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Second-order perturbations of a zero-pressure cosmological medium:
Proofs of the relativistic-Newtonian correspondence
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The dynamic world model and its linear perturbations were first studied in Einstein’s gravity. In the
system without pressure, the relativistic equations coincide exactly with the later known ones in Newton’s
gravity. Here we prove that, except for the gravitational wave contribution, even to the second-order
perturbations, equations for the relativistic irrotational zero-pressure fluid in a flat Friedmann background
coincide exactly with the previously known Newtonian equations. Thus, to the second order, we correctly
identify the relativistic density and velocity perturbation variables, and we expand the range of
applicability of the Newtonian medium without pressure to all cosmological scales including the
superhorizon scale. In the relativistic analyses, however, we do not have a relativistic variable which
corresponds to the Newtonian potential to the second order. Mixed usage of different gauge conditions is
useful to make such proofs and to examine the result with perspective. We also present the gravitational
wave equation to the second order. Since our correspondence includes the cosmological constant, our
results are relevant to currently favored cosmology. Our result has an important practical implication that
one can use the large-scale Newtonian numerical simulation more reliably even as the simulation scale
approaches near horizon.
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I. INTRODUCTION

Despite its algebraic and conceptual complexity in
Einstein’s gravity, the evolving world model and its linear
structures were first studied based on Einstein’s gravity in
the classic works by Friedmann in 1922 [1] and Lifshitz in
1946 [2], respectively. In an interesting sequence, the
much simpler and, in hindsight, more intuitive Newtonian
studies followed later by Milne in 1934 [3] and Bonnor in
1957 [4], respectively. In the case without pressure, the
Newtonian results coincide exactly with the previously
derived relativistic ones for both the background world
model and its first-order (linear) perturbations. The case
with pressure cannot be handled in the Newtonian context
despite several failed attempts in the literature to simulate
it, especially for the perturbation. The situation is still well
described by Sachs and Wolfe in 1967 [5]: ‘‘When these
modified equations were perturbed to first order, their
solutions did not agree with the relativistic results, even
qualitatively.’’ In this work, we will show an additional
continuation of relativistic-Newtonian correspondences in
the zero-pressure medium by proving that the relativistic
second-order scalar-type perturbations are described by the
same equations known in Newton’s theory. That is, the
Newtonian equations coincide exactly with the relativistic
ones even to the second order in perturbations.

In the relativistic perturbations, due to the covariance of
field equation we have freedom to fix the spacetime coor-
dinate system by choosing some of the metric or energy-
momentum variables at our disposal: This is often called
the gauge choice. The original study of Lifshitz started by
choosing the synchronous gauge which is still quite popu-
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lar in the literature. Other gauge conditions were discov-
ered later [6,7]. It is an ironic situation that, except for the
widely used synchronous gauge condition, each of the
other gauge conditions fixes the gauge freedom com-
pletely. Thus, each has its own unique corresponding
gauge-invariant combination. Notice some common alge-
braic errors (not in Lifshitz’s work, though) widespread in
the literature, including many textbooks, due to the incom-
plete gauge fixing nature of the synchronous gauge; see [8].

Although infinitely many gauge conditions are avail-
able, it has been common in the literature to fix gauge
conditions from the beginning. The importance of using
different gauge conditions for different variables and the
gauge invariance of such variables were shown by Bardeen
in 1980 [7]. Bardeen’s work also showed the importance of
having access to many different gauge conditions, which
become apparent in his work in 1988 [9]. In this work, the
importance of having different variables evaluated in dif-
ferent gauges (all correspond to unique gauge-invariant
combinations) will become clear as we extend Bardeen’s
approach to the second-order perturbations.

Recently, we have presented a second-order perturbation
formulation of the Friedmann world model considering
quite general situations [10]. We have resolved the gauge
issue, identifying the variables to use in fixing the gauges
and constructing gauge-invariant combinations, which can
be easily extended even to the higher order. The basic
equations are presented without fixing the temporal gauge
condition, thus allowing us to choose or try many available
gauge conditions later depending on the situation: We call
this a gauge-ready approach; see Eqs. (5)–(11) below. The
Newtonian correspondence to the linear order was made by
-1  2005 The American Physical Society
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properly arranging the equations using various gauge-
invariant variables in Refs. [7,11,12]. Extending such cor-
respondences to the second order is our task in this work.
We set c � 1.
II. BASIC EQUATIONS

We consider a scalar-type perturbation in the flat
Friedmann background. We will consider the presence of
tensor-type perturbation (gravitational waves) in Sec. VI.
The vector-type perturbation (rotation) is not important
because it always decays in the expanding phase even to
the second order; see Sec. VII E of Ref. [10]. Our reason
for considering the flat background will be explained be-
low Eq. (4). As the metric we take

ds2 � �a2�1� 2��d�2 � 2a2�;�d�dx�

� a2�g�3����1� 2’� � 2;�j�	dx
�dx�; (1)

which follows from our convention in Eqs. (49), (175), and
(178) of Ref. [10]. Here a�t� is the scale factor, and �, �, ,
and ’ are spacetime dependent perturbed-order variables;
we take Bardeen’s metric convention in Ref. [9] extended
to the second order. A vertical bar indicates a covariant
derivative based on g�3���, which becomes ��� if we take
Cartesian coordinates in the flat Friedmann background.
By taking  � 0, which we call the spatial C gauge, the
spatial gauge mode is removed completely; thus, all the
remaining variables we are using are spatially gauge-
invariant to the second order; see Sec. VI B 2 of
Ref. [10]. In the following, we will take  � 0 as the
spatial gauge condition and use � � a�� a2 _, which
becomes � � a�.

