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We show that the strong self-interaction of the scalar polarization of a massive graviton can be
understood in terms of the propagation of an extra ghostlike degree of freedom, thus relating strong
coupling to the sixth degree of freedom discussed by Boulware and Deser in their Hamiltonian analysis of
massive gravity. This enables one to understand the Vainshtein recovery of solutions of massless gravity as
being due to the effect of the exchange of this ghost, which gets frozen at distances larger than the
Vainshtein radius. Inside this region, we can trust the two-field Lagrangian perturbatively, while at larger
distances one can use the higher derivative formulation. We also compare massive gravity with other
models, namely, deconstructed theories of gravity, as well as the Dvali-Gabadadze-Porrati model. In the
latter case, we argue that the Vainshtein recovery process is of a different nature, not involving a ghost
degree of freedom.
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I. INTRODUCTION

The construction of a consistent theory of massive grav-
ity has proven to be an extremely difficult task. The usual
Pauli-Fierz approach is to add a quadratic mass term to the
quadratic Einstein-Hilbert action for a perturbation (the
would-be massive graviton) over a flat background [1].
At this level, the action for the massive graviton is con-
sistent in the sense that it does not propagate ghosts or
tachyons. Nevertheless, it is incompatible with experiment
because it propagates an unwanted extra scalar degree of
freedom (DOF) that couples to the trace of the energy-
momentum tensor [2] (further referred to as the vDVZ
scalar). It leads to physical predictions different from the
massless theory, even in the limit where the graviton mass
goes to zero. This is true, for instance, for the light bending
around the Sun and is known as the van Dam-Veltman-
Zakharov (vDVZ) discontinuity [2]. Another question
raised by the quadratic Pauli-Fierz theory is the link be-
tween the background flat metric and the graviton. This
should be answered by a proper nonlinear theory of mas-
sive gravity. However, attempts to go beyond the quadratic
Pauli-Fierz action are raising even more questions. For
example, Boulware and Deser [3] introduced an extraneous
metric, so that the theory they considered can be thought of
as some kind of bimetric theory [4], the dynamics of one of
the two metrics being frozen, and the coupling between the
two metrics being such that it reproduces the quadratic
Pauli-Fierz action for small perturbations. In the following,
we will refer to this type of theory, quite loosely speaking,
as massive gravity; note, however, that such a nonlinear
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completion is not unique. In a particular example of such a
theory, simply obtained by adding the quadratic Pauli-Fierz
mass term to the full Einstein-Hilbert action, a standard
Hamiltonian treatment shows that the number of propagat-
ing DOFs is six (instead of the five DOFs described by the
quadratic action), of which the sixth DOF has a ghost
character [3]. This increment in the number of the prop-
agating DOFs with respect to the quadratic theory, as well
as the unboundedness from below of the Hamiltonian, was
shown to persist in a more general class of bimetric theo-
ries [5]. This could have consequences at the classical level
already (see, e.g., [6]). On the other hand, it was argued in
Refs. [7,8] that the vDVZ scalar has a strong self-
interaction on a flat background at an extremely low scale
� � �MPm

4�1=5. This, at the classical level already, has
dramatic consequences. Indeed, Vainshtein [9] first noticed
that nonlinearities in massive gravity dominate the linear
terms at distance scales smaller than rV � �GM=m4�1=5

(the Vainshtein region) for a classical source of mass M.
He then proposed that these nonlinearities cure the vDVZ
discontinuity within this region, due to a nonperturbative
resummation of the source expansion [9] (see also [7]).
This ‘‘Vainshtein resummation’’ seems to be problematic
for massive gravity [10], if one follows the resummation
beyond the first terms, but there remains the possibility that
it does work for more sophisticated models (see, e.g., [7]).
Nonlinearities could also cure some of the above men-
tioned pathologies by selecting a nonasymptotically flat
vacuum [5].

In this paper, we will consider only expansions of mas-
sive gravity over a flat background. Namely, we want to
discuss the relation between the strong coupling and the,
seemingly unrelated, ghost appearing at nonlinear level in
massive gravity. That there could exist a link between these
two issues is suggested in part by the following reasoning.
Consider, e.g., a classical nonrelativistic source. There it
-1  2005 The American Physical Society
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seems, if one follows Vainshtein’s reasoning, that within
the Vainshtein region, one somehow compensates for the
extra attraction exerted by the vDVZ scalar that is respon-
sible (in a perturbative sense) for the discontinuity (this
compensation being at worst valid only far from the sin-
gularities discussed in Ref. [10]). One may suspect that
there is a ghost degree of freedom responsible for this
cancellation.1 A natural candidate for this ghost seems to
be the ‘‘sixth degree of freedom’’ mentioned above, but it
is not clear why this ghost should work only within a
certain distance scale. We will discuss in this paper how
one can reformulate the strong coupling as a ghost problem
in the theory, and our analysis will clarify the above
features.

Although we will focus here on massive gravity (as
defined above), we would like to motivate this work by
more recent developments. Indeed, massive Einstein grav-
ity is just one example of a theory that modifies gravity at
large distance scales. In recent years, a number of different
models have been proposed to modify gravity in the infra-
red. In particular, the Dvali-Gabadadze-Porrati (DGP) [13]
braneworld model (also known as brane induced gravity)
modifies gravity at a large distance while it can give an
alternative way of producing the observed late-time cosmic
acceleration [14]. DGP gravity shows certain similarities
with massive gravity. More specifically, it exhibits a vDVZ
discontinuity at linearized level and also has a related
strong coupling [7,15,16], the exact consequences of which
have been subject to a debate [7,15–18]. With the link
between strong coupling and ghosts in massive gravity, one
would hence suspect the DGP model also to contain ghosts
when properly analyzed (i.e. at the nonlinear level). As we
will argue, the situation in DGP is quantitatively different
from massive gravity, in that the leading operator that
grows strong in the UV has dimension seven, as opposed
to massive gravity, where this operator has dimension nine.
This fact and the particular tensor structure of the operator
describing the scalar content of the graviton, as found in
Refs. [15,17], suggest that the issue is more subtle and
differs from the case of massive gravity.

