion mass is M2 � 2Bm̂, where
B is related to the quark condensate h qqi0 in the chiral
limit [3].

In the nucleon sector, let

� �
p
n

� �
denote the nucleon field with two four-component Dirac
fields, p and n, describing the proton and neutron, respec-
tively. The most general �N Lagrangian is bilinear in ��x�
and ��x� and involves the quantities u, u	, �	, v�s�

	 , and
� (and their derivatives), which are defined as

u2 � U; u	 � iuyD	Uuy;

�	 �
1

2
�uy@	u� u@	u

y 
 i�uyr	u� ul	u
y��;

� � uy�uy  u�yu:

In terms of these building blocks, the lowest-order
Lagrangian reads [5,6]

L �1�
�N � �

�
i�	D

	 
m�
1

2
g
�

A�	�5u
	
�
�; (3)

where D	� � �@	 � �	 
 iv�s�
	 �� denotes the covariant

derivative. (In the definition of the covariant derivative we
follow Ref. [51], where �	 only contains traceless external

fields and the coupling to the isosinglet vector field v�s�
	 is

considered separately.) In Eq. (3), m and g
�

A refer to the
chiral limit of the physical nucleon mass and the axial-
vector coupling constant, respectively.

Below we will calculate the nucleon self-energy to third
order. For that purpose, we will need one of the seven
structures of the Lagrangian at O�q2� [6,47],

L �2�
�N � c1 Tr���� ��� � � � : (4)

The Lagrangian L�3�
�N does not contribute to the nucleon

mass at the given order.
To improve the ultraviolet behavior of the propagators

generated by the Lagrangian of Eq. (1) we introduce addi-
tional terms into the Lagrangian which modify the propa-
gators of the pion and the nucleon. In particular, we
consider the modified pion propagator

��
��p� �

1

p2 
M2 � i0�
YN�

j�1

�2
�j

�2
�j 
 p2 
 i0�

(5)
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and the modified nucleon propagator

S�
N�p� �

1

�p6 
m� i0��

YN�

j�1

�2
�j

�2
�j �m2 
 p2 
 i0�

: (6)

Here, ��i and ��j are (independent) parameters.2 For
simplicity we use the standard prescription for dealing
with poles in the �-dependent factors of the modified
propagators. For sufficiently large values of the parameters
� any other prescription leads to the same results for low-
energy physical quantities. The propagators above can be
generated by a Lagrangian which, in addition to the stan-
dard BChPT Lagrangian of Eq. (1), contains additional
symmetry-preserving terms. These terms vanish in the limit
��i ! 1, ��j ! 1.

The choice of the additional terms of the Lagrangian is
not unique. Furthermore these terms not only generate the
above propagators, but also result in additional interaction
terms. Our choice is motivated by the simplicity of calcu-
lations. For the pion sector we choose

L reg
�� �

XN�

n�1

Xn

4

F2
0

4
Tr�f�D2�nUUy 
U��D2�nU�yg

	 �D2UUy 
U�D2U�y 
 �Uy �U�y��;

where D2U � D#D
#U and Xn are functions of ��i. For

example, in order to generate the modified propagator

��
��p� �

1

p2 
M2 � i0�
Y3
j�1

�2
�j

�2
�j 
 p2 
 i0�

; (7)

we need to take N� � 3 and

X1 �
1

�2
�1

�
1

�2
�2

�
1

�2
�3

; X2 �
�2

�1 � �2
�2 � �2

�3

�2
�1�

2
�2�

2
�3

;

X3 �
1

�2
�1�

2
�2�

2
�3

: (8)

For the additional terms of the Lagrangian of the nu-
cleon sector we choose

L reg
�N �

XN�

n�1

Yn

2
� ��i�	D	 
m��D2 �m2�n�� H:c:�;

(9)

where Yn are functions of ��j. For example, for the
modified nucleon propagator
2In the following we let � collectively represent the ��i and
��j.
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S�
N�p� �

�2
�

�p6 
m� i0����2
� �m2 
 p2 
 i0��

; (10)

we have N� � 1 and Y1 � 1=�2
�.

Depending on the order of the performed calculations,
we choose the modified propagators, i.e. fix N� and N�,
such that all loop diagrams (except some of the primitively
divergent diagrams) contributing to the given order con-
verge. To obtain the modified Lagrangian for lower order
calculations, one needs to take ��i ! 1, ��j ! 1 for
some of the parameters � in the modified Lagrangian used
in higher-order calculations.

