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Remarks on a five-dimensional Kaluza-Klein theory of the massive Dirac monopole
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The Gross-Perry-Sorkin spacetime, formed by the Euclidean Taub-Newman-Unti-Tamburino space
with the time trivially added, is the appropriate background of the Dirac magnetic monopole without an
explicit mass term. We show that there exists a very simple five-dimensional metric of spacetimes carrying
massive magnetic monopoles that is an exact solution of the vacuum Einstein equations. Moreover, the
same isometry properties as the original Euclidean Taub-Newman-Unti-Tamburino space are preserved.
This leads to an Abelian Kaluza-Klein theory whose metric appears as a combination between the Gross-
Perry-Sorkin and Schwarzschild ones. The asymptotic motion of the scalar charged test particles is
discussed, now by accounting for the mixing between the gravitational and magnetic effects.
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A special class of solutions of the Maxwell or Yang-
Mills equations are the instantons and monopoles defined
on appropriate flat or curved backgrounds [1–3]. A natural
framework is offered by the Kaluza-Klein theories where
the gauge degrees of freedom deal with specific extra-
coordinates exceeding the physical spacetime. In these
theories the basic problem is to find the solutions of the
field equations in geometries whose global metrics should
be exact solutions of the Einstein equations.

A typical example is the four-dimensional Euclidean
Taub-Newman-Unti-Tamburino (NUT) space which in-
volves the potentials of the Dirac magnetic monopole [4]
and satisfies the vacuum Einstein equations [5]. Moreover,
this space is hyper-Kähler having many interesting prop-
erties related to a specific hidden symmetry [6,7]. For this
reason the Kählerian geometries were considered for gen-
eralizing the Dirac monopole to many dimensions [8].
Other successful generalizations were obtained by inte-
grating the field equations in Kaluza-Klein theories with
five or more dimensions [9,10]

In this way a large collection of metrics was found,
including some metrics corresponding to massive Dirac
monopoles with explicit mass terms. Thus the whole set of
the monopole metrics can be divided in metrics of the
Schwarzschild or Gross-Perry-Sorkin types [10]. In this
paper we show that there exists a hybrid metric giving rise
to a simple Abelian five-dimensional Kaluza-Klein theory
of a monopole with gravitational mass. This metric is an
asymptotic flat solution of the time-dependent vacuum
Einstein equations combining Schwarzschild terms with
Gross-Perry-Sorkin ones. Our purpose is to evaluate the
mixing between the magnetic and gravitational effects
produced by this metric in the asymptotic domain.

The Euclidean Taub-NUT manifold is the space of the
Abelian Kaluza-Klein theory of the Dirac magnetic mono-
pole that provides a nontrivial generalization of the Kepler
problem. This space is a static four-dimensional manifold,
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M4 � R4, equipped with the isometry group SO�3� � U�1�
and carrying the Dirac magnetic monopole related to
strings along the third axis. This symmetry recommends
the use of local charts with spherical coordinates
�r; �; ’; ��, where the first three are the usual spherical
coordinates of the vector ~x � �x1; x2; x3�, with j ~xj � r,
while � is the angular Kaluza-Klein extra-coordinate.
The spherical coordinates can be associated with the
Cartesian ones � ~x; y� � �x1; x2; x3; y� where the extra-
coordinate y may depend linearly on �. In Cartesian coor-
dinates one has the opportunity to use the vector notation
and the scalar products ~x � ~x0, which are invariant under the
SO(3) rotations.

The Euclidean Taub-NUT space has the virtue to be
Ricci flat, its metric being an exact solution of the vacuum
Einstein equations [5]. In the Cartesian charts � ~x; y	� the
line elements read

ds2	 � G�r�d~x � d~x 
 G�r��1�dy	 
 ~A	 � d~x�2; (1)

where

G�r� � 1

�
r

: (2)

The vector potential of the Dirac magnetic monopole
produced by a string along the negative third semiaxis is
denoted by ~A
 while ~A� is due to a string along the
positive one. These potentials have the components

A	
1 � �

�x2

r�r 	 x3�
; A	

2 � 	
�x1

r�r 	 x3�
; A	

3 � 0:

(3)

The potential ~A� differs from ~A
 only within a gauge,
giving rise to the same magnetic field with central sym-
metry,

~B � rot ~A	 � �
~x

r3
: (4)

In this manner the original string singularity is reduced to a
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pointlike one interpreted as a magnetic monopole with the
magnetic charge �.

