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Cosmological constraints on Newton’s constant
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We present cosmological constraints on deviations of Newton’s constant at large scales without
specifying a model, analyzing latest cosmic microwave background (CMB) anisotropies and primordial
abundances of light elements synthesized by big bang nucleosynthesis (BBN). BBN limits the possible
deviation at typical scales of BBN epoch, say at 108–1012 m, to lie between �5% and �1% of the
experimental value, and CMB restricts the deviation at larger scales 102–109 pc to be between �26% and
�66% at the 2� confidence level. The cosmological constraints are compared with the astronomical one
from the evolution of isochrone of globular clusters.
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Newton’s law of gravitation has been extensively tested
and verified in three length scales: the laboratory scales
r & 1 m [1], the geophysical scales r � 100 m [2], and the
astronomical scales r � 108 m [3]. Such measurements
nicely agree with the inverse square law within their ex-
perimental or observational uncertainty [4,5]. In particular,
the first two measurements at the laboratory and geophysi-
cal scales succeeded also in determining the experimental
value GN of Newton’s constant, and the value determined
at such terrestrial scales is applied for all phenomena from
Planck scale to cosmological scale.

The astronomical measurements [3], mainly through
planetary and satellite orbits, yield a strong constraint on
the deviation from the inverse square law. However, it
should be noted that the measurements cannot give any
information about the value of Newton’s constant G itself
without evaluating masses M of interacting bodies, since
constraint is possible only onGM. Therefore, the measure-
ments cannot exclude the possibility of a different value of
G at astronomical and cosmological scales, if G is almost
constant at limited scales relevant to the measurements. In
particular, we have only a poor knowledge at scales larger
than the solar system, say r * 1 pc � 3 � 1016 m [5].
Interesting trials to solve this problem were recently re-
ported [6,7], in which the deviation of G at Mpc scales is
restricted by the power of the clustering of galaxies.

The possibility that Newton’s constant at laboratory
scale, GN, is different from that at very large scales, G1,
arises in many contexts. Historically, studies toward the
problem of unifying gravity with the other fundamental
forces suggested a departure from Newtonian gravity in the
range 10–100 m [8]. It is often assumed that such a
correction can be represented by the addition of a
Yukawa term to the conventional gravitational potential:
V � � G�r�M

r for G�r� � G1�1 � �e�r=	�, where � is the
relative weight of the non-Newtonian term. In this expres-
sion, at cosmological distances r satisfying r	 	, the
exponential term vanishes, so that G�r� � G1. On the
05=72(4)=044010(5)$23.00 044010
other hand, for r of experimental scales which satisfies
r
 	, the exponential becomes unity and G�r� recovers
GN, that is, GN � G1�1 � ��.

Recently several types of higher-dimensional theories of
gravity, motivated by superstring, have been proposed and
many researchers pay great attention to the extra dimen-
sion scenario. As a characteristic feature, all the theories
lead to deviations from the conventional Newton’s law
[9,10], since the theories allow the graviton to propagate
in higher-dimensional spacetime. Among them, an inter-
esting idea was proposed by Dvali, Gabadadze, and Porrati
(DGP model). In the model, the present accelerating ex-
pansion of the universe is attributed to leaking gravity into
an extra dimension [11]. This idea reproduces the present
cosmic acceleration without a dark energy component, and
consequently predicts the modification of Newton’s law at
cosmological scales. Another interesting proposal is a
braneworld model with a Gauss-Bonnet term, which sug-
gests GN � 2� ��

3 �� G1 with a model parameter �� [12].
These theoretical suggestions indicate that it is quite

important to place possible constraints on the value of G
at astronomical and cosmological scales. In this paper, we
take a simple parametrization of

G�r� � 
GN (1)

for a finite region of r relevant to the measurement which
we are considering. This parametrization is justified, when
the range 	 of the Yukawa-type interaction is much smaller
than any r belonging to the relevant region. As such a
measurement, we consider cosmic microwave background
(CMB) anisotropies and primordial abundances created at
the big bang nucleosynthesis (BBN) epoch, and assume 	
which well satisfies the condition 	
 r for r relevant to
these measurements. So we calculate CMB anisotropies
and primordial abundances simply with Eq. (1) and put
constraints on 
 at two different scales relevant to these
observations. The cosmological constraints are compared
-1  2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.72.044010


