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The two most popular candidates for dark energy, i.e. a cosmological constant and quintessence, are
very difficult to distinguish observationally, mostly because the quintessence field does not have sizable
fluctuations. We study a scalar field model for dark energy in which the scalar field is invariant under
reflection symmetry �! ��. Under general assumptions, there is a phase transition at late times (z &

0:5). Before the phase transition, the field behaves as a cosmological constant. After the phase transition, a
time-dependent �-condensate forms, the field couples with dark matter and develops sizable perturbations
tracking those of dark matter. The background cosmological evolution is in agreement with existing
observations, but might be clearly distinguished from that of a cosmological constant by future
Supernovae surveys. The growth of cosmological perturbations carries the imprint of the phase transition,
however a nonlinear approach has to be developed in order to study it quantitatively.
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I. INTRODUCTION

In the past few years, an increasing wealth of data has
been shaping a consistent picture of the present state of the
Universe: it is spatially flat, mostly made of nonconven-
tional matter—baryons being allowed only up to �5% of
the total energy content—and accelerating. The physical
models accounting for such a picture generally contain two
basic ingredients: pressureless dark matter (DM), respon-
sible for the growth of cosmological perturbations via
gravitational instability, and negative pressure dark energy
(DE), responsible for the accelerated expansion. The ap-
proximate ratio of between DM and DE is around 1:2 today
[1].

The simplest model along these lines is �CDM, in
which the role of DE is played by a cosmological constant.
It fits very well all the data related with the cosmological
background and the perturbations in the linear regime (see
for instance [2]). Another possibility widely discussed in
the literature is quintessence, in which DE has some dy-
namics, modeled by a scalar field [3].

In principle, one would like to have clear signatures to
distinguish quintessence from �CDM in present or future
experiments, but this is not so straightforward. First of all,
existing data already push the present DE equation of state,
w � p=�, very close to the cosmological constant value,
w � �1� 0:2 at 95% c.l., with at most a very mild
evolution up to redshift z� 1 [2]. Secondly, in order to
avoid fine-tuning on the initial conditions, the quintessence
scalar field is usually taken to be extremely light, with a
Compton wavelength corresponding to the present value of
the Hubble radius. As a consequence, the scalar field is
homogeneous on all observable scales, much like a cos-
mological constant [3].

Quintessence models suffer from a more theoretical
problem, namely, the fact that radiative corrections in-
ress: pietroni@pd.infn.it
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duced by the couplings with the matter fields would
generically induce huge corrections to the tree-level
mass, thus spoiling the required lightness [4]. So a fine-
tuning on the radiative corrections is generally required
in these models to keep the scalar field light, besides
the one necessary to keep the cosmological constant
small.

The purpose of this paper is to try and challenge the
general picture of a universe in which two thirds of the
universe (the DE) are smoothly distributed, while it is only
the remaining third which clumps in structures.

We will discuss a model containing two main ingre-
dients: a scalar field � coupled to matter (dark, baryonic,
etc.), and a discrete, Z2, symmetry acting upon it, �!
��. Under very general conditions, the scalar field may
experience a phase transition. At high matter number
density, the Z2 symmetry is restored, the field decoupled,
and its fluctuations damped. At low number density the Z2

symmetry is broken by a � condensate, � and matter
couple very efficiently, and the field fluctuations can
grow very large.

In the broken phase, in which we live today, the back-
ground energy densities in DE and DM scale with a fixed
ratio and both have an effective equation of state in the
range �0:73 & w & �0:5. Moreover, DE is not smooth on
large scales, but has energy density fluctuations tracking
the matter number fluctuations.

So, if one defines DE as the smooth component of the
Universe, then in this model—after the phase transition—
there is no DE. If one defines it as the negative pressure
component, then there is only DE!

There is, however, a difference between the fluctuations
in DM and those in DE. While the former can grow and
become nonlinear, the latter stop growing when the number
density inside the collapsing structures reaches the critical
value above which the Z2 symmetry is restored and the
coupling between matter and the scalar field vanishes. As
we will discuss in Sec. IV, this effect is missed by linear
-1  2005 The American Physical Society
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perturbation theory, which very soon becomes unreliable
after the phase transition.

