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Massive Klein-Gordon equation from a Bose-Einstein-condensation-based analogue spacetime
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We extend the ‘“‘analogue spacetime’ program by investigating a condensed-matter system that is in
principle capable of simulating the massive Klein-Gordon equation in curved spacetime. Since many
elementary particles have mass, this is an essential step in building realistic analogue models, and a first
step towards simulating quantum gravity phenomenology. Specifically, we consider the class of two-
component BECs subject to laser-induced transitions between the components. This system exhibits a
complicated spectrum of normal mode excitations, which can be viewed as two interacting phonon modes
that exhibit the phenomenon of refringence. We study the conditions required to make these two phonon
modes decouple. Once decoupled, the two distinct phonons generically couple to distinct effective
spacetimes, representing a bi-metric model, with one of the modes acquiring a mass. In the eikonal limit
the massive mode exhibits the dispersion relation of a massive relativistic particle w = w% + c2k?, plus
curved-space modifications. Furthermore, it is possible to tune the system so that both modes can be
arranged to travel at the same speed, in which case the two phonon excitations couple to the same effective
metric. From the analogue spacetime perspective this situation corresponds to the Einstein equivalence

principle being satisfied.

DOI: 10.1103/PhysRevD.72.044020

L. INTRODUCTION

Analogue models for gravitation (which should more
accurately be referred to as analogue models for curved-
space-time) can be used to simulate classical and quantum
field theory in curved-space-time [1-18]. The first ana-
logue model for black holes, and for simulating Hawking
evaporation, was suggested by Bill Unruh [1] in 1981. He
demonstrated that a sound wave propagating though a
converging fluid flow exhibits the same kinematics as
does light in the presence of a curved-space-time back-
ground. Since then several other media—e. g. flowing
dielectrics [2] and quantum liquids [3]—have been ana-
lyzed, and the field has developed tremendously [15-17].
The first approach specifically using Bose-Einstein con-
densates as an analogue model was made some 19 years
after Unruh’s original paper [4]. Since then various con-
figurations of BECs have been studied to simulate different
scenarios for gravity [5—9]. Until now it has only been
possible to simulate photons, (generally speaking, massless
relativistic particles), propagating through a curved-space-
time [10—18]. In the present article a two-species BEC is
used to extend the class of equations that can be simulated
to the full curved-space massive Klein—Gordon equation in
(3 + 1) dimensions. (In the language of the BEC commun-
ity this corresponds to a specific and technologically inter-
esting way of giving a mass to the phonon.) From the
viewpoint of the general relativity community, this article
provides a route for analogue simulations of curved-space
quantum field theory that are more general and realistic
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than those considered to date. (A preliminary sketch of
these of these ideas appeared in reference [19]. An alter-
native route to the Klein-Gordon equation via textures in
3He is described in [20], and the use of “wave guides” to
restrict transverse oscillations and implicitly provide an
effective 1 + 1 dimensional mass is described in [6].)

II. TWO-COMPONENT BECS

The class of system we will use in our theoretical
analysis is a two-component BEC. More specifically we
consider an ultracold two-component BEC atomic gas such
as, for example, a two-component condensate of 8’Rb
atoms in different hyperfine levels, which we label |A)
and |B). (Experiments using two different spin states, |F =
I,m= —1) and |F = 2, m = 2), were first performed at
JILA in 1999 [21].) At very low temperatures nearly all
atoms occupy the ground state. For the following calcula-
tion the noncondensed atoms are neglected. (In [22-26]
finite temperature effects are taken into account.) The
quantized field describing the microscopic system can be
replaced by a classical mean-field, a macroscopic wave-
function. In this so-called mean-field approximation the
number of noncondensed atoms is small. Interactions be-
tween the condensed and noncondensed atoms are ne-
glected in the mathematical description, but two-particle
collisions between condensed atoms are included. In the
case of a two-component system, interactions within each
species (Uys, Upp) and between the different species
(Uyp = Upy) take place. In addition the two condensates
are coupled by a laser-beam, which drives transitions
between the two hyperfine states with a constant rate A.
Without the laser coupling A, no mass term is generated,
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which is consistent with the analysis in reference [9]. (In
that article the advantages of using a two-component BEC
to simulate cosmological inflation are presented.) Because,
for current purposes, the two species are different hyperfine
levels of the same atom, the masses of the individual atoms
are approximately equal (to about one part in 10'¢). In the
current article we therefore set

my = nmg = m, (1)

though we note that strictly speaking m, # mpg. (Indeed in
more abstract situations, potentially of relevance in quan-
tum gravity phenomenology, it is worthwhile and instruc-
tive to keep this extra mass dependence explicit.)