As the energy-momentum tensor, we take

~T 0
0 � ��� ���

1

a
��;�v;�;

~T0
� � ���1� ��v;�;

~T�
� � �p��� �

1

a2

�
�;�

j� �
1

3
�����

�
�

1

a
��;�v;�;

(2)

which follows from our convention in Eqs. (84), (175), and
(178) of Ref. [10]; tildes indicate the covariant quantities.
Here � is the background energy density, and ��, �p, �,
and v are the perturbed-order energy density, isotropic
pressure, anisotropic pressure, and the flux, respectively,
all based on the normal-frame vector ~na, with ~n� � 0.
Although we are considering a zero-pressure system
(thus, p � 0 and �p � 0 � � to the linear order), it is
essential to keep the perturbed pressure terms �p and �,
because these do not necessarily vanish to the second order
in perturbation depending on the coordinate (gauge) con-
dition we choose. This is because in Ref. [10] we have
evaluated the fluid quantities based on the normal frame
~na; we will elaborate this point in Sec. III.
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To the background order, we have the Friedmann equa-
tion [1,3,13]

H2 �
8�G
3

��
const:

a2
�

�

3
; (3)

with the energy (mass) density � �%� / a�3; � is the
cosmological constant. To the linear-order perturbations
we have a second-order differential equation originally
derived by Lifshitz [2,4]

��� 2H _�� 4�G�� � 0: (4)

An overdot indicates a time derivative based on t (dt �
ad�) and H � _a

a . The variable a�t� is the scale factor, and
� � ��

� � �%
% , with � �%� and �� ��%� the background and

perturbed parts, respectively, of the energy (mass) density
field. The ‘‘const.’’ part is interpreted as the spatial curva-
ture in Einstein’s gravity and the total energy in Newton’s
gravity [13]. Equation (4) is valid even in the presence of
the cosmological constant � as well as the background
curvature. We will include the � term in the following. In
the relativistic context, Eq. (4) can be derived in the
comoving gauge condition; the original derivation by
Lifshitz is based on the synchronous gauge, and in the
zero-pressure medium to the linear order the synchronous
gauge coincides with the comoving gauge: Further discus-
sion about this point will be made in Sec. IV. Although
Eq. (4) is also valid with general spatial curvature, the
relativistic-Newtonian correspondence is somewhat am-
biguous in the case with curvature; for details, see Sec. 3
of Ref. [11]. Thus, we consider the flat background only.

The perturbed parts of equations to the second order are
presented in Eqs. (195)–(201) of Ref. [10]. In a flat back-
ground with vanishing background pressure, we have

�� 3H�� 3 _’�
�

a2
� � N0; (5)

4�G���H��
�

a2
’ �

1

4
N1; (6)

��
�

a2
�� 12�G�av � N�s�

2 ; (7)

_�� 2H�� 4�G���� 3�p� �
�
3 _H �

�

a2

�
� � N3;

(8)

_��H�� ’� �� 8�G� � N�s�
4 ; (9)

� _�� 3H���� �p� ��
�
�� 3H��

�

a
v
�
� N5;

(10)
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�a4�v��

a4�
�

1

a
��

1

a�

�
�p�

2

3

�

a2
�
�
� N�s�

6 ; (11)

where the pure quadratic-order terms Ni can be read from
Eqs. (99)–(105) in Ref. [10]. � is a Laplacian operator.
Equation (5) is a definition of �, Eqs. (6)–(9) follow from
~G0
0, ~G0

�, ~G�
� � ~G0

0, and ~G�
� � 1

3�
�
�
~G
 components of

Einstein’s equation, respectively, and Eqs. (10) and (11)
follow from ~Tb

0;b � 0 and ~Tb
�;b � 0, respectively. To the

linear order this set of equations without fixing the tempo-
ral gauge was presented by Bardeen in Ref. [9]. All our
equations include the cosmological constant in the back-
ground. These equations are presented without fixing the
temporal gauge condition and using only the spatially
gauge-invariant variables even to the second order; our
choice of the spatial C gauge ( � 0) guarantees such
invariances of the remaining variables; see Sec. VI B of
Ref. [10]. As the proper temporal gauge condition, we can
choose any of the following: � � 0 (the synchronous
gauge), � � 0 (the zero-shear gauge), � � 0 (the
uniform-density gauge), � � 0 (the uniform-expansion
gauge), v � 0 (the comoving gauge), ’ � 0 (the
uniform-curvature gauge), etc. Except for the synchronous
gauge, each of the other temporal gauge conditions com-
pletely removes the temporal gauge mode. We can also
take linear combinations of the above conditions and
choose different gauge conditions to different order; see
Sec. VI C 2 of Ref. [10]. Thus, we have an infinite number
of different temporal gauge choices available to each order
in perturbations.