Analogously to the nonlinear sigma model [44], the
additional terms do not render all loop diagrams finite.
There still remain an infinite number of primitively diver-
gent diagrams in the mesonic sector as well as divergences
in diagrams with fermion loops. These diagrams can be
regularized in a symmetry-preserving way by introducing
additional auxiliary fields analogously to the case of Yang-
Mills theory [52]. However, in practical calculations such a
technique is rather difficult to apply. Instead it is possible
(and much more convenient) to use standard dimensional
regularization. This is due to the fact that the remaining
divergent diagrams contribute either in physical quantities
of the vacuum (purely mesonic) and the one-nucleon sec-
tors, or they appear as subdiagrams in the potentials of the
few-nucleon sector. In both cases the calculations are
perturbative, i.e., to any given order in the chiral expansion
one needs to calculate a finite number of diagrams.
Therefore, divergences which show up as the 1=�n
 4�
poles (where n denotes the number of space-time dimen-
sions) can be explicitly subtracted (i.e. absorbed in the
redefinition of the parameters of the effective Lagrangian).

To summarize, our scheme consists of adding
symmetry-preserving additional terms in the standard ef-
fective Lagrangian and applying dimensional regulariza-
tion to the resulting effective theory. All symmetries are
preserved in the regularized theory, i.e., regularized quan-
tities satisfy all relevant Ward identities. We expand the
regularized diagrams in powers of n
 4 and subtract
1=�n
 4� pole-terms observing that there is a finite num-
ber of them to any given (finite) order in the chiral expan-
sion of physical quantities in the vacuum and one-nucleon
sectors, and the potentials in the few-nucleon sector. No
further divergences occur (for finite parameters �) neither
in the vacuum and one-nucleon sector nor in the equations
of the few-nucleon sector. Therefore, for the equations of
the few-nucleon sector we can take n � 4.

Using a field transformation, the additional higher-
derivative terms which we introduced in the effective
Lagrangian can be reexpressed in a canonical form, i.e. a
form with a minimal number of independent terms [53,54].
This clearly shows that any � dependence of the physical
quantities can systematically be absorbed in the redefini-
tion of the parameters of the standard canonical effective
Lagrangian.
-3



FIG. 1. One-loop contribution to the nucleon self-energy at
O�q3�.
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III. NUCLEON SELF-ENERGY

As an example of the application of our approach, we
calculate the nucleon self-energy to order O�q3� in this
section. For this calculation it is sufficient to take N� �
N� � 1. We parametrize the complete nucleon propagator
as

SN�p� �
1

�p6 
m� i0���1
 �p2 
m2�=�2
�� 
��p6 �

;

(11)

where m is the nucleon pole mass in the chiral limit and the
nucleon self-energy 
i��p6 � represents the sum of all one-
particle-irreducible perturbative contributions to the two-
point function. The physical nucleon mass is defined
through the pole of the full propagator at p6 � mN ,

�mN 
m�

�
1


m2
N 
m2

�2
�

�

 ��mN� � 0: (12)

At O�q3�, the self-energy receives contact contributions
from L�2�

�N as well as the one-loop contribution of Fig. 1,

� � �contact ��loop; (13)

where �contact � 
4c1M
2. Applying Feynman rules, we

obtain for the one-loop contribution

�loop � 

3g
�2
A�

2
��

2
�

4F2 f�p6 �m�I�1011�

�M2�p6 �m�I�1111� � �p2 
m2�p6 I�p��1111�


 p6 I�p��1110�g; (14)
045002
where

fI�abcd�; p	I�p��abcd�g � i
Z d4k

�2��4
f1; k	g

AaBbCcDd ; (15)

with

A � k2 
 �2
� � i0�; B � k2 
M2 � i0�;

C � �p� k�2 
m2 
 �2
� � i0�;

D � �p� k�2 
m2 � i0�:

To further simplify the calculation we take �� � ��.
The parameter n of dimensional regularization has been
put n � 4, as the diagram is finite for finite �. We perform
the renormalization by applying the extended on mass-
shell (EOMS) scheme of Ref. [16]. First we substitute
the expressions for the loop integrals from the appendix
and expand Eq. (14) in a power series in � (around � �
1). We then subtract all positive powers of � and
ln��=m�.3 Next we expand the remaining expression in
powers of small quantities, i.e., M, p2 
m2 and p6 
m
and subtract all terms of zeroth, first, and second order in
this expansion, so that the renormalized expression is in-
deed of order q3 as mandated by the power counting. The
resulting expression for the subtraction terms reads
�sub � 