The resulting coupled two-component time-dependent
Gross-Pitaevskii equations are:

. n?
lha[\IIA = [—%V2 + VA — MA + UAA|\I,A|2

+ UAB|qu|2}pr b AW, 2)

: n?
lh@,‘l’B = [_ﬁvz + VB - MB + UBBl\I,Blz

+ UABI\PAIZ}PB + AV, 3)

where V, 5 denotes the two external potentials, and w45
the two chemical potentials [27,28]. We note that the
parameter A can be either positive or negative without
restriction, while the interaction parameters Uyy, Upgzp,
and Upp are typically though not always positive.
Adopting the Madelung representation, the two condensate
wave-functions Wy can be described in terms of their
densities {p4, pp} and phases {0, O}

q’x = pxemx for X =A B. (4)

These four variables in general depend on both time and
space.

ITI. WAVE EQUATION

We study zero sound in the overlap region of the two-
component system, produced by exciting density perturba-
tions which are small compared to the density of each
condensate cloud. In the first experiment studying local-
ized excitations in a one-component BEC [29], the optical
dipole force of a focused laser beam was used to modify
the trapping potential, generating a small density modula-
tion. Using phase-contrast imaging it was shown that the
resulting perturbation corresponds to a sound wave. The
observed speed of sound is

) :\/47Th2a2po(r) =\/Upo(r), 5)

m nm

where pg(r) is the density of the ground state, a is the
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scattering length, m is the atomic mass and U is the self-
interaction constant. The mathematical equations describ-
ing these perturbation lead to the well-known hydrody-
namic equations, which are the basis for the most fruitful
of the analogies between condensed-matter physics and
general relativity [1,4,10,15].

An extension of this method can be used to obtain the
kinematic equations for small perturbations propagating in
a two-component system. Given that the density modula-
tion is small, the perturbations in the densities and phases
can be expanded around their macroscopic states (4) using
perturbation theory:

Wy = Jpyo T epxre'@0Fe0x)  for X =AB. (6)

These states still satisfy the coupled Gross-Pitaevskii equa-
tion. When developing a perturbation analysis for the
fluctuations we find that unless we set the background
phases equal to each other (6,9 = 6py) the calculation
becomes quite intractable. Specifically, one encounters
mixing and damping terms dependent on Ay =
040 — 0po. In the appendix we briefly present the result
obtained for arbitrary—even time-dependent—back-
ground phases. While these terms and their implications
are of interest in their own right, in the following focus will
be set on A,p = 0 automatically implying, in particular,
that the background velocities of the condensates,

Va0 = (W/m)VOy and vpy = (h/m)VOg,  (7)

are equal:
Vo = Va9 = Upo- ®)

After a straightforward calculation, the terms of first
order in & include two coupled equations for the perturba-
tion of the phases

. . U U
041 = —0g- Vs — 7;:A Pa1 — 723 PB1>
U U ©
O = —To - Vg — %PBl - %Pm-
Here
A /Pro
Upao = Ups — = )
2 (PA0)3/2
A /Pao
Upp = Upp — = ) (10)
2 (ppo)*?
g = Uny + 2 —1
AB AB T 5 m,

are modified interaction potentials for the two coupled
condensates. In addition to these two phase equations,
there are two coupled equations for the density perturba-
tions
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. h .
Pa1 = _v<—PAoV9A1 + PA1U0>
my
27
+ 7\/PA0P30(931 = 0a1), (11)
. h .
P = _v<—.030V931 + PB1U0>
mp
2A
+ 7\/PA0P30(9A1 — Op1).