We will work in the framework of scalar-tensor theories
of gravity. The choice is motivated by the better status of
radiative corrections in this models as compared to mini-
mally coupled quintessence, but from a cosmological point
of view, the coupling between the scalar field and dark
matter can be much more generic than that prescribed in
this class of theories. The only crucial requirement is a
(discrete or continuos) symmetry broken by a �
condensate.

The action of the model is given by

S � Sg � S� � Sm: (1)

Sg is the usual Hilbert action of General Relativity

Sg �
M2
p

2

Z
d4x

�������
�g

p
R;

where Mp � 	8�GN

�1=2 is the reduced Planck mass, S�

the action for a real scalar field,

S� �
Z
d4x

�������
�g

p
�
1

2
g��@��@��� Vtree	�

2


�
;

and Sm is the action for all the remaining fields, that is,
quark, leptons, DM particles, gauge bosons, GUT particles,
etc. which we will call ‘‘matter‘‘ for simplicity. We assume
the following form for Sm,

Sm �
Z
d4x

�������
�~g

p
Lm	�1; . . . :�N; ~g��
; (2)

where the �0
is represent all the fields of the model. All the

nongravitational couplings between the scalar � and the
rest of the world are encoded in the metric

~g �� � exp
�
2b
�2

�2

�
g��: (3)

What we have defined is a scalar-tensor theory (formu-
lated in the Einstein-frame) with a Z2 symmetry imposed
on the scalar: �! ��.

The paper is organized as follows. In Sec. II we discuss
radiative corrections to the scalar field effective action. In
Sec. III we study the background cosmology and in Sec. IV
the growth of cosmological perturbation. Finally, in Sec. V,
we summarize our findings and discuss their implications.

II. RADIATIVE CORRECTIONS

Before discussing the cosmology, let us analyze radia-
tive contributions to the scalar field action1. The contribu-
tion from all the loops containing matter fields can be
obtained by integrating out the �0

is fields in (2). The
resulting effective action then depends on ~g�� only, and
1For a discussion of the case of minimally coupled quintes-
sence, see Ref. [5]
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its form is dictated by general coordinate invariance as,

Sm !
Z
d4x

�������
�~g

p
��4

0 ��2
1
~R�   �; (4)

where �0 and �1 are ultraviolet (UV) cutoff, ~R is the Ricci
scalar built out of the metric ~g�� and the ellipses stand for
subdominant logarithmically divergent and finite terms. In
terms of the metric g�� we have,

Z
d4x

�������
�g

p
�e4b�

2=�2
�4

0 � e2b�
2=�2

�2
1

�
R�

6b

�2 ��2

�
24b2�2

�4 g��@��@��
�
�   

�
; (5)

Taking the � field on its expectation value, the first term
contributes to the cosmological constant, and has to be
fine-tuned to �0 & 10�3 eV. Derivatives of this term with
respect to � give corrections to the tree-level terms in
Vtree	�
. In particular, we will focus on the corrections to
the tree-level mass term which, as we will see (see
Eq. (12)) is O		103 eV
4=�2
. The correction proportional
to �4

0=�
2 is then subdominant as a consequence of the

same fine-tuning mentioned above.
The terms proportional to �2

1 include corrections to the
tree-level kinetic terms. We require �1 & � in order to
keep them subdominant. The �2

1R��2
1H

2 term gives also
contributions to the mass of the scalar field, which is
however negligible if �1 & Mp.

Summarizing, general coordinate invariance ensures
that, once a single fine-tuning is done on the cosmological
constant, all the radiative corrections coming from the
matter sector do not destabilize the lightness of the scalar
field. In other words, it forbids a �2

2�
2 term in Eq. (5), with

the UV cutoff �2 independent on �0. If, for instance, we
take � � O	Mp
 as in usual quintessence models, the
corrections to the mass of the scalar field today are smaller
than H2

0 ’ 10�33 eV, without any further fine-tuning. For
comparison, in minimally coupled quintessence models the
lightness of the scalar field generally requires a further
fine-tuning besides that for the cosmological constant [4],
or a new symmetry principle, as in [6].