3g
�2
A�

2�4m� 5p6 �

256�2F2 �
g
�2
A

256�2mF2

�

12m4 � 3m2M2 � 8m2p2 
 6�p2�2 
 10m3p6 �mp2p6

� 12m�2m3 � 4mM2 � 3m2p6 
 p2p6 � ln
�
�

m

��



g
�2
Am

2560�2F2�2

�

48m4 
 10�p2�2 � 6m2�15M2 � 41p2� � 63m3p6 � 130mp2p6


 240m2�m2 � 2M2 � p2 � 2mp6 � ln
�
�

m

��
: (16)
3Note that, since our scheme respects all symmetries of the
theory, the Ward identities are satisfied separately in each order
of the expansion in powers of �.
Subtracting Eq. (16) from Eq. (14) and taking p6 � mN , we
obtain for the renormalized on-mass-shell self-energy to
order q3

�Rjp6 �mN
� 


3g
�2
AM

3

32�F2 �O

�
1

�4

�
:

Using Eq. (12), the nucleon mass to order q3 follows as
mN � m
 4c1M
2 


3g
�2
A

32�F2 M
3 �O

�
1

�4

�
; (17)

which agrees with the standard BChPT result
[12,16,55,56].
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FIG. 2. One-loop contributions to the electromagnetic vertex.

4In the context of EFT the use of minimal-substitution terms
alone is not sufficient to generate a consistent framework,
because the most general effective Lagrangian also contains
terms involving field-strength tensors such as, e.g., the l5 and
l6 terms of L4 [3]. In general, the presence of these terms is also
necessary for the purposes of renormalization (see Ref. [57] for a
critical discussion of this issue).
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IV. ELECTROMAGNETIC WARD IDENTITY

To demonstrate that the new formulation indeed respects
the symmetries of the theory, we analyze the electromag-
netic Ward identity for the nucleon which, in units of the
elementary charge, reads

�pf 
 pi�	�	
N�pf; pi� �

1� +3

2
�S
1

N �pf� 
 S
1
N �pi��:

(18)

Here,

�	
N�pf; pi� � �	

N0�pf; pi� � �	
N�pf; pi� (19)

is the one-particle-irreducible three-point function
(�J	 �) with J	 the electromagnetic current operator
in units of the elementary charge. �	

N0�pf; pi� corresponds
to the tree-order contribution and �	

N�pf; pi� consists of
loop corrections. In order to determine �	

N , we consider the
coupling to an external electromagnetic field A	 and
insert for the external fields in Eq. (3)

r	 � l	 � 
e
+3

2
A	; v�s�

	 � 

e
2
A	:

For the purpose of this section it is sufficient to take N� �
N� � 1. From our modified Lagrangian we obtain

�	
N0�pf; pi� �

1� +3

2
�	



1 � +3

2

1

2�2 ��
	�p2

f � p2
i 
 2m2�

� �pf � pi�
	�p6 f � p6 i 
 2m��; (20)

where �	
N0�pf; pi� and the free propagator of Eq. (10)

satisfy the relation

�pf 
 pi�	�	
N0�pf; pi� �

1� +3

2
�S�
1

N �pf� 
 S�
1
N �pi��:

(21)

Of course, this result is not surprising, because the cou-
pling to an external electromagnetic field in the Lagrangian
of Eq. (9) proceeds via covariant derivatives which essen-
tially amount to a minimal coupling. At tree level this
045002
automatically results in contributions satisfying the Ward
identity.4

For the one-loop corrections to the nucleon self-energy
(of Fig. 1) and the vertex (diagrams of Fig. 2), we obtain

�loop�p6 � �
3g
�2
A

4F2 i
Z dnk

�2��n
k6 �5S�

N�p� k�k6 �5�
�
��k�; (22)

�	
Na�pf; pi� �

g
�2
A

4F2 i
Z dnk

�2��n
k6 �5+

aS�
N�pf � k�

	 �	
N0�pf � k; pi � k�S�

N�pi � k�

	 k6 �5+a��
��k�; (23)

�	
Nb�pf;pi�� 2+3

g
�2
A

4F2 i
Z dnk
�2��n

k6 �5S
�
N�pf�k��	�5�

�
��k�;

(24)

�	
Nc�pf;pi��2+3

g
�2
A

4F2 i
Z dnk
�2��n

�	�5S�
N�pi�k�k6 �5�

�
��k�;