To adopt a more compact representation of the physics, it is
useful to define several matrices and vectors. First, define
the coupling matrix

=_ 1[0 U }
2= ~ AP (12)
h [ Usp Usps
A second coupling matrix, defined as
2A -
A= \/phA0p80|: t} +i } (13)

vanishes completely if the laser-coupling A is switched off.
Last but not least, it is also useful to introduce the mass-
density matrix D

i pa O }
D =— . 14
m[ 0 PBo (14
Now define the two-component column vectors
o Oa1 } ~ |:pA1 }
0 = and = 15
|: 051 P PB1 (15)

Collecting terms into a 2 X 2 matrix equation, the equa-
tions for the phases (9) and densities (11) become a com-
pact pair of first-order PDEs

6=—-Ep— 1, Vo, (16)

p=—-V-(DVO+ pv, — A6. (17)

Equation (16) can be used to eliminate p and p in
Eq. (17), leaving us with a single second-order 2 X 2
matrix equation for the perturbed phases:

9,(E710) = —9,(E ', -VO) — V- (5,E7'0)

This equation tells us how a localized collective excitation
in a A-coupled two-component BEC develops in time. It is
a special case of the “normal mode” formalism developed
in [11-13].

If we adopt a n-dimensional “‘spacetime’ notation by
writing x* = (¢, x), with i €{1,2,---,n— 1} and a €
{0, 1,2, -+, n — 1}, then this equation can be very com-

pactly rewritten as [11,12]:
9,(f%9,6) + A8 = 0. (19)

Here £ is a n-dimensional rank 2 tensor density, each of

PHYSICAL REVIEW D 72, 044020 (2005)
whose components is a 2 X 2 matrix. Specifically

fOO — _E—l; fOi — _E_1U6 — fi(); (20)

and

fi=D&; — E 'vjv. (21)
So far there are no significant restrictions on the back-
ground densities (p49, pgo), the joint background flow
velocity v, the interaction constants (Uya, Ugg, Usp),
and coupling constant, A. If we do not decouple the two
modes, then the most we can say is that the coupled system
exhibits “refringence’ in the sense of [12,13].

IV. MODE DECOUPLING

The first step in analyzing Eq. (18), or the equivalent
(19), is to ask whether it is possible to tune the system so as
to completely decouple it into two independent phonon
modes. Only if the two modes decouple is it possible to
assign individual masses and spacetime geometries to the
decoupled modes [11-13]. In the absence of decoupling,
one simply has a complicated two-component system with
no clear spacetime interpretation. In performing the analy-
sis we have found that decoupling is not possible without
introducing several constraints on the background
quantities.

The decoupling analysis can be performed in several
different ways, all ultimately leading to qualitatively simi-
lar physics, with minor technical differences. The major
decision to be made is whether one imposes decoupling at
the level of physical acoustics (at the level of the wave
equation) or at the level of geometrical acoustics (at the
level of dispersion relations). The fact that physical acous-
tics leads to propagation phenomena more subtle than
those detectable in the geometric acoustics limit is well
known [10,14]. A particularly illustrative example is pro-
vided by acoustic propagation in a fluid with nonzero
vorticity [30], where the geometric acoustics approxima-
tion leads directly to a conformal class of effective space-
time metrics, while the physical acoustic approximation
leads to a complicated system of PDEs. If the only thing
you can detect experimentally is the dispersion relation,
then one should adopt geometrical acoustics and not de-
mand to decouple the wave equation itself. On the other
hand, if one has experimental probes that couple directly to
the wave itself, then the decoupling should be performed at
the level of physical acoustics. We shall do both, and
compare results later.

V. PHYSICAL ACOUSTICS

At the level of physical acoustics one treats the wave
equation (19) as primary, then decoupling requires that all
the (symmetric) matrices f¢%, and the (symmetric) matrix
A, be simultaneously diagonalizable by position-
independent orthogonal matrices O. That is, decoupling
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requires
[ =07f,0; A=0"Ag,0; 0=00; (22)
since then Eq. (19) becomes
9a(f§0950) + Agiag = 0. (23)
Now since
+1 -1
AM[—l +1} 24

the matrix that diagonalizes it is clearly position-
independent, and the condition for simultaneous diagonal-
ization reduces to

[fab fcd] =0:
where the commutators are to be interpreted in the sense of
2 X 2 matrix multiplication. That is, the matrices =, D,
and A must all be simultaneously diagonalizable.