Scalar field self-interactions coming both from the tree-
level action and the effective one, Eq. (5), can be shown not
to destabilize the tree-level mass provided the UV cutoff is
& �. Taking� larger than, say, a TeV, this implies no fine-
tuning on the scalar-sector.

Finally, graviton loops have to be considered. Calling
�g the UV cutoff for this kind of contributions, one can see
that the most dangerous terms involve couplings from
Eq. (5), of the form

e2b�
2=�2

�2
1

	@h
2

M2
p
; (6)

where h is the metric fluctuation, g�� �  �� � h��=Mp.
These terms give a quartically divergent contribution both
-2
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to the cosmological constant and to the scalar field mass.
Requiring that the correction to the cosmological constant
is smaller than O	10�3 eV
, one obtains the bound
	�1=Mp


2	�g=10�3 eV
4 <�1, which, again, ensures
that the mass correction is subdominant.
III. BACKGROUND EVOLUTION

In the Einstein frame the field equations have a simple
form. The Friedmann equation is the usual one for a flat
universe with radiation, matter, and a canonical scalar field,
provided the energy densities of radiation and matter sat-
isfy the modified Bianchi identity

d	�a3
 � pda3 � 	�� 3p
a3d
�
b�2

�2

�
;

from which we read that matter scales as �m �
exp	b�2=�2
a�3, while radiation has the usual behavior
�rad � a�4.

The scalar field dynamics is governed by the equation

��� 3H _� � �
dVtree

d�
�

2b�

�2 �b	1� 3wb
 (7)

where �b � �rad � �m and wb � pb=�b.
At early times, when �b � Vtree, only the second term in

the RHS matters. This would have the effect of driving the
field towards the symmetric point � � 0, but is propor-
tional to the trace of the energy momentum tensor, which
vanishes for a Universe dominated by a conformally in-
variant gas of noninteracting relativistic particles.
However, in the real world, conformal invariance is broken
even during radiation domination, by two effects.

The first is the presence of mass thresholds [7]. Each
time a particle in thermal equilibrium becomes nonrelativ-
istic, it gives a nonvanishing contribution to the trace of the
energy momentum tensor,

�A � 3pA
�rad

’
15

�4

gA
g�
y2AF�yA�; (8)

with yA � mA=T, gA the number of degrees of freedom of
the particle A, g� the number of relativistic degrees of
freedom and

F�yA� �
Z 1

0
dx

x2

"A�exp	"A
 � 1�
; (9)

where "A � 	y2A � x2
1=2 and the minus (plus) sign in the
denominator of the integrand holds for bosons (fermions).
The function F�yA� is O	1
 around T � mA, quadratically
suppressed at high temperatures and exponentially sup-
pressed at low ones.

The second source of breaking of conformal invariance
is given by radiative corrections which, for a plasma of the
SU	Nc
 gauge theory with coupling g and Nf flavors, give
the following trace anomaly [8]
043535
1� 3wbjt:a: �
5

6�2

g4

	4�
2
	Nc �

5
4Nf
	

11
3 Nc �

2
3Nf


2� 7
2 �NcNf=	N

2
c � 1
�

;

leading to a constant contribution which, for typical gauge
theories, can be of order 1� 3wb � 10�2 � 10�1. At high
temperatures, this effect dominates over that of mass
thresholds, which is suppressed by the number of relativ-
istic degrees of freedom, g�.

The joint effect of these two contributions was studied
for instance in Ref. [9], where it was shown that the field
can have a sizable evolution during radiation domination,
reaching phenomenologically acceptable values well be-
fore nucleosynthesis. In the present case, the field will be
driven to the symmetric point � � 0 with an efficiency
increased with respect to Ref. [9] by the fact that we will
take � much lower than the Planck mass. This provides a
post-equivalence initial condition which is completely in-
dependent on the conditions of the field at a early time, e.g.,
after inflation.