0.22

0.23

0.24

0.25

0.26
ξ = 1.01
ξ = 0.95

10
-5

10
-4

1 2 3 4 5 6 7 8 9 10
η10

10
-10

10
-9

Yp

D/H

7
Li/H

FIG. 1 (color online). Predicted BBN light-element abundan-
ces vs the baryon-to-photon ratio �10. 4 He, D, and 7 Li abundan-
ces are shown in the top, center, and bottom panels, respectively.
They are compared with the observationally inferred primordial
abundances (horizontal lines). Plotted are models with 
 � 1:01
(solid lines) and 
 � 0:95 (dashed lines). In our analysis, neu-
tron lifetime is taken to be the average value of �n � 878:5 sec
[27] and �n � 885:7 sec [29].
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FIG. 2 (color online). Constraints from the primordial abun-
dances (lines) and CMB (contours) on �10 and 
. The shaded
region denotes parameters allowed by BBN. The contours show
the marginalized 1; 2� limits on this parameter plane from fits to
the CMB power spectrum. The solid and dashed contours
correspond to the limits from WMAP data alone, and those
from WMAP, CBI, and ACBAR data sets, respectively.
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with an astronomical constraint determined from the iso-
chrone of globular clusters.

The observed primordial light-element abundances con-
strain the value of G during the BBN epoch from the time
of weak-reaction freeze-out (t� 1 sec , T � 1 MeV) to the
freeze-out of nuclear reactions (t� 104 sec , T � 10 keV).
In this epoch, the length of cosmic horizon varies from
108 m to 1012 m, and thus BBN can constrain Newton’s
constant at these scales.

The primordial helium abundance is obtained by mea-
suring extra galactic ionized hydrogen regions. We adopt a
range of Yp � 0:2452 � 0:0015 [13] for the helium abun-
dance. The primordial deuterium is best determined from
its absorption lines in high redshift Lyman � clouds along
the lines of sight to background quasars. For deuterium
there is a similar possibility for either a high or a low value.
For the present discussion, however, we shall adopt the
generally accepted low value for the D=H abundance,
D=H � 2:78�0:44

�0:38 � 10�5 [14].
The increase of Newton’s constant causes the increase of

the universal expansion rate. This makes the neutron-to-
proton ratio larger, because the weak reactions freeze-out
at a higher temperature, and also because there is less time
for neutrons to decay between the time of weak-reaction
freeze-out and the onset of BBN. Consequently, a larger
value of G during the BBN epoch yields a larger 4 He
abundance, since most of the free neutrons are converted
into 4 He nuclei. D=H also increases largely because the
reactions destroying deuterium fall out of nuclear statisti-
cal equilibrium while the deuterium abundance is higher.
Similarly, there is less time for the destructive reaction
7 Li�p;��4 He. This causes 7 Li to be more abundant for �<
3 � 10�10. However, there is also less time for the
4 He�3 He; ��7 Be reaction to occur. This causes 7 Li to be
less abundant for �> 3 � 10�10 [15]. Figure 1 illustrates
the dependence of the nucleosynthesis yields with 
.

The upper limit of Newton’s constant comes from the
4 He upper bound and the D=H upper bound. The lower
limit comes from the lower bounds. We note that the
constraint from 7 Li is not consistent with those from 4 He
and D=H, even when we vary 
. In the present analysis,
however, we omit the constraint from 7 Li abundance, since
it involves an uncertainty more largely than the other
primordial elements do. The shaded region on Fig. 2 shows
allowed values of 
. The BBN constraint thus obtained is
0:95  
  1:01 at 108–1012 m scales.