We could now proceed by direct calculation of the three
commutators

[E, D]

[, A]=0; (25)

[D, A, [AE] (26)

A perhaps more direct analysis can be performed directly
in terms of Eq. (18). Focusing on the last term in Eq. (18),
the eigenvectors for nonzero coupling A # O are given by
{[1,1]7,[—1,1]"}. The corresponding eigenvalues are
{0, 4A/paoppo/h}. These eigenvectors (though not the
eigenvalues) are fixed, position-independent, and indeed
independent of any of the other physical variables. As a
result the only way to decouple Eq. (18) into two indepen-
dent phonon modes, in a position-independent manner, is

to demand:
é=§l[ﬂ+éz[_ll} (27)

We now analyze Eq. (18) term by term with respect to this
particular decomposition.

Firstly, the term on the LHS, and the first two terms on
the RHS in Eq. (18), have the same eigenvectors as Eq. (27)
if and only if U,y = Upgp. The eigenvalues of =~ ! corre-
sponding to the eigenvectors {[1, 1]7,[—1, 1]7} are then

{~ h~,~h~ } (28)
(Uaa + Usp) (Usa — Ugp)

This places another constraint on the interaction variables:
Uas # *U,4p. [Indeed, note what happens if this condi-
tion fails and E is singular. Then Eq. (16) cannot be solved
for the column vector p and we cannot even set up the wave
Egs. (18) or (19).] All in all we must have

= _ 1[0 Usp } =
BE=—| % AB det(E) # 0. (29)
h[ Usp Una

Secondly, we are now left with the penultimate term in
Eq. (18). Because the eigenvectors of =~ ! are already
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known, there is only the mass-density matrix D to consider.
The final constraint to decouple the equation for the two
phase perturbations is now easily seen to be ps9 = ppo-
We shall simply denote this common density by p,. That is

n
D=d1 =Py (30)
m

In view of this last constraint the first coupling matrix
simplifies considerably (and this was certainly not obvious
when we started the analysis). We now have

- A~
U = UAA_i!UBB= UBB_i’
0 ) 0 31)
Uap = Upp + P
Po

and the first mode-decoupling constraint reduces to Uy, =
Upgg. In order for the eigenvalues of Z~! to be well defined
we need both Uyy + Usp # 0 and A # po(Uas — Unp),
which is a mild easily satisfiable constraint.

VI. BI-METRICITY

Applying all this to Eq. (18) one now sees how mode
decoupling is equivalent to bi-metricity: One obtains two
[dimension-independent] decoupled equations for the pho-
non modes described by the eigenstates of Eq. (27):

~ 47 =
d,(f52a,0,) = _%52191, for 7=12 (32

where &,; is the usual Kronecker delta. Here
dr — )
?b:z[ 1j 2 5ij vo'j} (33)
cil —vy 18 — vy
where the possibly distinct propagation speeds c¢; are de-
fined in terms of the eigenvalues E; of the matrix = by
_ d(Uyga + (=1)'Uyp)

2
1 h ’

11

c7 = ]d

(34)

that is

2= po(Uas + (_I)IUAB). (35)
m
It is important to note that decoupling by itself does not
force the two propagation speeds to be equal—decoupling
in this context generically produces a two-metric model
[bi-metricity], and the demand that every phonon couple to
a single effective metric [monometricity] is an additional
independent condition. (In general the phonons arising
from a system of N interacting BECs would, if they de-
coupled in the above manner, lead to an N-metric model.)
Introducing the (dimension-independent) natural oscil-
lation frequency

Wl — — 4/\poc% _ 4)me%
0 hd o

(36)
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we can write

d (f?babal) w052109,, for

2

1=12 37

where w, now has the physical interpretation that it is the
frequency at which a position-independent (zero-
momentum) configuration oscillates.

When converting the contravariant tensor densities f¢”
into covariant spacetime metrics g,, one encounters a
number of dimension-dependent factors [10,18], such
that naive application of the formalism leads to peculiar
dimensionalities for physical quantities. The best way we
have found for keeping track of these factors is to introduce
space and time-independent reference constants c, and d.,
and write

~ab=ﬁ ab — C*d i|: _1_ _Ué :| 38
/ d*f <C1d*>cl —v) c}67 — viv) (38)
so that
= ~ «d w38
0,(Fua,8) = =L 200G for T=1,2. (39)
Czd* Cy

Here ¢, and d, are any convenient but fixed reference
values. They might be (for instance) the spatial average
values of ¢, and d over the entire condensate, or they might
be chosen in terms of the speed of light and other funda-
mental constants. They are introduced for convenience,
and do not ultimately affect the physics we are discussing.