We now concentrate on the epoch of matter domination
and on the contributions to (2) from nonrelativistic cosmo-
logical relics, in particular, DM particles, similar contribu-
tions (though subdominant) arising also from baryons and
neutrinos. The action for a single, nonrelativistic, particle
of mass m is

�m
Z
d~s � �m

Z
eb�

2=�2
ds; (10)

which corresponds to a field dependent mass meb�
2=�2

.
To facilitate the discussion we will absorb the second

term in the RHS of Eq. (7) into the effective potential for
�,

V	�
 � Vtree	�2
 �meb�
2=�2

n� . . . (11)

where the average number density is defined as n �P
imini=m, with m �

P
imi, and the sum runs over all

the nonrelativistic particles. The ellipses represent the
radiative contributions, which, based on the discussion in
the previous session, we assume to be subdominant.

If the curvature of the effective potential (11) is always
positive at the symmetric point � � 0, then the scalar field
is always fixed at that point, its coupling with matter,
2b�=�2 is zero, and the cosmology is that of a �CDM
model.

We will instead consider the case in which the tree level
effective potential has negative curvature in � � 0, while
b > 0. For definitness, we will use the potential

Vtree	�2
 � V0e��
2=�2

; (12)

however, using other forms will not change our main
results considerably, since, as we will see, during all the
cosmological evolution the field samples only a limited
range of values, j�=�j & 1, so that the two parameters V0

and � could be effectively traded with the value of a
-3
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FIG. 1. Ratios of the luminosity distance to that of a reference
�CDM model with �M � 0:27. The continuos lines correspond,
from bottom to top, to b � 0:5; 0:8; 1; and 1:3. The dotted line
corresponds to a flat model with �M � 0:27 and the rest in a
fluid with constant equaion of state, w � �0:8.

2I thank Luca Scarabello for providing help on this part of the
analysis.
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generic, Z2-symmetric, potential at the origin and its sec-
ond derivative there.

The immediate consequence of our choice for Vtree and b
is a number density driven phase transition. At high num-
ber density n, � vanishes at the minimum of (11). In this
regime the relic particles’ masses are constant and the two
contributions in (11) scale as cosmological constant and
matter, respectively. As the universe expands, if the num-
ber density drops below the critical value

�n �
V0

bm
; (13)

the effective potential is minimized by

�2

�2
�

1

b� 1
log

�
�n
n

�
	n � �n
: (14)

Thus, on the minimum, we have the two regimes for the
effective potential,

hVi � V0

�
1�

1

b
n
�n

�
	n � �n
; (15)

V0
b� 1

b

�
n
�n

�
1=b�1

	n � �n
; (16)

where, as we anticipated in the Introduction, after the phase
transition DM and DE get diluted at the same rate. Notice
that hVi depends on three parameters (V0, �n, and b). The �
parameter disappears from the background energy density
if the field tracks the minimum and the kinetic energy
contribution is negligible, which happens for � &

10�2Mp, as we will see.
To study this parameter space (which, lacking a theo-

retical motivation for a particular value for b, contains one
more parameter than �CDM) we proceed as follows. First,
by going to the high-density regime of (15), we require that
the matter density at recombination agrees with the result
from WMAP [10]. Trading the critical density �n with the
redshift of the phase transition, �z, 	1� �z
 � 	 �n=n0
1=3, we
obtain

	1� �z
 � �	b� 1
�0
M�

�	b�1
=3b; (17)

which fixes �z ( �n) as a function of b and the measured
�0
M � 0:27� 0:04 [10]. Armed with this relation, we

can compute two observables: the CMB shift parameter
[11],

R � �	b� 1
	1� �z
3b=	b�1
��1=2
Z zdec

0
dz0

H0

H	z0

; (18)

which is measured to be R � 1:716� 0:062 by WMAP
[10], and the luminosity distance -redshift relation mea-
sured using type Ia supernovae (SNeIa) [12,13],

H0dL	z
 � 	1� z

Z z

0
dz0

H0

H	z0

: (19)

Notice that both these observables are independent on the
043535
absolute scale of H0, that is, they do not depend on the
parameter V0. Then, once (17) is used, the CMB shift
parameter and the SneIa luminosity distance measure-
ments depend on the parameter b only.