From Eqs. (5)–(11), we can derive the following set of
equations expressed using gauge-invariant variables:

�v � �
1

2
v�;�v�;� �

1

�

�
�pv �

2

3

�

a2
�v

�
; (12)

_� v � �v �
1

a
��vv�;��;� � 3

H
�
�pv; (13)

_� v � 2H�v � 4�G��v �
�

2a2
�v�;�v�;�� � 12�G�pv;

(14)

�v �
�

a
v� �

1

a
�v��’� � 2’��v� � ’�

;�v�;��

�
5

2
H�2v��v� � v�

;�v�;��

�
1

a
r���vv�;�� �

3

a
��1r��v�;��’��;

(15)

�� � ’� � ’2
� � ��1�’��’�� � 3��2r�r��’�’�;���

� 8�G��; (16)
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4�G��v �
�

a2
’� �

1

2
_H�v2

� � 3aH _H��1r���v;�v��

�
1

a2

�
4’��’� �

3

2
’�

;�’�;�

�
;

(17)

_v� �Hv� �
1

a
�� � �

3

2
a _Hv2

� � 3H’�v� �
1

2a
’2
�

�
1

a
��1r���v’�;��

�
1

a�

�
�p� �

2

3

�

a2
��

�
; (18)

_’� �H�� � 4�G�av� � ’�

�
_’� �

3

2
H’�

�
; (19)

_’v �
1

2a
��1r��v�;�’v;�� � v�;��’v�: (20)

Equations (12)–(15) follow from Eqs. (11), (10), (8), and
(7), respectively, evaluated in the comoving gauge. In
Eq. (15) we used �v � av� � ��q�

v � av�q�
� and ��q�

v jv �

0; see Sec. VI C 2 of Ref. [10]. Equation (16) follows
from Eq. (9) evaluated in the zero-shear gauge.
Equation (17) follows from Eqs. (6) and (7) and using
��v � ��� _�av� ���q�

v , ’� � ’�H�� ’�q�
� , and

’�q�
� j� � 0. Equation (18) follows from Eq. (11) evaluated

in the zero-shear gauge. Equation (19) follows from
Eqs. (5) and (7), removing the � term and evaluating in
the zero-shear gauge. Equation (20) follows from Eqs. (5)
and (7), removing the � term and evaluating in the comov-
ing gauge. In this set of equations, we located the pure
quadratic terms and the possible second-order pressure
terms on the right-hand sides.

Our notation with a perturbed-order variable as a sub-
index, for example, �v, indicates a unique gauge-invariant
combination of � and v which becomes � under the
comoving gauge condition v � 0. Thus, � in the comoving
gauge is equivalent to a unique gauge-invariant combina-
tion �v. To the linear order we have �v � �� a� _�=��v.
An explicit form of �v to the second order and other gauge-
invariant combinations can be found in Eqs. (280)–(284)
of Ref. [10]. As we can construct many (in fact, infinitely
many) gauge-invariant combinations for �, our notation
apparently has the advantage of showing explicitly which
gauge-invariant combination we are considering [14].

Here we briefly discuss a conserved variable to the
second order. From Eqs. (20), (18), and (16) we have

1

a3
�a3 _’v�

� � �
1

2a2
��1r�r��’v;�’v;��: (21)

To the linear order we have

’v � C�x�: (22)
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Thus, ’v remains constant in time. In the large-scale limit
(superhorizon scale), ignoring the quadratic-order spatial
gradient terms, Eq. (22) remains valid even to the second
order; for a more general proof considering the pressure
term, see [10,15].

III. ISSUE OF PRESSURE

Now we discuss the role of pressure terms in a medium
without pressure. From Eqs. (233) and (235) of Ref. [10],
we notice that the gauge (coordinate) transformation to the
second order causes pressure (both isotropic and aniso-
tropic) terms to appear even in the case without pressure
originally (physically). Such a complication occurs be-
cause our fluid quantities introduced in Ref. [10] are based
on the normal-frame four-vector ~na, which differs from the
fluid four-vector ~ua. In Ref. [10] we have presented the
fluid quantities based on ~ua separately as well; see
Eqs. (87) and (88) of Ref. [10]; by using these equations
we can translate fluid quantities in the normal frame to the
ones in the fluid frame, and vice versa; the gauge trans-
formation properties of the fluid quantities in the fluid
frame are presented in Eq. (238) of Ref. [10]. The isotropic
and anisotropic pressures are gauge (coordinate) dependent
quantities. To the linear order in the Friedmann back-
ground, the anisotropic pressure is gauge-invariant and
the perturbed isotropic pressure depends on the coordinate
only if we have nonvanishing (and time varying) back-
ground pressure. In the normal frame, the pure coordinate
transformation to the second and higher orders will cause
both pressures (i.e., isotropic and anisotropic pressure like
terms in the energy-momentum tensor) generated even in
the case of vanishing pressures to the background and to
the linear order; see Eq. (233) of Ref. [10]; the frame
dependence of fluid quantities was studied in Ref. [16].
This complication does not occur for the fluid quantities
based on the fluid frame vector ~ua; see Eq. (238) in
Ref. [10].