Now introducing a pair of effective “‘spacetime metrics”
by the identifications

V=88’ = fi* and g, = (40)

1
det[gf"]’
we can recast these wave equations equations as a pair of
curved-space Klein-Gordon [massive d’Alembertian]
equations

m?2

2
honon €
———0,(J= 887,60, _7;; 80, (41)

\/_

where as we shall soon see all quantities carry their stan-
dard dimensionality.
After a brief algebraic calculation we find

c.d\n/(n=2)
N8 = C1< ) (42)
Cld*
and so
cid\—n/=2 (1 —1 —v!
w=n) L el @
crds cil—vy cidY — vy

These quantities depend on the space-time dimension n
[10,18] in such a manner that
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C*d n/(n=2) — c2 - U2 —Uj
as(GTI )
C[d* _UO oY

Finally the mass-term is

_ Ref [ cud\ 20
m2 = ( ) . (45)

phonon C* C2 C2d

We note that this “mass” term can in principle depend on
position, so some authors might prefer to refer to it as a
“potential” term. There is no universal agreement on
terminology regarding this point, but the bulk of the com-
munity would be happy to refer to this as a ““position
dependent mass”. Furthermore, if one focuses on the
core of the BEC cloud, where all gradients are by definition
zero (or small), then this mass term is guaranteed to be
approximately constant.

Now the two metrics g{lb, the inverse metrics g?” , and

the phonon mass mghonon, all depend on the normalization

constants ¢, and d.. This is as it should be, since ¢, and d.
were introduced to give canonical dimensions to these
quantities. In particular, since c, and d, contribute to the
overall conformal factor in the analogue spacetime metric,
they set the overall scale with respect to which analogue
“masses’ are to be measured. However, correctly formu-
lated physical questions will depend only on parameters
such as wy, c¢;, and v, which are independent of these
normalization constants. For instance, in the eikonal limit
the dispersion relation for these two decoupled phonon
modes is simply

(0 — By k)2 — 2k* = wlbyy. (46)

(A similar calculation, but restricted to a one-condensate
system, where all variables are likewise allowed to be time
and space dependent, but no mass term is present, has been
presented in [8].)

For the phase vector 6, (corresponding to perturbations
in the two condensates A and B oscillating “‘in phase’’), the
mass term is always zero. However, for a laser-coupled
system (A # 0) the mass-term in the equation for 6,,
(corresponding to perturbations in the two condensates A
and B oscillating in “‘antiphase’”), does not vanish.

VII. MONO-METRICITY

Comparing the definition for the speed of sound (5) in a
one-component system, with the two speeds ¢; introduced
here, we see that the ¢; (34) are simply the A-modified
speeds of sound for each decoupled phonon mode. (For
instance, consider an idealized situation in which the two
condensates decouple completely, Uyz = 0 and A = 0, the
two ¢;’s become the independent phonon speeds in each
condensate cloud.) This fact leaves us with the possibility
of constructing two different types of analogue model. So
far we have been dealing with a two-metric structure,
which is interesting in itself [12,31]. For instance, in the
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absence of laser-coupling, A = 0, the presence of two
different speed of sounds can be used for tuning effects [9].

If we wish to more accurately simulate the curved space-
time of our own universe, another constraint should be
placed on the system, to make the two speeds of sound
equal ¢ = ¢; = ¢,. This yields a single sound-cone struc-
ture, to match the observed fact that our universe exhibits a
single light-cone structure. This condition is fulfilled if we

set
UAB = O, = A= _2UABPO- (47)

In this case

2= PoUas _ po(Uns + Uyp)
m m ’

(48)

while we have the dimension-independent result that the
natural oscillation frequency becomes

P3UAs(Uss + Ugp)

wj =8 %) (49)
In counterpoint
8Uagpom [ (Uga + Uyp)dim 1/ (=2
m ;2)h0n0n = CE |: hzczpo :| . (50)

We note that in typical situations Uy, = Upp and Uyp
are both positive, corresponding to repulsive atomic inter-
actions [28]. This implies that A is then negative, corre-
sponding to a negative trapping potential, but a positive

. . 2
and a positive m, ...