The measurements of R constrain b to be * 0:5, cor-
responding to �z & 1:47. On the other hand, the requirement
that the phase transition takes place before today, gives the
upper bound on b, b � 1=�0

M � 1 � 2:7.
In Fig. 1 we plot the luminosity distance vs redshift,

normalized to a fiducial flat �CDM model with �0
M �

0:27, for different values of b. The value of �z has been fixed
in order to have the same �0

M, according to Eq. (17). We
also plot, with the dotted line, the result for a quintessence
model with constant equation of state w � �0:8.

The SNeIa data turn out to give a stronger constraint
than R. We tested the distance-redshift relations of our
models against the ‘‘gold’’ set of 157 SNeIa of Ref. [13],
using flux-averaging statystics as implemented in [14]. We
find b � 1 (corresponding to �z � 0:51) at 95% c.l.2

Summarizing, the background and CMB measurements
are compatible with a late time (�z & 0:5) phase transition
from a high-density phase in which the dynamics is that of
a �CDM model to a low density one in which the back-
ground evolves according to Eq. (16). In this scenario, the
energy density of the Universe today is dominated by a
DM-DE fluid in which the two components scale at a fixed
ratio �M=�V � b and are diluted as 	1� z
3=	b�1
, that is
with an effective equation of state w � �b=	b� 1
. The
bounds on b discussed above correspond to �0:73 & w &

�1=2 today. For comparison, assuming a constant w, the
SneIa limit is w<�0:78 at 95% c.l. [13].
-4
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FIG. 2. Evolution of the square of the scalar field for different
values of the �=Mp ratio (for �=Mp * 0:05 the field does not
move sensibly). We set b � 1, the lowest value allowed by SnIa
data, which corresponds to �z � 0:51.
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The analysis above assumed that after the phase transi-
tion the field adiabatically follows the moving minimum.
In Fig. 2 we plot the field evolution as resulting from the
equation of motion for different values of�=Mp. For large
values of � there is basically no evolution of the field
expectation value before today. So, the only feature of
the model in this case is an extremely flat potential, giving
a decoupled scalar field in the spectrum with mass <�
H0 � 	10�33 eV
. As � is decreased, say, for �=Mp &

0:01, the field follows the minimum while kinetic terms do
not contribute to the energy density sensibly. Notice the
oscillations around the moving minimum. As � decreases,
the frequency of the oscillation increases due to the in-
creased scalar field mass,

m2
� � hV 00	�
i �

2V0

�2

�
n
�n
� 1

�
; 	n � �n


�
4V0

�2

�
n
�n

�
1=	b�1


log
�n
n
; 	n � �n


(20)

which is M2
p=�2 times O	H2
. On the other hand, the

amplitude decreases, since the field starts moving earlier
after the phase transition.

We have verified that, for �=Mp & 0:01, the field oscil-
lations leave no observable imprint in the luminosity
distance-redshift relation, since they get averaged out in
the integral of Eq. (19).
IV. COSMOLOGICAL PERTURBATIONS

More dramatic signatures, potentially such as to allow a
clear distinction from �CDM, may come from perturba-
tions. In particular, the phase transition turns on a coupling
between the scalar field and matter which induces large
perturbations of �.
043535
Linear perturbations in DE-DM coupled systems have
been already discussed in the literature [15–18]. Nonlinear
approaches have been attempted in [19–21].

As compared to the uncoupled case (normal quintes-
sence scalar fields) two main additional effects have to be
taken into account:

(i) particles’ trajectories may deviate from geodesics:

_.�
�
_a
a
� 2b

� _�

�2

�
. � 2bk2

�0’

�2 ; (21)

where 0’ is the field fluctuation, . � ikjvj is the diver-
gence of the comoving velocity, and we work in synchro-
nous gauge, see for instance [22]. Notice that, as a
consequence of the Z2-symmetry the field is decoupled
from matter in � � 0, so the particles follow geodesics in
the high-density phase, that is, for z > �z and inside objects
with number density n > �n. For comparison, in the models
considered in Ref. [15], the RHS is always active, which
gives strong constraints on the strength of the coupling;

(ii) the field’s fluctuations have a new source term on the
RHS:

0 �’� 2
_a
a
0 _’� 	k2 � a2m2

�
0’

� �
1

2
_h _��2b

�

�2 e
b�2=�2

m0na2; (22)

with m2
� given in Eq. (20). The last term in the RHS

induces potentially large field fluctuations after the phase
transition.