For vanishing pressure terms in the background and first-
order perturbations, we have the following gauge-invariant
combinations of pressure terms (based on ~na) [17]:

�pv � �p� 1
3�v

;�v;�;

�v � �� 3
2�a

2��2r�r��v;�v;� � 1
3g

�3�
��v

;v;�:

(23)

From this we notice that the gauge-invariant combination
�pv is the same as �p in the comoving gauge. Evaluating
Eq. (23) in the zero-shear gauge (� � 0) and using v� �

v� 1
a � to the linear order, we have

�p� � �pv �
1
3�v�

;�v�;�;

�� � �v �
3
2a

2���2r�r��v�;�v�;� � 1
3g

�3�
��v�

;v�;�:

(24)

As the definition of fluid without pressure, we set the
044011
pressure terms in the comoving gauge equal to be zero;
thus,

�pv � 0 � �v; (25)

which are gauge-invariant (and physical) zero-pressure
conditions. Thus,

�p� � 1
3�v�

;�v�;�;

�� � 3
2a

2���2r�r��v�;�v�;� � 1
3g

�3�
��v�

;v�;�:
(26)

We set the pressure terms using Eqs. (25) and (26). Thus,
for fluid quantities based on the normal frame, in the gauge
other than the comoving gauge the physical zero-pressure
condition implies presence of pressure terms in the defini-
tion of the energy-momentum tensor.

In the comoving gauge without rotation, the two frames
~ua and ~na coincide. The normal frame ~na has ~n� � 0. The
fluid quantities are ordinarily defined in the fluid (~ua)
frame, which differs in general from the normal four-vector
~na. In the normal frame information about the fluid motion
is present in the flux four-vector ~qa, with ~qa~n

a � 0. In the
energy frame, which takes vanishing flux ~qa � 0 as the
frame condition, the comoving gauge condition takes ~u� �
0 for the fluid four-vector; here we ignore the vector-type
perturbation. Since ~u� � 0, it coincides with the normal-
frame vector. Now in the normal frame, which takes ~n� �
0 as the frame condition, the comoving gauge condition
without rotation implies ~qa � 0. Thus, as long as we take
the comoving gauge without rotation, in either frame we
have ~qa � 0 and ~u� � 0 � ~n�; i.e., the fluid four-vector
coincides with the normal four-vector.
IV. A PROOF

Now we come to our main point proving the relativistic-
Newtonian correspondence to the second order.
Combining Eqs. (13) and (14), we can derive [18]

��v � 2H _�v � 4�G��v �
1

a2
@
@t

�a��vv�
;��;�	

�
�

2a2
�v�

;�v�;��: (27)

Equations (13), (14), (17), and (27) can be compared with
the Newtonian perturbation equations.

The mass conservation, the momentum conservation,
and the Poisson’s equation in Newtonian context give [19]

_��
1

a
r � u � �

1

a
r � ��u�; (28)

_u�Hu�
1

a
r�� � �

1

a
u � ru; (29)

1

a2
r2�� � 4�G%�: (30)

From these we have
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��� 2H _�� 4�G%� � �
1

a2
@
@t

�ar � ��u�	

�
1

a2
r � �u � ru�: (31)

In the Newtonian context, Eqs. (28)–(31) are valid to fully
nonlinear order; i.e., the zero-pressure Newtonian fluid
equations are exact in quadratic-order nonlinearity.
Equation (31) has been analyzed extensively in the
Newtonian context; see [20,21].

To the linear order it is well known that �v, �rv�, and
�’� (or��) correspond to a density perturbation (� � �%

% ,
with ~% � %� �% and ~% the mass density), a velocity
perturbation (u), and a perturbation of the gravitational
potential (��), respectively [7,11,12]. To the linear order
we may identify [11]

� � �v; �� � �’� � ��; u � �rv�;

�
1

a
r � u �

�

a
v� � �v:

(32)

As we identify

�v � �; �v � �
1

a
r � u; (33)

to the second order, Eq. (27) coincides exactly with
Eq. (31). Equation (13) becomes

_� v �
1

a
r � u � �

1

a
r � ��vu�; (34)

which coincides with Eq. (28). Equation (14) gives

r � � _u�Hu� � 4�G�a�v � �
1

a
r � �u � ru�; (35)

which also follows from Eqs. (29) and (30) in the
Newtonian context. This completes our proof of the corre-
spondence. Such identifications of density and velocity
perturbations imply that we cannot identify �’� (or ��)
with �� to the second order. This conclusion follows from
a close examination of Eqs. (12)–(20). In fact, using the
intrinsic three-space curvature in Eq. (265) of Ref. [10]

R�h� �
2

a2
��2�’� 8’�’� 3’;�’;�	; (36)

Eq. (17) becomes

4�G��v �
1
4R

�h�
� � 1

2
_H�v2

� � 3aH _H��1r���v;�v��;

(37)

which still differs from the Newtonian Poisson’s equation.
Thus, we conclude that we do not have a relativistic
variable which corresponds to the Newtonian potential to
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the second order. Apparently, it is essentially important to
employ mixed gauge conditions, i.e., take different gauge
conditions for different variables, to make correspondence
with the Newtonian system: In this way, correct identifi-
cations of (gauge-invariant) variables are important to
show the relativistic-Newtonian correspondence.