The effect of 
 on primordial abundances degenerates
with that of the effective number of neutrino species N�. A
constraint on the cosmological expansion rate, i.e. the
effective number, during the BBN epoch is obtained in a
model independent way [16]. In our analysis, however, we
have fixed N� to the canonical value 3:04, since the present
model is a simplification of sophisticated models such as
the DGP model [11], the braneworld model with Gauss-
Bonnet term [12], or a scalar-tensor theory [17] without
044010
any extra energy component. The present result on 
,
0:95  
  1:01, corresponds to �0:3 & �N� & 0:1.
This result naturally includes the canonical value �N� �
0 in consequence of taking the latest data on helium and
deuterium abundances and neutron lifetime.

One point to be mentioned here is that the canonical
value of 3.04 may be changed due to an increase or a
decrease of the expansion rate, because the decoupling
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temperature of neutrinos is changed. In this paper, how-
ever, we assumed that this effect is small and neglected it.

The temperature fluctuations at recombination observed
through the CMB anisotropies contain much information
on many kinds of cosmological parameters and evolution
of perturbations at a wide range of scales. Typically, the
scale which can be explored by CMB observations cur-
rently available is from the horizon scale at present ( �
Gpc) to �10 Mpc in a comoving coordinate. This shows
that the scales relevant to CMB are from 102 pc to �Gpc, if
we consider the evolution of perturbations from the hori-
zon crossing of each Fourier mode; for example, 102 pc is
the horizon scale at the time when the mode of �10 Mpc in
a comoving coordinate enters the horizon. Thus it follows
that CMB can constrain the value of 
 at scales larger than
�102 pc. Here, in order to calculate CMB anisotropies in a
consistent manner, we assume that the scale dependence of
Newton’s constant is very weak at the relevant scales,
which is consistent with a simple parametrization of
Eq. (1).

In order to obtain a constraint on 
 from latest CMB
anisotropy data sets, we generate CMB angular power
spectra C‘ in a wide range of 
 by using a Boltzmann
code of CMBFAST [18]. It is well known, however, that in
addition to 
 there exist many other cosmological parame-
ters relevant to CMB. Thus, we explore the likelihood in
seven-dimensional parameter space, i.e., �bh2 (baryon
density), �ch2 (cold dark matter density), h (Hubble pa-
rameter), zre (reionization redshift), ns (power spectrum
index), As (overall amplitude), and 
. We then marginalize
over nuisance parameters through the use of the Markov
Chain Monte Carlo technique [19].

The most distinguishable effects of changing Newton’s
constant appear at the amplitude of the acoustic peaks in
the CMB power spectrum as shown in Fig. 3. The main
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FIG. 3 (color online). CMB power spectrum with and without
the variation of 
. Higher peaks are more severely damped as 

increases, while the height of the first peak is almost unchanged.
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reason for this is that, as already found in [20], the visibility
function, g��� � _� exp����, changes with 
, where � is
the optical depth of the Thomson scattering. More specifi-
cally, increasing Newton’s constant makes the expansion
of the universe faster at a given redshift, and makes it more
difficult for a proton and a electron to recombine to form a
hydrogen atom. This leads to a larger ionization fraction
and a broader visibility function at last scattering epochs,
which damp the anisotropies at small scales due to the
canceling effect.

Second, in addition to the effect discussed above, we
find that increasing Newton’s constant suppresses the sec-
ond and higher acoustic peaks even larger, since for the
increase of 
 the diffusion scale for photons to spread
through the random walk ( � t1=2

dec / 
�1=4) is shifted
more largely than the scale of the first acoustic peak ( �
tdec / 
�1=2). Thus, the shape of acoustic peaks can be
used to constrain the variation of 
.

Figure 4 shows the marginalized likelihood of 
. We
obtain from the figure that 0:74 & 
 & 1:66 by WMAP
data alone [21], 0:75 & 
 & 1:74 by WMAP, CBI, and
ACBAR data sets [22,23], at 95% confidence level.

Another constraint on the value of Newton’s constant
can be obtained by analyzing the age of stars in globular
clusters. The key idea is that increasing Newton’s constant
causes stars to burn faster [24]. Thus, this allows us to
constrain 
 at stellar scale �109 m, as we shall see below,
by analyzing the timing of the main sequence turn-off.