The crucial point of this construction is the correct
definition of the transition function between the Cartesian
charts � ~x; y	� or the corresponding spherical ones
�r; �; ’;�	� [2]. It is obvious that the transition y� �
y
 
 2�’ is in accordance with the gauge transformation
~A� � d~x � ~A
 � d~x � 2�d’. This transition defines a suit-
able nontrivial fibration which is a version of the Hopf one,
S3 ! S2 [2]. In these conditions it is convenient to take
y	 � ����	 	 ’� which leads to �� � �
 � �. Then
both the line elements (1) get the same form,

ds2o � G�r��dr2 
 r2d�2 
 r2sin2�d’2�


 �2G�r��1�d� 
 cos�d’�2; (5)

in the spherical charts where the vector potentials have the
components

A	
r � A	

� � 0; A	
’ � ��	1� cos��: (6)

In order to implement the Euclidean Taub-NUT space in
physical Kaluza-Klein theories, one has to include the time
t. The Gross-Perry-Sorkin metric,

dŝ2 � �dt2 
 ds2o; (7)

has the remarkable property to remain Ricci flat [5] since it
is a solution of the vacuum Einstein equations in five
dimensions. Moreover, this leads to a geometry with
SO�3� � U�1� � T�1�t isometries where T�1�t is the group
of the time translations. The metric (7) incorporates the
effects of the magnetic charge � while the gravitational
interaction seems to be rather a consequence of the mag-
netic one. The reason is that there are no terms of the
Schwarzschild type with at least one parameter which
could be interpreted as the gravitational mass of the mag-
netic monopole.

Under such circumstances we assume that the metric (7)
describes massless monopoles, but we have to look for
another simple five-dimensional Kaluza-Klein metric suit-
able for massive Dirac monopoles. In these geometries we
maintain the SO�3� � U�1� � T�1�t isometries as well as
the form of the potentials (3), up to the factor representing
the magnetic charge. Requiring the whole spacetime to be
Ricci flat, we find an interesting solution of the vacuum
Einstein equations with the line element

ds2 � �F�r�dt2 
 G�r�
�

dr2

F�r�

 r2d�2 
 r2sin2�d’2

�



�2

ef

G�r�
�d� 
 cos�d’�2; (8)

where both �ef �
�������������������������
��� 
 2M�

p
and

F�r� � 1�
2M
r

(9)

depend on the monopole mass M. This metric is asymptoti-
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cally flat embedding gravitational and magnetic terms. We
observe that for M ! 0 we recover the line element (7),
while for � ! 0 the magnetic properties disappear. In the
latter case the metric reduces to the usual Schwarzschild
one of a particle with the mass M. It is remarkable that the
massive monopole has the effective magnetic charge �ef ,
which depends on the genuine magnetic charge � and the
monopole mass M. Obviously, the nonvanishing compo-
nents of the potentials (6) now become A	

’ � �ef�	1�
cos��.

Next let us consider the motion of a test particle in the
gravitational and magnetic fields of a massive Dirac mono-
pole at large distances. We suppose that the test particle is a
quantum scalar particle of the bare mass m and charge e �
q=�ef where q is the eigenvalue of the operator Q � �i@�
[7]. The scalar field � of the test particle obeys the five-
dimensional Klein-Gordon equation �� � m2�� � 0 [11].
Because of the central symmetry, there are particular so-
lutions with separated spherical variables like

��r; �; �; �� � RE;q;l�r�Y
q
lm��; �; ��; (10)

where Yq
lm are the SO�3� � U�1� harmonics we introduced

before in Ref. [12]. The radial functions RE;q;l depend on
the energy E, the angular quantum number l, and q. Such
functions satisfy the radial equation
�
�

1

r2
d
dr

�
r2F

d
dr

�



l�l 
 1�

r2

 e2

�
G2 �

�2
ef

r2

�

 m2G

� E2 G
F

�
RE;q;l�r� � 0;

(11)

but this can not be analytically solved.
However, for large distances, like r � 2M, the above

equation can be approximated by the asymptotic radial
equation,
�
�

d2

dr2



l�l 
 1�

r2
�

"
r

�
R̂E;q;l�r� � �E2 � m2

ef�R̂E;q;l�r�;

(12)

where R̂E;q;l�r� / rRasympt:
E;q;l �r�. The new parameter

" � 2Mm2
ef 
 �E2 � m2

ef��� 
 2M� � �e2 (13)

depends on the effective mass of the test particles mef ������������������
m2 
 e2

p
, which includes the standard Kaluza-Klein con-

tribution. This time the radial Eq. (12) is analytically
solvable. Indeed, one deals with a Keplerian motion under
the relativistic potential � � �"=r corresponding to the
nonrelativistic one �=2mef . Moreover, one finds that for
low energies, like E � mef , the nonrelativistic potential
appears as the Newtonian potential produced by the effec-
tive monopole mass

Mef � M �
�
2

e2

m2 
 e2
: (14)
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The conclusion is that the metric (8) of the background
of a massive Dirac monopole mixes the gravitational and
the magnetic effects in such a manner that for large dis-
tances and low energies the gravity may screen the mag-
netism. This could explain why it is so difficult to find
experimental evidence about possible cosmic objects with
magnetic charges.
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