At this point, let us clarify the meaning of the quantities
involved in Eqs. (32) and (33). Variables �, �, and ’ are
defined in the metric in Eq. (1). Variables � and ’ can be
further identified as the perturbed shear and perturbed
three-space curvature of the normal hypersurface, respec-
tively. From Eq. (36) we find that the intrinsic scalar
curvature R�h� vanishes for ’ � 0. From Eq. (264) of
Ref. [10] we find that the trace-free part of the extrinsic
curvature tensor �K�� (equivalently, shear tensor of the
normal-frame vector with a minus sign) vanishes for � �
0. The variable � can be interpreted as the perturbed
expansion with a minus sign. From Eqs. (57), (99), and
(179) of Ref. [10] we have K � �3H � �, where K is a
trace of the extrinsic curvature tensor K�� (equivalently,
the expansion scalar ~& � ~na;a with a minus sign). Variables
� and v are defined in Eq. (2) and can be interpreted as the
perturbed energy density (� � ��

� , with ~� � �� ��)
and the flux of the normal frame, respectively. In the
normal frame, from Eqs. (4), (76), and (175) of Ref. [10],
we have that the flux vector becomes J� � �~nb ~T

b
� �

�a�v;�.
Here we discuss the relation between the comoving and

the synchronous gauge to the second order. Equation (12)
shows that �v, which is the same as � in the comoving
gauge (v � 0), does not vanish to the second order. This
means that the comoving gauge does not imply our syn-
chronous gauge to the second order in a zero-pressure
medium. At this point, it is important to remember that
we already have fixed the spatial gauge condition using
 � 0. The original synchronous gauge used by Lifshitz
fixes �g00 � 0 � �g0�; thus, � � 0 for the temporal
gauge and � � 0 for the spatial gauge condition. We prefer
to fix  � 0 (spatial C gauge) as the spatial gauge condi-
tion instead of � � 0 (spatial B gauge) because the latter
condition fails to fix the spatial gauge degree of freedom
completely, whereas the first one fixes it completely; this is
true even to the second order and, in fact, to all orders, in
perturbations; see Secs. VI B 2 and VI C of Ref. [10]. We
can show that the comoving temporal gauge (v � 0) to-
gether with spatial B gauge (� � 0) implies � � 0 even to
the second order; for a proof, see [22]. By imposing the
comoving (v � 0) and the synchronous (� � 0) gauge
conditions simultaneously, Kasai [23] has derived a differ-
ent equation compared with ours: Such a redundant choice
is allowed as one takes � � 0 as the spatial gauge condi-
tion. However, in that gauge condition (the spatial B
gauge), the spatial gauge mode is incompletely fixed, and
the comparison with the Newtonian analyses is not
available.
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V. FULLY NONLINEAR EQUATIONS

By extending our comoving gauge condition to be valid
to all orders, we can formally derive the completely non-
linear equations for the density and velocity perturbations.
We will present two methods to reach such nonlinear
equations. These are based on the Arnowitt-Deser-Misner
(ADM) (3� 1) equations and the covariant (1� 3) equa-
tions summarized in Secs. II A and II B, respectively, of
Ref. [10]. With the hindsight gained from our second-order
perturbations in previous sections, it is best to take the
comoving gauge condition to all orders. In the normal-
frame context, only the comoving gauge allows the zero-
pressure conditions to be, by definition, vanishing pressure
terms to all orders. To the second order, all the equations
we need to derive Eqs. (27), (34), and (35) are Eqs. (12)–
(14), which follow from Eqs. (8), (10), and (11); these
are the Raychaudhury, the energy-conservation, and the
momentum-conservation equations, respectively. We have
presented a redundant set of equations in (12)–(20) in
order to show the relativistic-Newtonian correspondences
with some perspective.

The complete set of ADM (3� 1) equations is presented
in Eqs. (8)–(13) of Ref. [10]; see [24] for original studies.
We only need Eqs. (10), (12), and (13) of Ref. [10], which
are the trace of the ADM propagation equation, and the
energy- and momentum-conservation equations, respec-
tively. We take the comoving gauge condition to all orders
which makes the flux four-vector vanish; i.e., J� � 0; here
we assume vanishing vector-type perturbation, thus irrota-
tional, which could contribute to J�. Under such condi-
tions, the zero-pressure conditions (in our normal frame)
imply S � 0 � �S�� to all orders; S and �S�� are the trace
and trace-free parts, respectively, of the spatial part of
energy-momentum tensor. Equation (13) of Ref. [10] gives

N;� � 0; (38)

where N is defined as ~g00 � �N�2. Thus, we may set N �
a�t� to all orders. In this case we have, for example, _E �
E;0N

�1. Now, Eqs. (12) and (10) of Ref. [10] become,
respectively,

_̂E� KE � 0; (39)

_̂K � 1
3K

2 � �K�� �K�� � 4�GE�� � 0; (40)

where _̂E � _E� E;�N�N�1, etc.; E is the energy density
based on the normal-frame vector, and K and �K�� are the
trace and trace-free parts, respectively, of the extrinsic
curvature; N� is defined as ~g0� � N�. The spatial indices
in ADM formulation are based on the spatial metric h��
defined as h�� � ~g��. By combining these equations, we
have
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� _̂E
E

�
�̂
�

1

3

� _̂E
E

�
2
� �K�� �K�� � 4�GE�� � 0: (41)

Notice again that Eqs. (39)–(41) are valid to all orders; i.e.,
these equations are fully nonlinear. From Eqs. (39)–(41),
using

E � �� �� (42)

and the quantities presented in Ref. [10], we can easily
derive Eqs. (34), (35), and (27), respectively; see the next
section.