It is also possible to choose systems such that U,p is
negative, as long as c¢? is still kept positive, which in turn
requires Uy, + Uyp to be positive, and places a restriction
on the relative sizes of the self-interactions and cross-
interactions. This implies that A is positive. Furthermore
the natural oscillation frequency w% and the phonon mass
mphonon2 will then be real and negative. That is, attractive
atomic interactions, which signal an instability in the con-
densate, would in our analysis correspond to a tachyonic
phonon.

If in contrast we permit ¢ to go negative (that is we
permit Uy, + Uyp to be negative) then we have a
“Euclidean signature regime” where phonons do not
propagate—this corresponds to the gross instability of
the condensate which manifests itself as the ‘“Bose-
Nova” phenomenon [32].

In this monometric situation, while the in-phase pertur-
bations will propagate exactly at the speed of sound,

U, =D + ke, (51)

the antiphase perturbations will move with a lower group
velocity given by:

9 R 2
ﬁg=—;§=f1o+k67. (52)
9

JJwd + kP
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Here k is the usual wave number. This explicitly demon-
strates that the group velocity of the antiphase eigenstate
depends on the laser-induced coupling between the
condensates.

VIIIL. SPECIAL CASE: CONSTANT =

There is a special case that is worth considering sepa-
rately. Suppose that the matrix = is a time and space-
independent constant. Then by defining

0 new = E7/70, (53)
multiplying Eq. (16) by Z*!/2, and appropriately commut-
ing E through the space and time derivatives, one can
rewrite Eq. (16) as

—9,(19) - Vo) — V- (591050
+V- [(C2 - 501{;0')Vénew] - Mzénew’ (54)

azza_new =

where

C*=E'’DE'? M?>=-E'PAE2 (55)
Now the existence of the matrix square root Z'/2 follows
since E itself is real and symmetric. Indeed by the
Hamilton-Cayley theorem for 2 X 2 matrices we know

B2 = 41 + bE, (56)

where a and b are functions of the eigenvalues of E. A
little matrix algebra yields (for 2 X 2 matrices only) the
explicit formula

g1/ = : (57)
2+/detE + tr(2)

It is now clear that both C? and M? are symmetric matrices,
so in this constant-Z special case mode decoupling of the
wave Eq. (54), that is bi-metricity, requires the simple
constraint

[ m?] =0, (58)
which is equivalent to the matrix equation
DEA = AED. (59)

In terms of the physical parameters we obtain the con-
straint

paoUas = ProUss = (pao = P50)Unas. (60)

Note that to get to this stage we had to assume = was
constant (so Uy, Uap, and Ugy are constant), and then
from the above we see that decoupling requires that
Pao/ ppo must be a position and time-independent con-
stant. We do not however need p,o = ppo; by restricting
the position and time dependence of = we have permitted
other parts of the wave-equation to possess an algebraically
more general solution to the decoupling constraint (the bi-

044020-6



MASSIVE KLEIN-GORDON EQUATION FROM A BOSE- ...

metricity constraint). Subject only to the condition (60) the
speeds of sound and masses are simply extracted as eigen-
values of the matrices C> and M? respectively.

Imposing the bi-metricity condition (60) the two eigen-
values of C2, the two speeds of sound, are

1 - ~ -
i = %{pAOUAA + ppoUss = (pao + ppo)Uagl- (61)
Additionally imposing the monometricity condition re-
quires the two eigenvalues of C? to be the same. That is,
monomericity enforces U,p = 0. Together with the decou-
pling condition Eq. (60), we now get:

paoUas = proUss. (62)
That is
U U
2= PaoYaa _ PBo BB (63)
m m
and
w} = tr[M?]
4pa0ppoUaplUss + Ugp + UAB(% + %)]
= P (64)

The eigenvector corresponding to the massless phonon

mode is O,y * [1/Upg, 1/Uaal", while that for the massive
phonon mode is ey % [—4/Usa, 4/ Upp]”. In terms of the

original variables 6 this corresponds to decoupled eigen-
modes 0 = [1, 1]7 for the massless mode, while that for the
massive phonon mode 0 o« [—Uy,, Ugpl”.