This paper is organized as follows. In the next section we
will discuss how, in massive gravity, the strong coupling
can be reformulated as a ghost problem. Namely, we will
argue that there is a propagating ghost DOF, which appears
only at the cubic order in the perturbation theory over a flat
background and which is responsible for the cancellation,
à la Vainshtein, of the attraction exerted by the vDVZ
scalar around heavy sources. We will show how the ghost
formulation allows a perturbative treatment of massive
gravity within the Vainshtein region (so that in our refor-
mulation, the theory stays weakly coupled in this region).
1Such a mechanism was also found in the Gregory-Rubakov-
Sibiryakov model [11], responsible for the instability of the
model [12].
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This perturbative ghost generates the same leading order
corrections as found in the Vainshtein resummation as
discussed in Refs. [7,9], while it freezes out at a large
distance, where one is left with only the vDVZ scalar.
This relates the old Hamiltonian formulation to the effec-
tive field theoretical formulation. In Sec. III, we want to
understand how the appearance of ghosts in massive grav-
ity is related to the breaking of accidental symmetries,
present in the linearized theory, at nonlinear level. There
we will discuss the link between the ghost discussed in
Sec. II, and the ‘‘canonical’’ sixth ghost DOF as discussed
by Boulware and Deser. This section will further give a
‘‘geometrical’’ meaning to the ghost problem, which we
further explore by considering discretized gravity in
Sec. IV. There we also compare massive gravity with the
DGP model. We suggest that the situation in the latter is
very different as far as the relation between strong coupling
and ghosts is concerned, namely, because the operator that
grows large at the lowest energy scale in the DGP model is
not associated with propagating ghost modes. We conclude
with some final remarks on our work and other IR mod-
ifications of gravity. Note that our discussion will be purely
classical, and we will not be concerned with the issue of the
quantum consistency of the theories considered.
II. GHOST OR STRONG COUPLING?

As recalled above, the quadratic mass term for a spin-
two excitation is uniquely defined by demanding the ab-
sence of ghost and tachyonic modes and takes the Pauli-
Fierz form [1]. Beyond quadratic level, completion is not
uniquely defined. Two possible choices are, for example,
given by the following actions:

SBD � M2
P

Z
d4x

�������
�g

p
R�g�

�M2
Pm

2
Z
d4x

������������
�g�0�

q
h��h���g

��
�0� g

��
�0�

� g��
�0� g

��
�0� �; (1)

SAGS � M2
P

Z
d4x

�������
�g

p
R�g�

�M2
Pm

2
Z
d4x

�������
�g

p
h��h���g

��g�� � g��g���;

(2)

where h�� � g�� � g�0���, g�0��� being some extra metric
field.2 The above actions define bigravity theories, where
the dynamics of g�0��� has been frozen.3 Note that the above
theory is invariant under 4D diffeomorphisms (in the same
sense as bigravity theories considered in Ref. [4] are) and
2g��
�0� is the inverse of g�0���.

3This theory is in the ‘‘Pauli-Fierz universality class,’’ to use
the phrasing of Ref. [5].
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arises naturally in the process of ‘‘deconstructing’’ gravity
[8,19]. The action (1) was used by Boulware and Deser in
their Hamiltonian analysis of massive gravity [3], while
action (2) was used by Arkani-Hamed et al. in Ref. [8]. In
this last paper, an action for the scalar polarization of the
massive graviton was obtained by introducing the ‘‘hop-
ping’’ fields Y��x� and replacing h�� by H��, given by

H�� � g�� � g�0����Y�@�Y
�@�Y�: (3)

Taking g�0��� and g�� to be flat and expanding Y� as Y� �

x� � ��, one obtains

H�� � h�� � ��;� � ��;� � ��;��
�
;�: (4)

Focusing on the scalar mode of the Goldstone vector ��,
�� � @��, one gets (after an integration by part) the cubic
action for �

2M2
Pm

2
Z
d4x�����3 � �����@�@����@�@����: (5)

Note that, due to general covariance of the Einstein-Hilbert
action and to the particular tensorial structure of the Pauli-
Fierz mass term, there is no kinetic term arising directly for
� from the above procedure. Rather, the Goldstone scalar
obtains a kinetic term only through mixing with h��. This
gives a m2 dependence (and possibly very small coeffi-
cient) to the scalar kinetic term 	M2

Pm
4���. After a

proper diagonalization [8], one obtains the following ac-
tion for the canonically normalized scalar (we will still
denote �):

L �
1

2
����

1

�5
����3 �

1

�5
�����@�@����@�@���

�
1

MP
�T; (6)

where T is the trace of the energy-momentum tensor, and
the energy scale � is given by

� � �m4MP�
1=5: (7)

This Lagrangian contains strong cubic interaction terms for
the Goldstone field, with dimension nine operators grow-
ing strong at the scale �. One can check that the cubic
terms are the dominant terms in the effective Lagrangian,
in the sense that they grow strong at a much smaller energy
scale than any other interaction terms [8], which makes this
Lagrangian a useful description of the � low-energy dy-
namics. This amounts to taking the limit MP ! 1, T !
1, and m! 0 with � � cst and T=Mp � cst in the
original Lagrangian (2). The limiting procedure eliminates
all other self-interaction terms of� as well as mixing terms
of the Goldstone scalar with other spin components. A
similar limit has been considered in Ref. [17] in the case
of DGP gravity. Note also that, had we applied the same
procedure from action (1), we would have obtained the
same action as in (6) with a global minus sign in front of
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the cubic derivative interaction terms. This means that the
following discussion will apply for both cases and, indeed,
as we will argue, much more generally.