The complete set of covariant (1� 3) equations is pre-
sented in Eqs. (26)–(37) of Ref. [10]; see [25] for original
studies. We need only Eqs. (26)–(28) of Ref. [10], which
are the energy and momentum conservations and the
Raychaudhury equation, respectively. We take the energy
frame which sets the energy flux term to vanish, i.e., ~qa �
0. In this frame the frame four-vector ~ua is the fluid four-
vector. The zero-pressure conditions imply ~p � 0 � ~�ab
to all orders; ~�ab is the covariant anisotropic stress based
on ~ua. Equation (27) of Ref. [10] gives a vanishing accel-
eration vector, i.e., ~aa � ~ua;b~ub � 0, to all orders. Thus,
Eqs. (26) and (28) of Ref. [10] become, respectively,

~_~�� ~� ~& � 0; (43)

~_~&� 1
3
~&2 � ~+ab ~+ab � ~!ab ~!ab � 4�G ~��� � 0; (44)

where ~& � ~ua;a is an expansion scalar, and ~+ab is the shear
tensor. An overdot with tilde is a covariant derivative along
the ~ua vector, e.g., ~_~� � ~�;a~u

a. By combining these equa-
tions, we have

�~_~�
~�

�
~�
�

1

3

�~_~�
~�

�
2
� ~+ab ~+ab � ~!ab ~!ab � 4�G ~��� � 0:

(45)

Notice that Eqs. (43)–(45) are valid to all orders; i.e., these
equations are fully nonlinear. A more general equation in a
fully covariant form considering the general pressure terms
can be found in Eq. (88) of Ref. [26].

We take the comoving gauge condition to all orders,
which makes the space part of four-vector with low index
vanish, i.e., ~u� � 0; here we also assume vanishing vector-
type perturbation, thus irrotational, which could contribute
to ~u�. As our gauge condition (and the irrotational condi-
tion) implies ~u� � 0, the frame vector is the same as the
normal frame; thus, ~ua � ~na. In such a case we have
vanishing rotation of the ~ua flow; thus, ~!ab � 0. From
Eqs. (43)–(45), using

~� � �� �� (46)

and the quantities presented in Ref. [10], we can easily
derive Eqs. (34), (35), and (27), respectively. A derivation
based on the covariant equations is presented in Ref. [27].
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After all, the ADM equations (39)–(41) are the same as
the covariant equations (43)–(45), expressed in different
forms. We can derive the ADM equations by rewriting the
covariant equations in the normal-frame vector. Since our
comoving gauge condition with irrotational condition
makes ~u� � 0, the frame vector is the same as the
normal-frame vector ~na. By direct calculations, using the
quantities presented in Eqs. (2)–(6) and (14)–(16) of
Ref. [10], we can show that

~� � E; ~& � �K; ~+ab ~+ab � �K�� �K��;

~_~� � _̂E;
~_~& � � _̂K:

(47)

Using this, we can show that Eqs. (43)–(45) give
Eqs. (39)–(41); these equations are valid considering gen-
eral background curvature and the tensor-type perturbation
(gravitational waves) to all orders.
VI. ANOTHER DERIVATION INCLUDING THE
GRAVITATIONAL WAVES

Since Eqs. (34) and (35) are our main results allowing us
to conclude about the relativistic-Newtonian correspon-
dence, in the following we will derive these equations in
some detail again directly from the fully nonlinear equa-
tions in Sec. V. Now we include the gravitational wave
contribution. The metric becomes

ds2 � �a2�1� 2��d�2 � 2a�;�d�dx
�

� a2��1� 2’���� � 2C�t�
��	dx

�dx�; (48)

where C�t�
�� is the transverse and trace-free gravitational

waves; its indices are based on g�3���. We work in the

temporal comoving gauge. Thus, C�t�
�� is also evaluated in

the comoving gauge and equivalent to a gauge-invariant
combination C�t�

��v.
We introduce

E � �� ��; K � �3
_a
a
� �; (49)

see Eqs. (45), (72), (178), and (179) of Ref. [10]. We have

_̂E � _E� E;�N
�N�1 � _�� � _��

1

a2
��;��

;�;

_̂K � _K � K;�N�N�1 � �3
�
_a
a

�
�
� _��

1

a2
�;��;�:

(50)

In setting N � a, we already have used the comoving
gauge condition. Since we take the comoving gauge, we
often ignore the subindex v, which indicates the comoving
gauge choice (equivalently, the unique corresponding
gauge-invariant combination between the variable and v);
for example, our � is the same as a gauge-invariant combi-
nation �v, which is the same as � in the comoving gauge
setting v � 0. Using Eqs. (55), (57), and (175) of Ref. [10],
044011
we can show

�K�� �K�� �
1

a4

�
�;�j��;�j� �

1

3
����2

�

� _C�t���
�
2

a2
�;�j� � _C�t�

��

�
: (51)

Equations (39) and (40) become, respectively,
�
_�
�
� 3

_a
a

�
�1� �� � _�� � � ���

1

a2
�;��

;�; (52)