(25)

�	
Nd�pf; pi� � 2+3

g
�2
A

4F2 i
Z dnk

�2��n
�p6 i � k6 
 p6 f�

	 �5S�
N�pi � k��	

�0�pf 
 pi 
 k;
k�

	 k6 �5�
�
��k� pi 
 pf��

�
��k�; (26)

where

�	
�0�p

0; p� � �p0 � p�	
�
1


p02 � p2 
M2

�2
�

�
(27)

is the leading tree-order contribution in �	
� , which is

related to the one-particle-irreducible three-point function
(�jJ

	�i) by the relation
-5
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�	
�ji�p

0; p� � i-3ij�
	
��p0; p�: (28)

To check the Ward identity for the above loop diagrams, we
multiply �	

N � �	
Na � �	

Nb ��	
Nc ��	

Nd with �pf 


pi�	, use Eq. (21) and the Ward identity for pions (at
leading tree order)

�p0 
 p�	�	
�0�p

0; p� � ��
1
� �p0� 
 ��
1

� �p�; (29)

and obtain after a straightforward calculation

�pf 
 pi�	�	
N�pf; pi� �

1� +3

2
��loop�p6 i� 
 �loop�p6 f��;

(30)

which verifies the Ward identity of Eq. (18).

V. NUCLEON SELF-ENERGY DIAGRAM IN
HBCHPT

It is common practice to assume the existence of a
consistent power counting in HBChPT without specifying

DJUKANOVIC, SCHINDLER, GEGELIA, AND SCHERER
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the renormalization scheme used. In HBChPT, as in any
quantum field theory, one has the freedom to choose a
renormalization condition. Dimensional regularization in

combination with the gMS scheme, which is commonly
used in HBChPT, is only one among an infinite number
of possibilities. In this section we apply our higher-
derivative formulation to the nucleon self-energy diagram
of Fig. 1 in order to show that, analogously to the mani-
festly Lorentz-invariant formulation, the existence of a
consistent power counting in HBChPT depends on the
choice of the renormalization condition.

Using the pion propagator of Eq. (5) for N� � 2 and
��1 � ��2 � �, we obtain (see, e.g., Sec. 5.5.9 and
Appendix C.2 of Ref. [5] for a detailed calculation in
HBChPT)

��3�
loop�p� � 3

g
�2
A�

4

F2 Sv
	Sv

.J
	.
�N�121;!�; (31)

where ! � �p � v
m� and
J	.
�N�abc;!� � i

Z d4k

�2��4
k	k.

�k2 
M2 � i0��a�k2 
�2 � i0��b�v � k�!� i0��c
: (32)

One can parametrize J	.
�N�121;!� as

J	.
�N�121;!� � c1g	. � c2v	v.: (33)

Since Sv � v � 0, c2 does not contribute to the self-energy. For c1 we find

c1 �
1

3
��M2 
!2�J�N�121;!� � J�N�021;!� �!J�N�120;!��; (34)

where

J�N�abc;!� � i
Z d4k

�2��4
1

�k2 
M2 � i0��a�k2 
�2 � i0��b�v � k�!� i0��c
: (35)
5This is analogous to the case of the pion tadpole self-energy
in cutoff regularization, where one needs a counterterm of order
p2 for the pion mass [34,58].
Standard power counting of HBChPT assigns the order
O�q3� to the diagram of Fig. 1. Calculating the loop
integrals of Eq. (35) (see Appendix B), we obtain

��3�
loop�p� � 


3g
�2
A

64�2F2 ���3 � 3!�2� �O���: (36)

Both terms inside the square brackets (as well as the term
proportional to � which, for the sake of brevity, we have
not displayed) violate the power counting. They are ana-
lytic in momenta and can be absorbed in the renormaliza-
tion of the nucleon mass and the nucleon field. Note that
the corresponding mass counterterm 1m NvNv, canceling
the �3 term in Eq. (36), is equal to zero in the standard
formulation of HBChPT with dimensional regularization
and is, therefore, usually not indicated in the effective
Lagrangian of HBChPT.5 Choosing the renormalization
scheme appropriately, one can subtract all terms in
Eq. (36) which violate the power counting so that the
renormalized diagram is of order O�q3�:

VI. NN SECTOR

A. Contact interaction

In this section we consider a demonstrating example of
the application of our approach to the NN problem in the
-6



FIG. 3. Graphical illustration of the equation for the NN scattering amplitude.
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manifestly Lorentz-invariant formulation of baryon chiral
perturbation theory.