To investigate the properties of the � sector and with no
fundamental differences in the conclusion, we simplify our
discussion here by omitting the third term in the
Lagrangian (6) (in the appendix we explain how to extend
the treatment below for the full Lagrangian). So the start-
ing point in our discussion will be the following
Lagrangian:

L �
1

2
����

1

�5
����3 �

1

MP
�T: (8)

This Lagrangian obviously implies an equation of motion
of fourth order, reading

���
3

�5
������2� �

T
MP

� 0: (9)

This means, if one thinks in terms of the Cauchy problem,
that one can expect this action to describe two, rather than
one, scalar DOFs. As is well known, similar conclusions
are reached in higher derivative scalar field theories (see,
e.g., [20]) or higher derivative theories of gravity (see, e.g.,
[21]). One can typically reformulate a higher derivative
theory of some fundamental fields as a standard two-
derivative Lagrangian of the fundamental fields plus extra
degrees of freedom, with certain interaction terms, and
which encode the extra derivatives appearing in the initial
action. It is also known that some of these extra DOFs,
quite generically, have a ghost character (see, e.g., [22]), so
that one should be able to reinterpret, classically, the strong
coupling discussed in Refs. [7,8] in terms of an extra
propagating ghost DOF. This is what we do in the follow-
ing. Note that one could question the consequence of this
because we consider here a truncated theory. For example,
if one looks at a truncated derivative expansion of some
perfectly safe underlying theory, one could conclude erro-
neously that the latter is sick. Here, however, the situation
is quite different because of the fact that the Lagrangian
started from has some well defined range of applicability,
as was recalled previously.

We thus introduce a new field �, modifying the
Lagrangian (8) into

L eq �
1

2
����

1

�5
����3 � F��;��� �

1

MP
�T:

(10)

The equations of motion for � and � are given by

���
3

�5
������2� � �F�0;1� �

T
MP

� 0 (11)

and

F�1;0� � 0; (12)

where F�i;j� means the derivative of F, i times with respect
-3
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to its first variable and j times with respect to its last one.
We then ask those equations of motion not to contain
derivatives of order higher than two and to be equivalent
to Eq. (9). A suitable ansatz for F is given by

F��;��� �
2

3
���
3

p �5=2�3 � �2���
1

�5
����3; (13)

leading to the equation of motion

��� ��2 �
1

MP
T � 0; (14)

�
�
�5=2���

3
p �� ��

�
� 0: (15)

Those for a nonvanishing � are equivalent to the equation
of motion (9). Note that the phase space of solutions to
Eqs. (14) and (15) is, in fact, larger than that of solutions to
(9), because the former also includes solutions to the
equation (obtained for a vanishing �) ��� T=MP � 0.
It means that the equivalence we are talking about here has
to be understood as an equivalence restricted to a suitable
subset of solutions. Similar restrictions also occur, e.g.,
when showing the equivalence between a f�R� theory of
gravity (f being some arbitrary function) and a scalar
tensor theory, where the equivalence holds only between
solutions defined away from the critical points where the
second derivative of f vanishes [21] (see also [23]). The
choice (13) leads to a Lagrangian where the field �2 does
get a kinetic term through a mixing with �. Defining then
’ as � � ’� �2, one obtains the Lagrangian

L eq �
1

2
’�’�

1

2
�2��2 �

2

3
���
3

p �3�5=2 �
1

MP
’T

�
1

MP
�2T:

(16)

This can be then rewritten as a quadratic action defining  
as  � �2, so that Leq becomes

L eq �
1

2
’�’�

1

2
 � � %

2

3
���
3

p  3=2�5=2 �
1

MP
’T

�
1

MP
 T;

(17)

where % � �1 is the sign of ��’�  �. Notice above the
nonanalytic form of the potential for  , as well as the fact
that  is a positive definite field variable. The two different
possible choices for % in the above equation indicate that
the equivalence between the dynamics obtained for� from
the Lagrangian (8) and that obtained from the Lagrangian
(17) with a specified value of % is restricted to a set of
solutions to the equations of motion having the correspond-
ing sign of �� � ��’�  �. If one considers, e.g., the
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Cauchy problem associated with the equation of motion
(9), and if one wants to derive the solution to this Cauchy
problem with the equivalent Lagrangian (17), one should
choose the sign % corresponding to the initial Cauchy data
provided (of course, the sign of �� can change along the
initial surface so that the equivalence we are talking about
here is really a local property). In any case, one can also
use the Lagrangian (16) where this sign issue does not
arise, but as we saw, this also leads to solutions of the
equations of motion not contained in those of (8).

Thus, we rewrote a Lagrangian of a field with nonrenor-
malizable interactions as a Lagrangian of 2 degrees of
freedom; one free field ’, corresponding to the vDVZ
scalar at large distance from a source, and one ghost  ,
with a relevant interaction term.