3
�a
a
� 4�G���� _�� 2

_a
a
�� 4�G��

�
1

a2
�;��;� �

1

3
�2 �

1

a4

�
�;�j��;�j� �

1

3
����2

�

� _C�t���
�
2

a2
�;�j� � _C�t�

��

�
: (53)

Now we have to relate ��� �v� to our notation.
Apparently, we need � only to the linear order. To the
linear order the ~G0

� component of the Einstein equation in
Eq. (15) gives ��=a2��v � ��v � 1

ar � u; we have �v �

�� av � �av� to the linear order. As our u is of the
potential type, i.e., of the form u � u;�, we have

u �
1

a
r�v; (54)

to the linear order. Thus, we have
�
_�
�
� 3

_a
a

�
�1� �v� � _�v �

1

a
r � u � �

1

a
r � ��vu�;

(55)

3
�a
a
� 4�G����

1

a
r �

�
_u�

_a
a
u
�
� 4�G��v

� �
1

a2
r�u � ru� � _C�t���

�
2

a
u�;� � _C�t�

��

�
: (56)

The perturbed parts give Eqs. (34) and (35) with additional
contributions from the gravitational waves in Eq. (35) and,
thus, in Eq. (27) as well.

Therefore, in the presence of the tensor-type perturba-
tion we have

_� v �
1

a
r � u � �

1

a
r � ��vu�; (57)

1

a
r �

�
_u�

_a
a
u
�
� 4�G��v

� �
1

a2
r � �u � ru� � _C�t���

�
2

a
u�;� � _C�t�

��

�
; (58)

thus,
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��v � 2
_a
a

_�v � 4�G��v � �
1

a2
@
@t

�ar � ��vu�	

�
1

a2
r � �u � ru�

� _C�t���
�
2

a
u�;� � _C�t�

��

�
: (59)

The presence of linear-order gravitational waves can gen-
erate the second-order scalar-type perturbation by generat-
ing the shear terms. Here we note the behavior of the
gravitational waves in the linear regime. To the linear order
the gravitational waves are described by the well known
wave equation [2]

�C �t�
�� � 3

_a
a

_C�t�
�� �

�

a2
C�t�
�� � 0: (60)
044011
In the superhorizon scale the nontransient mode of C�t�
��

remains constant, thus _C�t�
�� � 0, and in the subhorizon

scale, the oscillatory C�t�
�� redshifts away, thus C�t�

�� /

a�1. Thus, we anticipate that the contribution of gravita-
tional waves to the scalar-type perturbation is not signifi-
cant to the second order.

To the second order the equation for tensor-type pertur-
bation (gravitational waves) can be derived from
Eqs. (103) and (210) of Ref. [10]. Since we are ignoring
the vector-type perturbation from Eqs. (199) and (211) of
Ref. [10], we have
�C �t�
�� � 3

_a
a

_C�t�
�� �

�

a2
C�t�
�� � N4�� �

3

2

�
r�r� �

1

3
g�3����

�
��2rr�N4�; (61)

where we assumed a flat background and set anisotropic stress to be zero. From Eq. (103) of Ref. [10] to the second order
we have

N4�� �
1

a3

�
a3
�
2

a2
�’�;�j� � ’;���;��� � 2’ _C�t�

�� �
2

a2
�;

j�C
�t�
� �

1

a2
�;�2C�t�

��j�� � C�t�
��j� � 2C�t�

� _C�t�
�

��
�

�
1

a4
�;

j��;j� �
1

a2
���;�j� � 4’’;�j� � 3’;�’;�� � � _C�t�

�� �
1

a2
�2’;

j�C
�t�
� � 2�’C�t�

�� � 4’�C�t�
��

� ’;�2C�t�
��j�� � 3C�t�

��j� � 2�;
j��

_C�t�
�	 � �; _C�t�

��j � 2C�t���2C�t�
��j��� � C�t�

��j� � C�t�
�j��� � 2C�t�

� �C�t�
�

� C�t�
�j�C

�t��
j� � 4C�t�j�

� C�t�
���j	

�
�

1

3
g�3���

�
1

a3

�
a3
�
2

a2
�’��� ’;�;� � 2C�t��

�
1

a2
�;j� � _C�t�

�

���
�

�
1

a4
�;j��;j� �

1

a2
����� 4’�’� 3’;’; � 2’;j�C�t�

� � 4C�t���C�t�
� � C�t��j-�2C�t�

-j� � 3C�t�
�j-�	

�
:

(62)
In Eq. (62) we have ignored � and _’ terms which are
already quadratic order in the comoving gauge; see
Eqs. (12) and (20). Since we are in the comoving gauge,
we have � � �v, ’ � ’v, � � �v, and C�t�

�� � C�t�
��v.

Apparently, we need �v, �v, and ’v to the linear order.
We have �v � � 1

ar � u and u � 1
ar�v. For ’v we have

’v � ’� aHv � ’� � aHv�; (63)

where we have ’� � ��� and u � �rv� in Eq. (32).
Using these identifications, we can express the scalar-type
perturbation variables in Eq. (62) in terms of the
Newtonian variables.

Equations (57), (58), and (61) provide a complete set
describing the scalar- and tensor-type perturbations to the
second order in the flat Friedmann background. From these
equations we can see that the linear-order scalar-type
(tensor-type) perturbation works as a source for the
tensor-type (scalar-type) perturbation to the second order.
Such effects and the presence of the gravitational waves are
purely general relativistic ones.