Let us consider the simplest possible � ���2 contact
interaction term. The corresponding equation for the
lowest-order amplitude can be solved analytically; there-
fore, one can apply standard dimensional regularization to
this problem. The interaction term in the Lagrangian reads

L NNNN � C �� ��: (37)

In the following, we will consider the scattering ampli-
tude in the center-of-mass frame. Let P � p1 � p2 denote
the total four-momentum of the scattered nucleons, where

p	
1 � �

																		
m2 � p2

p
; ~p�, p	

2 � �
																		
m2 � p2

p
;
 ~p� with p �

j ~pj and P2 � 4m2 � 4p2.
6It is understood that T56;	. needs to be multiplied with the
corresponding Dirac spinors.
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The interaction Lagrangian of Eq. (37) generates the
following NN vertex (two-nucleon-irreducible contribu-
tion in the NN scattering amplitude):

iV56;	. � 2iC�15.16	 
 15	16.�: (38)

According to Weinberg’s approach, to find the corre-
sponding lowest-order NN scattering amplitude, we need
to solve the equation6

T56;	.�P� � V56;	.

� i
Z d4k

�2��4
V56;#�G#�;91�P; k�T91;	.�P�;

(39)

schematically shown in Fig. 3, where
Gdr
#�;91�P; k� � 


�k	�
	
#9 �m1#9���P. 
 k.��.

�1 �m1�1�

�k2 
m2 � i0����P
 k�2 
m2 � i0��
;

Ghd
#�;91�P; k� �

�4
�

�k2 
m2 
�2
� � i0����P
 k�2 
m2 
�2

� � i0��
Gdr

#�;91�P; k�

are the (two-nucleon) propagators to be used in standard dimensional regularization and higher-derivative formulation,
respectively. Integrating Eq. (39) over k, we obtain

T56;	.�P� � V56;	. � iV56;#�G#�;91�P�T91;	.�P�; (40)

where

G #�;91�P� � ifm1#9��
	
�1P	 �m1�1�INN � ��	

#9��
.
�1P. �m1�1� 
m1#9�

	
�1�I

�P�
NNP	 
 �	

#9�
.
�1INN;	.g; (41)

with

fINN; P
	I�P�NN; I

	.
NNg

dr � i
Z dnk

�2��n
f1; k	; k	k.g

�k2 
m2 � i0����P
 k�2 
m2 � i0��
(42)

in standard dimensional regularization and

fINN; P
	I�P�NN; I

	.
NNg

hd � i
Z d4k

�2��4
f1; k	; k	k.g

�k2 
m2 � i0����P
 k�2 
m2 � i0��

	
�4

�

�k2 
m2 
�2
� � i0����P
 k�2 
m2 
�2

� � i0��
(43)
in higher-derivative formulation, respectively.
We renormalize Eq. (40) by subtracting the contribu-

tions of loop integrals at P2 � 4m2. Next we expand the
subtracted loop integrals (IR � I 
 IjP2�4m2) in p and
retain terms to order O�p�. The resulting equation reads

TR
56;	.�P� � V56;	. � iV56;#�G

R
#�;91T

R
91;	.�P�; (44)

where
-7
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G R
#�;91 �

p
16�m

�
m1#9��

	
�1P	 �m1�1� �

P	

2

	��	
#9��

.
�1P. �m1�1� 
m1#9�

	
�1�


 �	
#9�

.
�1

P	P.

4

�
: (45)

Comparing Eq. (44) for standard dimensional regulariza-
tion and higher-derivative formulation [remembering that
terms of order O�p2� have been neglected] we obtain
identical results.7

Note that, in contrast to the example considered above, it
is not clear how to apply standard dimensional regulariza-
tion to equations involving potentials derived from BChPT.
The advantage of our higher-derivative formulation is that
it is also applicable in these cases while preserving the
symmetries of the theory.