Let us for now consider a pointlike source. Then, within
a certain distance scale to the source, the ghost exactly
cancels the vDVZ field, up until when the ghost freezes out
due to its self-interaction, leaving one propagating DOF.
For our discussion, it is convenient to consider the dimen-
sionless fields ~’ � ’=MP and ~ �  =MP, which corre-
spond with no further normalization factor to the
dimensionless massive graviton h��. The equations of
motion for those dimensionless fields read

�~’ � GT; (18)

� ~ � %
m2���
3

p ~ 1=2 � GT; (19)

where G � 1=M2
P. Considering a classical source with

T � �M&3�x�, one finds that ’ is given by the usual
Newtonian potential (with an appropriate sign)

~’ �0� �
GM
r
; (20)

where r is the distance to the source. If one then considers
the expansion of the solution for ~ around ~ �0� � ~’�0� as
~ � ~ �0� � ~ �1� � . . . , one finds that ~ �1� obeys to the
equation

� ~ �1� � %
m2���
3

p � ~ �0��1=2 � 0; (21)

which is solved by

~ �1� � �%
4

15
���
3

p m2
���������
GM

p
r3=2: (22)

This matches the correction4 obtained in Ref. [9] (see [7]).
Here we traced the origin of these corrections back to the
self-interaction of the perturbative ghost ~ , which cancels
the contribution from the vDVZ scalar ’ at small distances
-4
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from the source. Notice that ~ �0� becomes of the same
order as ~ �1� at the distance rV � �GM=m4�1=5, which is
the Vainshtein radius [9]. Going back to the original field
� � ’�  , we thus see that, inside the Vainshtein region,
��0� � 0 and

��1� � %
4

15
���
3

p m2
���������
GM

p
r3=2; r rV: (23)

Outside the Vainshtein region, one cannot trust perturba-
tion theory for the ghost, but in this region, one can simply
use the original Lagrangian (6) for the scalar field pertur-
batively, since the self-interaction of the scalar is small in
this region. The equations of motion for this Lagrangian
read:

���
3

�5
�����2 �

1

�5
��@�@��@�@���

�
2

�5
@�@������@�@��� � T=MP

� 0: (24)

If we now look for an expansion of the form � � ��0� �

��1� � . . . with ��1�  ��0�, we see that ��0� obeys

���0� � T=MP; (25)

so that ��0� is given by

��0� �
M
rMP

(26)

for a pointlike source. ��1� is now given by

���1� �
1

�5
��@�@���0�@�@���0�� (27)

(the terms in ���0� vanish outside of the source). This is
solved by

��1� /
M2

M3
Pm

4

1

r6
; r� rV; (28)

which is the form of the correction expected (recall that the
dimensionless metric fluctuation is given by �=MP).

To summarize, we rewrote the Lagrangian for massive
gravity in which the vDVZ field gets strongly coupled at a
scale � as a system of two fields that do not have strong
coupling but of whom one is a ghost. In this ghost for-
mulation, we can trust the Lagrangian perturbatively
within the Vainshtein (or strong coupling) region, while
outside of the Vainshtein region, we can use the original
higher derivative interaction perturbatively.

III. SYMMETRIES AND HAMILTONIAN
ANALYSIS OF MASSIVE GRAVITY

The ‘‘Goldstone’’ formalism that we used as a starting
point in the previous section is especially useful to focus on
the sick scalar sector of massive gravity. Here we relate our
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discussion to the original analysis of Boulware and Deser,
who first discussed, in the ‘‘unitary gauge,’’ the unbound-
edness from below of the Hamiltonian of massive gravity
[3]. For that discussion, our starting point will be the
action (1), even if, as we already stressed, the Boulware
and Deser findings have been shown to be valid for generic
bimetric gravity theories (and thus massive gravities as
considered here) by Damour and Kogan.

Let us first recall what is going on, from the Hamiltonian
point of view, if one retains only the quadratic part of the
action (1) for the ‘‘graviton’’ h��. That is to say, one sets in

(1) the background metric g�0��� to be the Minkowski metric
and expands the Einstein-Hilbert action [first line of (1)] to
quadratic order in h��. One obtains then the Pauli-Fierz
action, which is ghost-free and propagates 5 degrees of
freedom. The counting of DOFs goes as follows. One start
from a symmetric tensor, the graviton, which has 10 com-
ponents. However, it turns out that neither h00 nor h0i (with
i � 1; 2; 3 being spatial indices) are dynamical degrees of
freedom. This is a consequence of the same properties of
massless gravity which shares the same kinetic terms with
the theory considered here.5 Namely, h00 and h0i appear as
Lagrange multipliers in the kinetic term obtained from
expanding the Einstein-Hilbert action. This means that
out of the 10 initial DOFs one is left with 10� 4 � 6
DOFs at this stage. Let us then consider the mass term;
here h00 and h0i play very different roles. Indeed, the mass
term reads

M2
Pm

2
Z
d4x�hijhij � 2h0ih0i � hiihjj � 2hiih00�; (29)

where it appears that h00 is a true Lagrange multiplier for
the theory considered, since it enters linearly in both the
kinetic part and the mass term of the action. As a conse-
quence, the h00 equation of motion generates a constraint
reading

�r2 �m2�hii � hij;ij � 0; (30)

which enables one to eliminate one more DOF, leaving five
propagating DOFs in the Pauli-Fierz action. Note that the
equations of motion for the h0i, which enter quadratically
in the mass term, do not eliminate other degrees of freedom
(in contrast to the massless case), but rather determine
those variables in terms of the others.