VII. DISCUSSION

We have shown that to the second order, ignoring the
gravitational wave contribution, the zero-pressure relativ-
istic cosmological perturbation equations can be exactly
identified with the known equations in a Newtonian sys-
tem; compare Eqs. (57)–(59) with Eqs. (28)–(31). More
precisely, the relativistic equations can be identified with
the continuity equation and the divergence of the Euler
equation replacing the Newtonian gravitational potential
using Poisson’s equation. In order to achieve such a cor-
respondence, we need correct identification of gauge-
invariant density and velocity perturbation variables as in
Eqs. (32) and (33). It is important to notice that we have
avoided using the potential-like variable in our identifica-
tion. In fact, we showed that we do not have a relativistic
variable which corresponds to the Newtonian potential to
-8
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the second order. This is understandable because the gravi-
tational potential introduced in Poisson’s equation reveals
the action-at-a-distance nature and the static nature of
Newton’s gravity theory compared with relativistic gravity.

As a consequence, to the second order, the Newtonian
hydrodynamic equations (31), (34), and (35) remain valid
in all cosmological scales including the superhorizon
scale. Although showing the equivalence of the zero-
pressure relativistic scalar-type perturbation to the
Newtonian ones to the second order may not be entirely
surprising, it should not be so obvious, either. It might be as
well that our relativistic results give relativistic correction
terms appearing to the second order which become impor-
tant as we approach and go beyond the horizon scale. Our
results show that there are no such correction terms appear-
ing to the second order, and the correspondence is exact
to that order. A complementary result, showing the
relativistic-Newtonian correspondence in the Newtonian
limit of the post-Newtonian approach, can be found in
Ref. [28]. In fact, the Newtonian hydrodynamic equations
appear naturally as the zeroth-order post-Newtonian limit
[29].

We note that, although we assumed a flat background,
our equations are valid with the cosmological constant.
Thus, these are compatible with current observations of
the large-scale structure and the cosmic microwave back-
ground radiation which favor a near flat Friedmann world
model with nonvanishing � [30]. As we consider a flat
background, the ordinary Fourier analysis can be used to
study the mode couplings as in the Newtonian case in
Ref. [21]. Our result also may have the following important
practical cosmological implication. As we have proved that
the Newtonian hydrodynamic equations are valid in all
cosmological scales to the second order, our result has an
important cosmological implication that large-scale
Newtonian numerical simulation can be used more reliably
in the general relativistic context even as the simulation
scale approaches near (and goes beyond) the horizon scale.

At this point, it is important to be reminded that we
showed the relativistic-Newtonian correspondence for the
density and velocity perturbations, but not for the gravita-
tional potential. Therefore, although our result assures that
one can trust cold dark matter simulations at all scales for
the density and velocity fields, it does not imply that one
can trust the Newtonian simulations for effects involving
the gravitational potential, such as the weak gravitational
lensing effects. Indeed, in order to handle the lensing
effects properly, we often require an extra factor of 2,
which comes from the post-Newtonian effects.

Since the Newtonian system is exact to the second order
in nonlinearity, besides the gravitational wave contribution
to the second and higher order, any nonvanishing third and
higher order perturbation terms in the relativistic analysis
can be regarded as the pure relativistic corrections.
044011
Expanding the fully nonlinear equations in (43)–(45) or
(39)–(41) to third and higher order will give the potential
correction terms. Our recent investigation of this important
open question shows that to the third order there occur pure
relativistic correction terms which are of ’v order higher
[31]. Thus, the corrections are independent of the horizon
and are small; see the accompanying contribution in
Ref. [31].

In this work, we have considered an irrotational single
component dust in the flat background. Extending any of
these assumptions could lead to situations which deserve
further attention. First, it would be interesting to see up to
what point the correspondence between the two theories
can be extended in the nonflat case. In this way, we can
identify possible relativistic effects caused by the nonflat
nature of the background. Second, in this work we have
ignored the vector-type perturbation because it simply
decays in the expanding phase. This has to do with con-
sidering only the longitudinal part of u in Eqs. (35) and
(58). It would be interesting to include the rotational mode
to see the similarity and difference between the two gravity
theories. As the realistic Newtonian simulations include
the whole u vector as the perturbed velocity, it would be
practically important to see the role of relativistic vector-
type perturbation to the second order and to determine
whether the relativistic effect could be important. Third,
the usual cosmological simulations include the cold dark
matter together with the baryon, thus a system with two
components. Thus, the relativistic nonlinear perturbations
of the zero-pressure but multicomponent system would be
an interesting subject in practice. It is, a priori, unclear
whether the relativistic-Newtonian correspondence would
continue in such a multicomponent case. In the second and
the third subjects, the comoving gauge issue should be
applied with care. Fourth, the presence of a substantial
amount of pressures (both isotropic and anisotropic) would
lead to relativistic corrections. Even in the linear perturba-
tion, the pressure terms cause new relativistic correction
terms which are not present in the Newtonian system.
Thus, including the pressure terms in relativistic second-
order perturbation is interesting because most of the terms
will be pure relativistic corrections. Such a formulation
would be practically interesting because we anticipate the
presence of strong pressure in the early Universe. All four
subjects are left for future studies.
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