IX. SPECIAL CASE: CONSTANT D

Similarly, consider the case where the matrix D is inde-
pendent of position and time—this corresponds to a situ-
ation where the background densities p,o and pp, are
constant, though they do not need to be equal. In this
situation we can define

0 o = DT1/20. (65)

Then multiplying Eq. (16) by D~'/2, and appropriately
commuting D through the space and time derivatives,
one can rewrite Eq. (16) as

~3(C 725y VBye) = V- (50C 20pey.)
+V- [(I - 50C7250')Vénew] - M2énew:
(66)

at(C72at§neW) =

where now
C72 — D71/2E71D7]/2; MZ — _Dfl/QADfl/Z' (67)

The analysis is now similar to the case of constant-=.
Decoupling (bi-metricity) requires
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[C2M*]=0, (68)
that is
E'D'A=AD'EL (69)
It is easy to rearrange this equation to yield
AED = DEA, (70)

which is the same matrix equation as encountered in the
constant-Z case. Consequently, decoupling requires the
same algebraic condition, Eq. (60) as in the constant-Z=
case. The speeds of sound are now given by the eigenvalues
of the matrix

C? = D+1/ZED+1/2, (71)
and explicit computation again yields, after imposing the
decoupling constraint (60), the same algebraic result (61).
Imposing monometricity again leads to Uz =0 and
Eq. (62), which in this case can be read off by inspection
from Eq. (71). In short, there is no new physics hiding in
the case of constant D; we again see that by restricting the
position and time dependence of some of the coefficients in
the wave equation (18) we have permitted other parts of the
wave-equation to possess a slightly more general solution
to the decoupling constraint (the bi-metricity constraint).

X. GEOMETRICAL ACOUSTICS—FRESNEL
EQUATION

In geometrical acoustics we adopt the eikonal approxi-
mation

0= Aexp(—ip) (72)

with a slowly varying amplitude A and a rapidly varying
phase ¢. We also assume that the coefficients in the
differential Eq. (18) are slowly varying compared to the
phase. This approximation leads, before we apply the
decoupling constraints, to the Fresnel equation [11,12]

det{w?E ! — 20(7g - K)E !

—[DK? = (3 - *E~']+ A} =0. (73)
In a 2-component BEC the Fresnel equation is in general a
quartic dispersion relation for two interacting phonon
modes. This approximation makes sense when the period
and wavelength of the phonon mode is small compared to
the timescale and distance scale over which the back-
ground configuration changes.

As was the case in the constant-=Z physical acoustics
analysis, it is convenient to premultiply and post-multiply
the Fresnel equation by E*!/2, thereby rewriting the
Fresnel equation as

det{w?I — 2w(Tg - K)I — [C2k2 — (B - K)21] — M2} = 0,
(74)
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where again

2 = EI/ZDE’I/Z; M2 = _:I/ZAEI/Q. (75)
Thus by adopting the eikonal approximation implicit in the
Fresnel equation one has reduced the number of matrices
one needs to deal with to C> and M2, now without needing
to strictly enforce the spatial and temporal constancy of =
(or D). The Fresnel equation now becomes

det{(w — By - k)21 — C2k> — M*} = 0. (76)

Imposing mode decoupling, which is now equivalent to
the Fresnel equation factorizing into two quadratics, forces
M? and C? to be simultaneously diagonalizable. [In which
case we recover Eq. (46).] Finally, imposing monometric-
ity enforces C?> = ¢?1, with M? symmetric and singular but
otherwise unconstrained.

Thus an analysis in terms of the Fresnel equation leads
to the same conclusions as the direct physical acoustics
analysis in the special case of constant E, or the special
case of constant D — these are the same algebraic con-
straints as were obtained when analyzing Eqs. (54) and
(66), albeit in a slightly different physical regime.

XI. DISCUSSION

In conclusion, the calculation presented in this article is
of interest to two separate communities. For the BEC
community, it provides a specific example of how to tune
an interacting two-BEC condensate in such a manner as to
obtain a massive phonon. With the background configura-
tions in phase, but without the fine tuning, it provides an
example of two interacting phonon modes whose wave
equation is governed by the second-order coupled system
of PDEs (18) or equivalently (19), and whose dispersion
relation is governed by the quartic Fresnel Eq. (76).

It is important to note that fully decoupling the wave
equation in a completely general background is algebrai-
cally more restrictive than the problem of decoupling the
Fresnel equation in the geometrical acoustics limit. Indeed
in the geometrical acoustics limit decoupling places alge-
braic constraints on the coefficients of the wave equation
that are equivalent to physical acoustics in the special case
where the matrix E or the matrix D is both position and
time independent. This situation is to a good approxima-
tion relevant at and near the center of the BEC cloud. The
subtleties involved in implementing decoupling into inde-
pendent modes is surprisingly more complex than one
might at first envisage.