We now turn to fully nonlinear gravity. In the massless
case, that is to say, Einstein general relativity, formulated
in the Hamiltonian language [Arnowitt-Deser-Misner
(ADM) formalism [24]], the lapse and the shift field N
and shift Ni fields are Lagrange multipliers associated with
the reparametrization symmetry of the Einstein-Hilbert
-5
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action.6 The latter are defined as

N � ��g00��1=2 (31)

and

Ni � g0i; (32)

in terms of the component of the metric g��. They generate
constraints related, respectively, to the time and space
reparametrization symmetries of the action. Those con-
straints eliminate 4 degrees of freedom, out of the 6 remain-
ing (10� 4), leaving the two propagating polarizations of
the massless graviton. The addition of a ‘‘mass term’’ such
as the one of the last two lines of (1) changes, however,
dramatically the character of N and Ni. Indeed, the ac-
tion (1) reads in the first order formalism

M2
P

Z
d4xf��ij _gij � NR0 � NiRi� �m2�hijhij � 2NiNi

� hiihjj � 2hii�1� N2 � Nkg
klNl��g;

(33)

where �ij are the conjugate momentum to gij, and R0 and
Ri are, respectively, the Hamiltonian and momentum con-
straints of massless gravity (generated by the lapse and
shift fields). The dramatic observation made in Ref. [3] is
that, now, neither Ni nor N are a true Lagrange multiplier
of the full nonlinear massive gravity. Thus, the number of
propagating DOFs is now six rather than five. It is also
remarked in Ref. [3] that the full reduced Hamiltonian is
unbounded from below as we now recall. For this purpose,
we introduce the variable n defined as

N � 1� n (34)

and rewrite the action (33) as

M2
P

Z
d4xf��ij _gij � �1� n�R0 � NiRi� �m2�hijhij

� 2NiNi � hiihjj � 2hii�2n� �n2 � �Nkg
klNl��g;

(35)

with � and � equal to one. For future reference, we will,
however, keep explicitly the � and � dependence upon the
process of reducing the Hamiltonian. Notice, in particular,
that upon the substitution Ni ! h0i and 2n! �h00, the
mass term (29) is obtained from the above expression by
taking � and � to vanish. The Ni and n equation of motion
read, respectively,

Ri � 4m2�,ij � �hkkg
ij�Nj; (36)

R0 � 4m2hii�1� �n�: (37)

Those can be used to extract n and Ni
6That is to say, the Einstein-Hilbert action, in its first order
form, is already in the ‘‘parametrized’’ form; see, e.g., [24,25].

044003
Nj �
1

4m2 �,� �hkkg��1
ij R

i; (38)

n �
1

4�hiim2 �R
0 � 4m2hjj�: (39)

Inserting those expressions in action (35), we get the
reduced Lagrangian (in first order form)

M2
P

Z
d4x

�
�ij _gij �m2�hijhij � hiihjj� �

1

8m2 R
l�,

� �hiig��1
lm R

m �
1

8m2�hii
�R0�2 �

2m2

�
hii

�
:

(40)

One reads immediately from the above expression the
Hamiltonian of the system and discovers that it can have
arbitrary sign and absolute value, since it is true, in par-
ticular, for the second term of the second line of (40). This
expression (40) shows in a very clear way that the number
of propagating DOFs is now six. Note, however, that the
Hamiltonian is singular when one makes � vanish. This
manifests the fact that the sixth DOF arises only from the
integration of n, as well as that we have chosen to integrate
the constraint (39) by extracting n, which is not possible if
� and hii vanish. So, in this language, the decoupling of the
sixth DOF is subtle and the above Lagrangian can be
considered analogous to the Lagrangian (17) where the
2 degrees of freedom appear explicitly.

We would like now to relate the unboundedness of the
Hamiltonian for the extra propagating DOF to the analysis
done in Sec. II of this paper. We will discuss this issue in
the covariant formulation, following first the discussion of
Ref. [3].

Starting from the action (1), one obtains the following
equations of motion for the metric g��:

G ���g � ,� h� � 2m2

������������
�g�0�

p

�������
�g

p h���g
��
�0� g

��
�0� � g��

�0� g
��
�0� �

� GT��;

(41)

where G�� is the Einstein tensor for the metric g. In this
formulation we can again see how at linearized level only
five DOFs appear. Indeed, by taking the divergence and
trace of the linearized form of the equations of motion, one
obtains at the linear level

@��h
�� � h,��� � 0; (42)

h � �
G

6m2 T: (43)

The first equation implies that the linearized curvature RL

is zero, RL being given by

RL � 2@��h��;� � @�h���: (44)
-6
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The second equation states that the trace is not propagat-
ing. The latter constraint, obtained by taking the trace (with
respect to g��) of Eq. (41), generalizes to the full nonlinear
case into

�R� 2m2

������������
�g�0�

p

�������
�g

p g��h���g
��
�0� g

��
�0� � g��

�0� g
��
�0� � � GT;

(45)

which, involving second derivatives, has to be treated as an
equation of motion. This is indeed where the sixth ghost
degree of freedom comes in the covariant formulation.
Now the first constraint in Eq. (42) has a nonlinear general-
ization which is obtained from the Bianchi identities for
the metric g. Indeed, taking the covariant derivative with
respect to g�� of (41), one obtains

� ������������
�g�0�

p

�������
�g

p h���g
��
�0� g

��
�0� � g��

�0� g
��
�0� �

�
;�

� 0: (46)

Taking the ordinary divergence of this equation allows one
to write the linearized curvature in terms of higher order
terms in h��. Schematically the above equation reads

@�@��h�� � ,��h� � �h2 �O�h3� � 0; (47)

yielding RL�h� � �h2 up to terms of O�h3�. When plug-
ging back in the trace equation (45), we get, again sche-
matically, at quadratic order in the field equations:

�h2 �m2h � GT: (48)

If we replace h2 !  , we see that this equation has exactly
the same form as the equation for the ghost of the previous
section Eq. (19).
IV. A COMPARISON WITH OTHER MODELS

A. Deconstructed gravity

In the previous section, we saw that the Pauli-Fierz mass
term was such that the equivalent of the R0 � 0 constraint,
associated with time reparametrization of Einstein (mass-
less) general relativity, was still present in the massive
theory at the level of the quadratic action and is given by
Eq. (30). Thus, somehow, the time reparametrization sym-
metry is still present in the quadratic Pauli-Fierz action and
eliminates 2 degrees of freedom. However, it disappears
from the fully nonlinear massive gravity, as we just re-
minded. It is interesting to remember a similar property
arising in the process of deconstructing gravity [8,19,26],7

where geometry along one (in the simplest case considered
here) dimension is given up by discretization. The starting
point is here the five-dimensional Einstein-Hilbert action
reading
7See also Ref. [27].