Let us assume that the luminosity of the star depends on
Newton’s constant G and helium abundance Y, approxi-
mately as L / y�Y�g�G�, where y and g are functions of Y
and G [25]. Since helium production should be propor-
tional to the luminosity, we have dY

dt / y�Y�g�G�. A star
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FIG. 4 (color online). Marginalized probability distribution of

. The solid and dashed lines correspond to the probability
distributions obtained by WMAP data alone and by WMAP,
CBI, and ACBAR data sets, respectively.
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FIG. 5 (color online). Limits on the variation of 
 from various
observations. Limit from Sloan Digital Sky Survey is taken from
[6].
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which departs from the main sequence today (t0) should be
considered to have Y � 1 at its center so that

R
1
Yinit

dY
y�Y� /

g�G�
Rt0
tinit
dt. We further assume that g�G� / G�, where

� � 5:6 have been obtained from numerical simulation
[25]. From the fact that the left-hand side of the above
equation does not depend on G and time, we have the
relation

�� � 
�
Z t0

t0��
dt � �
�: (2)

Here �� is the apparent turn-off age, which should be
obtained by analyzing the Hertzsprung-Russell diagram
of a globular cluster with the standard value of G, and �
is the true age of the globular cluster. Thus, if information
on the true age of globular cluster is available, the globular
cluster can be used to constrain 
:�

�max

��

�
��1=��

& 
 &

�
�min

��

�
��1=��

: (3)

If we take �max � 15:8 (2� upper bound on the expansion
age of the universe obtained by our CMB analysis dis-
cussed above including the variation of 
), and conserva-
tively assume that �min � 10 Gyr [25], we then obtain

0:93 & 
 & 1:09; (4)

where we use � � 5:6 and �� � 12:9 � 2:9 Gyr, which is
the age of the galactic globular clusters [26].

All the higher-dimensional theories of gravity proposed
recently allow Newton’s constant to be scale dependent. In
this paper, assuming the dependence is weak for horizon
scales in BBN epoch (108–1012 m) and also for those in the
CMB epoch (102–109 pc), we place constraints on 
 �
G=GN at the cosmological scales. An important point is
that the present analysis yields constraints on the value of
G itself, while other astronomical tests of the inverse
square law do so only on the value of GM including
unknown mass M of interacting bodies.

Increasing Newton’s constant enhances the universal
expansion rate, and then leads to larger helium and deute-
rium abundances produced at BBN epoch. We have reex-
amined this effect including the latest experimental data on
the neutron lifetime [27,28]. We found that the experimen-
tal value GN (
 � 1) is now quite consistent with the
observed abundances of primordial light elements, and
the variation of Newton’s constant is tightly constrained
to 0:95 & 
 & 1:01.

The variation of Newton’s constant also affects the
power spectrum of CMB anisotropies through the change
of the recombination and photon diffusion processes. We
found that the difference emerges at smaller scales. Thus,
observations at higher multipoles are essential to put a
044010
tighter constraint on 
. However, even when higher multi-
pole data currently available from CBI and ACBAR are
included, we found no improvement in constraint on 
,
because of scatters in data at higher multipoles. WMAP
data alone place a constraint: 0:74 & 
 & 1:66. If we
combine CBI and ACBAR data sets, the constraint be-
comes 0:75 & 
 & 1:74.

In Fig. 5, we summarize results of the current work. The
value of 
 is fixed to one at laboratory scale �1 m by direct
experiments. We have two possibilities of transition from
the short distance regime where G � GN to the long dis-
tance one where G � 
GN; one is the geophysical scale
(i.e., �1–100 km, where the constraints on the inverse
square law are relatively weak), the other is scale beyond
the solar system ( * 1013 m), where we have only poor
knowledge on G. If we consider the former case, BBN
gives the tightest constraint on 
. The globular cluster also
gives a consistent but weaker constraint. On the other hand,
if we consider the latter case, CMB anisotropies and galaxy
clustering [6,7] are the only observations to put constraints
on 
. Thus, higher precision measurements of CMB an-
isotropies, particularly in its higher multipoles, are highly
expected to determine the value ofG at large scales beyond
the solar system and then to confirm the necessity of the
higher-dimensional theories of gravity.
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