B. Inclusion of one-pion exchange potential

Below we consider some conceptual issues of renormal-
ization and the � dependence of the leading-order NN
scattering amplitude in a nonrelativistic formalism of
BChPT. This amplitude is obtained by solving the
Lippmann-Schwinger equation with a contact interaction
plus the one-pion exchange potential.8

Using an appropriate field redefinition and the standard
heavy-baryon reduction with v � �1; 0; 0; 0�, we obtain the
leading-order NN potential (for the choice N� � 1, N� �
0)

V� ~p0; ~p� � CS � CT ~61 � ~62 


�
g
�

A

2F

�
2
� ~+1 � ~+2�

	
~61 � � ~p

0 
 ~p� ~62 � � ~p
0 
 ~p�

� ~p0 
 ~p�2 �M2
�

; (46)

where CS and CT are the coupling constants of the four-
nucleon contact interaction Lagrangian at leading order.
The scattering amplitude satisfies the equation

T� ~p0; ~p� � V� ~p0; ~p� �m
Z d3 ~k

�2��3
V� ~p0; ~k�

	
�2

��2 � ~k2
��mE
 ~k2

� i0��
T� ~k; ~p�; (47)

where E � ~p2=m is the energy of two nucleons in the
center-of-mass system.
7Although Eq. (44) can be solved exactly, it is beyond the
scope of this paper to perform this straightforward but rather
cumbersome calculation.

8A detailed discussion of the heavy-baryon reduction of our
new Lagrangian (including a numerical analysis in the few-body
sector) will be given in a forthcoming publication.
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We fix the free parameters CS and CT as functions of �
by demanding that the solution of Eq. (47) reproduces two
physical quantities for fixed kinematics. Following
Ref. [21], we choose the renormalization points of the
order of small external momenta. This exactly corresponds
to the following general renormalization program (see,
e.g., [59]). First, one calculates the quantities of physical
interest in terms of bare parameters in the regularized
theory. Once a sufficient number of physical quantities
are determined as functions of bare parameters, one inverts
the results and expresses the bare quantities in terms of
physical quantities. These expressions are then used to
eliminate the bare parameters in all other quantities of
physical interest. This procedure preserves all symmetries
provided that the applied regularization scheme respects
them. If the considered theory is renormalizable in
the standard sense, the above procedure removes all
divergences.

For definiteness, let us take the zero kinematics as
renormalization points.9 This corresponds to the subtrac-
tion of loop diagrams at zero kinematics. In the above case,
expressing CS and CT from two physical quantities10 and
substituting them into other quantities we only eliminate
some of the terms that diverge in the limit � ! 1. This is
due to the nonrenormalizability of BChPT in the traditional
sense. However, note that � is a parameter of the
Lagrangian and we do not have to take it to infinity. The
remaining � dependence of the amplitude is of higher
order in the small-parameter expansion (pion mass, small
external momenta). As the potential of Eq. (46) is non-
renormalizable in the traditional sense, the perturbative
expansion of the renormalized amplitude contains negative
as well as positive powers of � (and/or positive powers of
ln�). These contributions contain terms of the form

�
qi

�j as well as �
qi�j

Qi�j ; with i > 0; j > 0;

(48)

where q denotes small external momenta or the pion mass
and Q stands for 4�F and/or the large scale parameter
hidden in renormalized contact interaction constants. To
keep these formally higher-order contributions indeed sup-
pressed numerically, one should take ��Q. The exis-
tence of such an optimal value of the parameter � depends
on the validity of the assumption of Weinberg’s approach
that the renormalized coupling constants are natural for
renormalization points of the order of or less than small
external momenta. The validity of this assumption has to
be checked at each order of calculations. While one cannot
9This would not be a good choice if we took the � ! 1 limit
in the end. We would be faced with the problem of very poor
convergence [60].

10We could take as ‘‘quantities of physical interest’’ the scat-
tering lengths of the 1S0 and 3S1 NN scattering.
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take the existence of the optimal value of � for granted, the
reasonable success of cutoff EFT suggests that it should
exist. A detailed analysis of this issue in our symmetry-
preserving approach is in progress.

The complete � dependence of physical quantities can
be absorbed in the redefinition of couplings constants of
the canonical Lagrangian.11 For the above example, this
means that the contributions of the form of Eq. (48) can be
absorbed in the redefinition of higher-order coupling con-
stants. We could take any value for the parameter �
provided that the compensating contributions of higher-
order terms (an infinite number of them) are also included,
but that does not seem to be feasible. Note that � is not a
cutoff regularization parameter and does not need to be
taken to infinity. The above specified optimal choice of the
free parameter of the Lagrangian, �, ensures that, to the
accuracy of the given calculations, physical quantities do
not depend on higher-order terms which we introduced in
the Lagrangian (� independence).