044003
M3
�5�

Z
d4xdy

�������
�g

p
N fR� K��K���g

��g�� � g��g���g;

(49)

where we used an ADM split of the 5D metric along the
fifth spacelike dimension to be discretized (see [19]). One
then latticizes the fifth dimension, with S lattice sites
[labeled with Latin indices �i�; �j�; . . . ] with spacing a
(we will assume periodic identification of the end point
of the lattice for simplicity). We obtain the discretized
action

S � M3
�5�a

X
�i�

Z
d4x

�����������
�g�i�

p
N �i�

	
R�g�i�� �

1

4N 2
�i�

� ��Lg�i������Lg�i�����g
��
�i� g

��
�i� � g��

�i� g
��
�i� �



; (50)

where we took the natural discrete definition of the Lie
derivative

�LT�i� �
W�i; i� 1�T�i�1� � T�i�

a
: (51)

In this expression W is the transport operator from site i�
1 (located at coordinate y�i�1� along the fifth dimension) to
site i (located at coordinate y�i� � y�i�1� � a along the fifth
dimension). It is given by the Wilson line for transport
along the fifth dimension (in analogy with non-Abelian
gauge theory)

W�y0; y� � P exp
Z y0

y
dz �N�@�; (52)

with �N� the shift fields of the ADM split used in this
discretization. The hopping field Y� [analogous to those
of Eq. (3)] considered in Ref. [8] can be explicitly con-
structed out of W as Y��y; y0; x� � W�y; y0��x�.

It turns out to be convenient to work in the Einstein
frame for the metrics on the different sites. Namely, we
perform a Weyl rescaling g�i��� � exp����i�=

���
3

p
�4�i�

��, and
N i � exp���i�=

���
3

p
�, such as the action (50) now reads

S �
X
i

M2
p

Z
d4x

������������
�4�i�

p
�
R�4�i�� �

1

2
4��
�i� r���i�r���i�

� e�
��
3

p
��i�Q�i�

��Q
�i�
���4

��
�i� 4

��
�i� � 4��

�i� 4
��
�i� �

�
;

(53)

with

Q�i�
�� �

1

2

�
�L4

�i�
�� � 4�i�

��
�L��i����

3
p

�
; (54)

and M2
P � M3

�5�a. Eventually, we want to discuss the sym-
metries and counting of DOFs of this action at the qua-
dratic level for some fluctuation over a flat background. We
thus expand the different fields as follows:
-7
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4�i�
�� � ,�� �

1

Mp
h�i���; ��i� �

’�i�

Mp
;

X��i; i� 1� � x� �
a
Mp

n�
�i�;

(55)

and define furthermore the discrete Fourier transform of
the discrete fields as

F̂ �k� �
X
j

1����
N

p F �j�e
�i2�jk=N: (56)

This gives the following quadratic action:

S �
Z
d4x

X
k

1

4
f@8ĥ

��
�k� @9ĥ

���
�k� �,89,��,��

� ,89,��,�� � 2&9��,���&
8
� � ,��&

9
�&

8
�

� ,��&
9
�&

8
��g �

1

2

X
k

@�’̂
�k�@�’̂

��k�,�� �
1

4
�@�n̂

�0�
�

� @�n̂
�0�
� ��@�n̂��0� � @�n̂�

�0�� �
X
k�0

1

a2
sin2

�k
N

���
ĥ�k���

�
,�����
3

p ’̂�k�
�
�

2a@��n̂
�k�
��

ei2�k=N � 1

���
ĥ��k��� �

,�����
3

p ’̂��k�
�

�
2a@��n̂

��k�
��

e�i2�k=N � 1

�
�,��,�� � ,��,���

�
:

(57)

As we will now argue, this action describes, leaving aside
zero modes, a tower of massive spin-two fields with a mass
spectrum given by

m2
k �

1

a2
sin2

�k
N
: (58)

Indeed, if one concentrates on the massive modes, the
symmetries of this action are as follows. First one has the
following Stuckelberg symmetry acting at each mass level,
namely:

&ĥ�k��� � 2@��:
�k�
�� ; &n̂�k�� �

�ei2�k=N � 1�

a
:�k�� ; (59)

so that the vector fields are the Goldstone bosons which get
absorbed by the �S� 1� gravitons that become massive.
This symmetry was fully expected from the symmetry of
the original action (50) since it comes from its invariance
under the product of all the 4D diffeomorphism invariance
on each site. It eliminates 8�S� 1� DOFs out of the 10S�
4�S� 1� � S � 15S� 4 DOFs present in the action and
corresponding, respectively, to the S 4D metrics at each
site, the S� 1 hopping fields Y in between adjacent sites
and the S lapse functions on each site. However, there is an
extra accidental symmetry acting at the quadratic level (in
the action); the latter reads
044003
&ĥ�k��� � ,��f
�k�; &’̂�k� �

���
3

p
f�k�;

&n̂�k�� �
a

1� e�i2�k=N
@�f�k�; k � 0;

(60)

and eliminates an extra 2�S� 1� DOFs. We see that this
leaves 5�S� 1� propagating DOFs (not counting zero
modes) corresponding to the announced �S� 1� massive
gravitons. Interestingly, this symmetry is inherited from
the reparametrization invariance along the discretized di-
rection, which is, however, broken by the discretization.
This is thus analogous to what was shown to happen for the
Pauli-Fierz theory with the time reparametrization invari-
ance. In particular, it is not expected that one can extend
this symmetry at the nonlinear level so that extra degrees of
freedom will start to propagate there.