If for the sake of discussion we insert specific numbers
relevant to a BEC mixture based on hyperfine states in
87Rb, we find wy =~ 150 kHz. For a harmonic magnetic
trap this should be compared with a typical trap oscillation
frequency of 100 kHz, though note that for nonharmonic
traps one can in principle make the trap oscillation fre-
quency arbitrarily small. Similarly we find A = 10%°J,
corresponding to a laser temperature of 800 nK (to be
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compared to a BEC condensation temperature of some
uK). We also point out that with current single-component
BECs, and for the specific experimental configuration
described in [33], the excitation spectrum w(k) has been
measured from 100 Hz to 14 kHz, corresponding to wave-
numbers from k = 1/(27R) out to k& =~ 4.5—the lower
limit on wave-number being set by the size of the trap and
the upper limit being well into the nonlinear part of the
Bogolubov spectrum [33]. There is no sign of any non-
linearitiy at low momenta [33]. A somewhat related ex-
periment, now using tomographic techniques [34], probes
the region 250 Hz to 2 kHz, and k¢ = 0.3 to ké = 1—
again verifying the applicability of the Bogolubov spec-
trum, and also verifying applicablity of the hydrodynamic
approximation at low momenta [34]. Thus the mass w, that
we have argued we can set up in 2-BEC systems can be
arranged to be somewhat larger than the trap oscillation
frequency, but lie in a range where w(k) is experimentally
measurable — the relevant experimental signal would be a
specific form of nonlinearity of the phonon spectrum for
low momentum.

In short, the effects we have been considering in this
article lie at the cutting edge of present day experimental
technique. In this regard it is important to realise that
multicomponent BECs have already been constructed in
the laboratory [35]. The technological issues in actually
implementing this approach for generating the massive
Klein-Gordon equation amount to keeping the background
condensates in phase while decoupling the phonon modes
in a simple manner. Doing this may be experimentally
challenging, but there appears to be no obstacle in principle
to actually implementing the model.

From the general relativity perspective, this article set-
tles an important matter of principle: It provides an ex-
ample of an analogue system that can be used to mimic a
minimally coupled massive scalar field embedded in a
curved spacetime. Quantum fields of this type are essential
for any realistic application of analogue spacetime ideas to
particle physics, and, in particular, are essential for devel-
oping condensed-matter simulations of quantum gravity
phenomenology.
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APPENDIX: WAVE EQUATION FOR ARBITRARY
INITIAL PHASES

If we start our calculations with a more complex phase
relationship between the two condensates then the wave
equation (18) gains additional terms.
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The result we obtain for two arbitrary initial—possibly even time-dependent—background phases is:

at(Eilé) = _a[(Efl"}vé) - v(‘-}Eflé) + V((D - ‘7571 V)V§) + Aé + {_Cdensityﬂilcphase + 3,(571 phase)

+ V(VE ! Cphase)}é + {‘:7 : Cphase + CdensityE -

In addition to those matrices defined in the previous cal-
culations, three new matrices show up.

The matrix V simply contains the two background ve-
locities of each condensate,

o l_;AO 0
v [ o } (A2)
now with two possibly distinct background velocities,
- h . h
U a0 = — Vo Upo = — Vb, (A3)
m m

Additionally, we also obtain two completely new matri-
ces, which vanish in the case of identical initial phases

AAB: = 0AO - 930 = 0. (A4)

These new matrices are the coupling-phase matrix,

}0_ + {sz : Cphase + Cdensity57 : V}Vé (AI)
\
. [PBO _ [PBO
C — A SIHAAB + Pao Pao (AS)
phase h 4w _ [ ’
PBoO PBo
and the coupling-density matrix
AsinAyp | — % Y
Co = A0 PBo . A6
density A L fm 4 fm ( )
Pao PBo

In the case of identical phases Eq. (A1) simplifies to the
wave equation (18) found in the previous calculation.
Specifically the first two lines of (Al) are exactly the
same as (18), while the next two lines represent a mass-
shift, and the last two lines correspond to a damping-term
and a smoothing term, respectively.
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