As one cannot solve equations exactly, one carries out
the above renormalization program numerically by fixing
coupling constants as functions of � so that the given
particular physical quantities at the renormalization points
(i.e. the fixed �-independent values of them) are repro-
duced. The reliability of this numerical renormalization
procedure in comparison with the explicit analytic renor-
malization depends only on the accuracy of the numerical
approximation, i.e. the two approaches are conceptually
equivalent.

In the approach suggested in this work, Ward identities
are satisfied order by order in the loop expansion as well as
in the chiral expansion of physical quantities [61]. In the
few-nucleon sector the physical quantities, at any finite
order in the chiral expansion, contain an infinite number
of terms in the loop expansion. On the other hand, to any
specified order qn, for a process involving A nucleons,
there is a finite number of A-nucleon irreducible diagrams.
The sum of these diagrams is defined as the effective
potential. An infinite number of diagrams contributing in
the scattering amplitude (at given order qn) is summed
up by solving the corresponding equations with given nth
order effective potential. That is, substituting the qn-order
potential in the Lippmann-Schwinger equation and per-
forming the renormalization properly (as specified above)
corresponds to the summation of all renormalized dia-
grams up to order qn. The solution of the Lippmann-
11The original coupling constants ci are written as ci � cr
i � 1c

expansion of the 1ci part exactly cancels the corresponding �-depen
i.e., local interaction terms of the effective Lagrangian remain local
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Schwinger equation also contains some, but not all, of
the higher-order contributions, and the result is reliable
only to order qn, the error being of order O�qn�1�. As the
Ward identities are satisfied order by order in the chiral
expansion, and the Lippmann-Schwinger equation resums
all contributions to order qn, the contributions in physical
quantities which can violate the identities are of order
�O�qn�1�, i.e. beyond the accuracy of the given
calculations.

VII. SUMMARY

We have discussed a new formulation of BChPT, which
preserves all symmetries of the theory. The main idea is to
use some of the structures of the most general effective
Lagrangian to improve the ultraviolet behavior of propa-
gators. The coefficients of these terms depend on parame-
ters (with dimension of mass) which serve as smooth
cutoffs of the theory. For practical applications it is con-
venient to choose these parameters to be equal.

We have explicitly applied our new approach to a cal-
culation of the nucleon mass to order O�q3�. We have also
explicitly verified that the electromagnetic Ward identities
are satisfied by (strong) one-loop-order corrections. The
application of this scheme to the one-nucleon sector of
HBChPT demonstrates that the existence of a consistent
power counting scheme in HBChPT actually depends on
the applied renormalization scheme.

The considerable advantage of the new formulation in
comparison with standard dimensional regularization is
that, while preserving all symmetries of the effective the-
ory, it leads to equations in the few-nucleon (NN, NN, etc.)
sector which are free of divergences. We have explicitly
considered examples of the contact interaction and one-
pion exchange potentials in the NN scattering problem and
have discussed issues of renormalization and consistency.
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APPENDIX A: NUCLEON SELF-ENERGY

The explicit expressions for the loop integrals of
Eq. (15) contributing in the calculation of the nucleon
self-energy up to and including order O� 1

�2� read
�4I�1111� � If�N �
1

16�2 �
1

8�2 ln
�
m
�

�
�

1

�2

�
M2If�N �

5p2 
 3m2 � 6M2

96�2 �
�m2 � 2M2� ln�m��

8�2 �
M2 ln�Mm�

8�2

�
; (A1)
i, where the cr
i are redefined coupling constants and the loop

dent parts of loop diagrams. The cr
i are independent of momenta,

.
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�4I�p��1110� � 

�2

64�2 �
m2

96�2 �
M2

64�2 

p2

192�2 �
1

�2

�
3M4 �M2p2

64�2 

m4

128�2 

m2M2

48�2 �
7m2p2 
 2�p2�2

960�2

�
M4

16�2 ln
�
M
�

��
; (A2)

�4I�p��1111� �
�



1

2
�

m2

2p2 

M2

2p2

�
If�N 


1

32�2 

1

16�2 ln
�
m
�

�
�

M2

16p2�2 ln
�
M
m

�
�

1

�2

�
If�N

�



M2

2
�

m2M2

2p2 

M4

2p2

�



m2

48�2 

5p2

192�2 

2m2 �M2

16�2 ln
�
m
�

�
�

M4

16�2p2 ln
�
M
m

��
; (A3)