B. DGP gravity

The DGP model is a four dimensionally covariant brane-
world model that is closely related to massive gravity [13].
The DGP setup describes a three brane in a five-
dimensional flat bulk, on which a large Einstein-Hilbert
term is present. The action defining the model is taken to be

S � M2
P

Z ������
j �gj

q
�Rd4x�M3

�

Z ������
jgj

q
Rd5X; (61)

with MP � M� and where a usual Gibbons-Hawking term
taking care of the brane is implicit. What is important for
us is that, from the point of view of an effective four-
dimensional brane observer, the DGP action produces
infrared modified Einstein gravity in a way related to
massive gravity. Indeed, in a particular gauge, the fluctua-
tions around Minkowski vacuum are described by a Pauli-
Fierz-like effective action for a massive graviton with
‘‘running mass’’ m2

g � p=Ldgp, where p is the graviton
momentum and Ldgp � M2

p=M
3
� is the DGP length scale.

This scale was found to be the crossover scale between a
small distance four-dimensional behavior of the
Newtonian potential exchanged by nonrelativistic sources
on the brane and a large distance five-dimensional behavior
[13]. As in Pauli-Fierz theory, DGP theory propagates
gravitons with five polarizations at linearized level. As
such, one might expect that the model shares the same
difficulties as massive gravity, especially the strong cou-
pling and ghost problem. Indeed, the former property of
DGP was made explicit in Refs. [15,16] in confirmation of
the work [7] discussing the appearance of a Vainshtein
scale in the model. The exact consequences of this strong
coupling are subject to a debate [17,18]. Moreover, exact
solutions [7,28] as well as approximate ones [29] indicate
that a Vainshtein mechanism is at work in the DGP model,
allowing one to recover solutions of Einstein general rela-
tivity (see, however, [30]). In light of our previous discus-
sion of massive gravity, one might suspect that this
Vainshtein ‘‘resummation’’ is, also in the DGP model,
-8
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due to a dynamical ghost DOF at work. However, with the
DGP model being 4D covariant, one should investigate this
issue in detail. There is one obvious first qualitative differ-
ence between the two theories. Indeed, the operator in the
DGP effective action, which grows large at a low scale (the
strong coupling scale), is a dimension seven operator [15],
as opposed to the dimension nine operator found in the
Pauli-Fierz action. The effective theory for the longitudinal
mode of the graviton in DGP is obtained by decoupling in a
similar way to what was recalled in Sec. II for massive
gravity. It reads [17]

L dgp � 3����
1

�3
dgp

�@���
2���

�T
2Mp

: (62)

The scale at which the � mode gets strongly coupled is
given by �dgp � �Mp=L2

dgp�
1=3. One might think that the

higher derivative operator appearing above also corre-
sponds to extra degrees of freedom in an equivalent for-
mulation. However, the equation of motion for this scalar
are easily seen to be

6���
1

�3
dgp

�@�@���
2 �

1

�3
dgp

����2 � �
T

4Mp
: (63)

Although this is a nonlinear equation of motion, it is a
second order differential equation for the mode �, unlike
the analogous equation for its Pauli-Fierz counterpart.
Hence, as seen from a Cauchy problem perspective,
Eq. (63) describes only one propagating degree of freedom.
In Ref. [17], the geometrical meaning of this equation was
clarified by noting that in the full theory it descends from a
combination of the Gauss-Codazzi equations and 4D
Einstein equations on the brane, which, by the relation
K�� 	��1=�3

dgp��@�@���, makes Eq. (63) an algebraic
equation for the extrinsic curvature of the brane.
Considering now a pointlike nonrelativistic source, as
done at the end of Sec. II, one finds that, inside the
Vainshtein region, the solution for � is given at dominant
order by the solution to the quadratic part of Eq. (63), that
is to say, the equation obtained by dropping the first term in
the left-hand side of (63) [17]. Thus, in order to estimate
the contribution of� to the Newtonian potential around the
source, one may say that � obeys in this region an equation
similar to Eq. (21) obeyed by ~ �1�, with the role of ~ �0�

being played by T=Mp. This yields indeed corrections to
the Schwarzschild solution that goes (correctly) as
�r=r�v�

3=2, where r�v � �r2cGM�1=3 is the Vainshtein radius
for the DGP model. However, here there is no need for the
cancellation of an extra contribution coming from another
DOF.

Note that this does not tell us what the nature is of the
small fluctuations around some background solution. In
particular, in Ref. [17] it is shown that the kinetic term
044003
for this scalar is enhanced significantly in the Vainshtein
region, which incidentally means that the �mode interacts
more and more weakly as one approaches the source.

V. CONCLUSION

In this work, we compared the Goldstone formalism for
massive gravity [8] to the old Hamiltonian approach of
Boulware and Deser [3]. In the first approach it was found
that the scalar polarization (the vDVZ scalar) of the gravi-
ton acquired a strong cubic interaction, while in the second
approach it was shown that, at nonlinear level, massive
gravity propagates a sixth degree of freedom with negative
energy. We showed that one can reinterpret the strong
coupling of the vDVZ scalar as the propagation of a ghost,
in agreement with the Boulware-Deser finding. The ghost
can then be seen as responsible for the cancellation of the
attraction exerted by the vDVZ scalar at distances around a
nonrelativistic source smaller than the Vainshtein radius.
Inside this region, we can trust the two-field Lagrangian
perturbatively, while at larger distances one can use the
higher derivative formulation. Of course, within this re-
gion, the presence of the ghost is expected to signal insta-
bilities. In particular, one is tempted to interpret the failure
of the full Vainshtein resummation found in Ref. [10] as
linked to the presence of this sick DOF, even if one should
be careful to draw conclusions from energy arguments in
general relativity. Note that the presence of this ghostlike
DOF is a generic feature of massive gravity as shown in the
work of Damour and Kogan [5].

We also compared massive gravity with other models,
namely, deconstructed theories of gravity, as well as the
DGP model. In the latter case we argued that the Vainshtein
resummation process was of a different nature, not involv-
ing a ghost degree of freedom. There are other variations
on the DGP model which could free of ghosts, too. For
instance, Ref. [31] describes a model in which the five (or
higher) dimensional Einstein-Hilbert action has a profile in
the extra dimensions (or, alternatively, has a varying
Planck mass in the extra space). In this case, the absence
of ghosts or strong coupling naturally introduces an in-
curable vDVZ discontinuity in the theory. We also note that
the setup of ‘‘soft massive gravity’’ [32] uses higher di-
mensional generalizations of the DGP model where the
usual induced Einstein-Hilbert action is supplied with
additional UV operators, and Ref. [32] argues that it does
not suffer from any strong coupling issues. One interesting
other way to avoid problems of massive gravity might be to
break Lorentz invariance [33–36].
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APPENDIX: DOF REDUCTION IN THE GENERAL
CASE

We start from the Lagrangian (6),

L � �
1

2
@��@

���
1

�5
�����3 � ���@�@���

2�;

(A1)

and want to analyze the degrees of freedom it propagates.
There are several ways to proceed. There is the ‘‘construc-
tive approach’’ (see, e.g., [23], which uses a similar mecha-
nism to reduce higher derivative gravity theories) or the
formal Ostogradski method for higher derivative scalar
field theories, as in, e.g., Ref. [20]. Both methods yield,
in fact, the same result, and we will discuss here only the
first one, which is in direct correspondence with what we
did in Sec. II.

One can rewrite the Lagrangian (A1) as

L � �1
2@��@

��� F�@�@���; (A2)

where F�X��� � �1=�5��X3
�� � X��X

2
���. Next we con-

sider

~L � �
1

2
@��@���

dF
dX��

�@�@��� X��� � F�X���:

(A3)

The equations of motion for X�� and � obtained from this
Lagrangian read

0 � ��� @�@�
dF
dX��

; (A4)

0 �
d2F

dX��dX��
�@�@��� X���: (A5)

Those equations reduce to those deduced from the
Lagrangian (A1) if the 16� 16 matrix M��;��;��;�� given
by

M ��;��;��;�� �
d2F

dX��dX<�
(A6)

is invertible. In our case, this matrix is given by

d2F
dX��dX��

�
2

�5
�3,��,��X� ,��X�� � ,��X��

� X,��,���;

(A7)

where X stands for X��,��. The determinant of the above
defined matrix reads
044003
detM � �218X14��80�4X2 � X��X��� (A8)

and does not vanish, in general. Now we define

��� �
dF�X�
dX��

; (A9)

which we invert to get X����� as a function of ���. This
inversion is guaranteed to exist again (at least locally)
when M can be inverted, but the explicit form of the
inverse function may not be easy to obtain. Also, one
may have to divide the theory into different branches if
the function is not globally well defined, in a similar way as
what was done in Sec. II. In any case, our new Lagrangian
is now

~L � �1
2@��@

��� ����@�@��� X������ �G��89�;

(A10)

whereG��89� � F�X����89��. The functionGmight now
be regarded as a potential for the field �89 [together with
���X�����]. The investigation of the nature of the de-
gree(s) of freedom in ��� in our case simplifies drastically
because (unlike generic higher derivative gravity, for ex-
ample) we have a special mixing with a scalar: The cou-
pling ���@�@�� guarantees that there is only one
component of ��� that propagates due to mixing with �.
Indeed, decomposing the symmetric tensor into its or-
thogonal components

��� � h��tt � @��A��t �

�
,�� �

@�@�

�

�
a�

@�@�

�
�;

(A11)

where h��tt and A�t are, respectively, transverse-traceless
and transverse, we see that only � gets a kinetic term by
mixing with �. The above form of the Lagrangian ensures
that � is always a ghost. Indeed, the Lagrangian is easily
diagonalized by the transformation �!  � �� �. The
final Lagrangian for the two DOFs is

L � �1
2@� @

� � 1
2@��@

��� V��89����; (A12)

with V��89� � ���X����89� �G��89�. Although the
above procedure is a bit formal, we did exactly this for
the interaction ����3, where indeed we encountered two
branches and found a potential for the ghost � by inverting
the scalar analogue of Eq. (A9). The exact form of the
potential is now harder to find, having to solve Eq. (A9),
which reads

��� �
1

�5
�3,��X2 � ,��X��X

�� � 2XX��� (A13)

for X�� as a function of �89. The least one can say by
dimensional analysis is that the potential will be again IR
relevant, as opposed to the UV relevant operator that we
started from in (A1).
-10
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