�4I�1011� �
�2

16�2 �
m2

32�2 �
p2

48�2 �
m2

8�2 ln
�
m
�

�
�

1

�2

�



m4

96�2 �
19m2p2

192�2 �
3�p2�2

320�2 �
m2�m2 � p2�

8�2 ln
�
m
�

��
; (A4)

with

If�N �
1

16�2

�

1�

p2 
m2 �M2

p2 ln
�
M
m

�
�

2mM

p2 F�)�

�
; (A5)

where

F�)� �

8><>:
																
)2 
 1

p
ln�
) 


																
)2 
 1

p
�; ) � 
1;																

1
 )2
p

arccos�
)�; 
1 � ) � 1;																
)2 
 1

p
ln�)�

																
)2 
 1

p
� 
 i�

																
)2 
 1

p
; 1 � );
and

) �
p2 
m2 
M2

2mM
:

APPENDIX B: HBCHPT

The expansions of the considered heavy-baryon inte-
grals of Eq. (35) around � � 1 are given by

J�N�121;!� � O���; (B1)

J�N�021;!� �
�3

16�
�

�2

8�2 !�O���; (B2)

J�N�120;!� �
�2

16�2 �
M2�1� 2 ln�M���

16�2 �O

�
1

�2

�
:

(B3)

APPENDIX C: NN SECTOR

1. Standard dimensional regularization

The explicit expression for the loop integral INN in
dimensional regularization is given by

INN � 2 5� IfNN; (C1)

with

5 �
mn
4

16�2

�
1

n
 4



1

2
�ln�4�� � �0�1� � 1�

�
(C2)
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and

IfNN � 

1

16�2

�
1�

																		
1


4m2

P2

s
ln
�1 


															
1
 4m2

P2

q
1 �

															
1
 4m2

P2

q �

� i�

																		
1


4m2

P2

s �
� 


1

16�2 

ip

16�m
�O�p2�: (C3)

The subtracted loop integral IRNN reads

IRNN � INN 
 INNjP2�4m2 � 

ip

16�m
�O�p2�: (C4)

For the vector integral I�P�NN we obtain

I�P�NN � 5�
1

2
IfNN; (C5)

and the subtracted loop integral I�P�RNN is given by

I�P�RNN � I�P�NN 
 I�P�NNjP2�4m2 � 

ip

32�m
�O�p2�: (C6)

The tensor integral is given by
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I	.
NN � g	.

�
6m2 
 P2

6
5�

P2 
 6m2

288�2

�
� P	P.

�
6m2 
 P2

288�2P2 �
2

3
5
�

�

�
g	.�4m2 
 P2�

12
�

P	P.

3

�
1


m2

P2

��
IfNN; (C7)

which, after subtraction, reads

I	.R
NN � I	.

NN 
 I	.
NNjP2�4m2 � 


ip
64�m

P	P. �O�p2�:

(C8)

2. Higher-derivative formulation

In the following, the explicit expressions for the loop
integrals in higher-derivative formulation up to and includ-
ing order O� 1

�2� are given. The scalar integral reads

INN � IfNN �
1

16�2 �
1

8�2 ln
�
m
�

�
�

1

�2

�



m2

16�2 �
5P2

96�2 �
m2

4�2 ln
�
m
�

��
�O

�
1

�4

�
;

(C9)

so that

IRNN � INN 
 INNjP2�4m2 � 

ip

16�m
�O�p2�: (C10)

The vector integral is given by
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I�P�NN �
1

2
IfNN �

1

32�2 �
1

16�2 ln
�
m
�

�
�

1

�2

�



m2

32�2 �
5P2

192�2 �
m2

8�2 ln
�
m
�

��
; (C11)

and, after subtraction, one obtains

I�P�RNN � I�P�NN 
 I�P�NNjP2�4m2 � 

ip

32�m
�O�p2�: (C12)

The expression for the tensor integral reads

I	.
NN �

g	.

64�2 �
2 �

g	.�m2 ��P2 
 6m2� ln��m��

96�2

�
P	P.�1� m2

p2 
 2 ln��m��

48�2

�

�
g	.�4m2 
P2�

12
�

P	P.

3

�
1


m2

P2

��
IfNN

�
1

�2�2

��



m4

32
�

5m2P2

192


�P2�2

480



m4

16
ln
�
�

m

��
g	.

�P	P.
�
m2

48
�

17P2

960



m2

8
ln
�
�

m

���
; (C13)

and

I	.R
NN � I	.

NN 
 I	.
NNjP2�4m2 � 


ip
64�m

P	P. �O�p2�:

(C14)
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