0’
�

’ �2
V0

�2	k2=a2 �m2
�


�
n
�n

�
1=	b�1
 0n

n
: (23)

For subhorizon scales with H < k=a < m� these are of the
same order as 0n=n,

0’
�

’ �

�
2 log

�n
n

�
�1 0n

n
: (24)

Notice the minus sign, implying that the DM particles’
mass is smaller in overdense regions. The divergence as
n! �n is cured by the k2=a2 term in (23), and is a general
manifestation of second order phase transitions, that is, the
presence of large fluctuations on large scales close to the
transition point.

In Fig. 3 we plot the field average and fluctuation in
linear perturbation theory (upper panel). After the phase
transition, fluctuations grow until they become larger than
the field average and perturbation theory is no longer
reliable. Correspondingly, the fluctuation in number den-
sity, 0n � 0n=n blows up at late time (Fig. 4, curve ‘‘Not
improved’’, where we plot d log0n=d loga). The behavior
of the perturbations seems then very different than for
�CDM and in strong disagreement with the result ex-
tracted from 2dF survey, from which one extracts [23,24]
-5
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FIG. 3. Evolution of the field and its fluctuation in linear perturbation theory (upper panel) and after substituting n with n	1� 0n
 in
the effective potential (lower panel). We set �=Mp � 0:001, b � 1, k=aH � 1.

MASSIMO PIETRONI PHYSICAL REVIEW D 72, 043535 (2005)
d log0n=d loga � 0:51� 0:11; (25)

at the effective redshift of the survey, z� 0:15.
However, linear perturbation theory misses a crucial

physical effect, which drastically affects the results.
Indeed, when a number overdensity grows beyond the
critical value �n, the Z2 symmetry gets restored and matter
and the scalar field decouple again. As a consequence,
above the critical value, there is no contribution from the
scalar force and the overdensity grows under the standard
effect of gravity alone. On the other hand, in linear pertur-
bation theory, the strength of the DM-scalar coupling is
always proportional to the background value of�, which is
nonvanishing for z � �z, independently of the value of the
overdensity.

As a first step towards a more realistic description of the
growth of perturbations in this model, we ‘‘improved‘‘ the
equation of motion for the average field by substituting n
with n	1� 0n
 in the effective potential of Eq. (11). The
results are plotted in the lower panel of Fig. 3 and on Fig. 4
(‘‘Improved’’). As we see, at late times the field fluctua-
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FIG. 4. The ratio 00n=0n before and after the improvement.
Same parameters as in Fig. 3.
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tions are smaller than the average, and the growth of
density perturbations is damped much like in �CDM,
signaling a better behavior of the improved perturbation
theory. However, considering smaller length scales, the
effect of the scalar force becomes more and more impor-
tant (see the RHS of Eq. (21)) and the improved perturba-
tion theory fails as well.

Further insight on the growth of perturbations in this
model can be gained in a spherical collapse model. If the
mass of the scalar is much larger than the inverse radius of
the collapsing sphere, m� � R�1, that is, using Eq. (20),
for �=Mp � HR, the field inside the sphere deviates from
the background value. In Fig. 5 we plot the evolution of the
field (squared) inside and outside a collapsing spherical
overdensity, and in Fig. 6 the corresponding growth of the
energy overdensity, 0�=� � �M0�M=�M ��V0�V=�V ,
where �M � m exp	b�2=�2
n and �V � Vtree	�2
. In this
example, the phase transition inside the sphere takes place
much later than in the background. For slightly larger
overdensities today, but still in the range & 1, the phase
transition inside does not take place at all before today.
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Such a collapsing sphere is always blind to the scalar force.
While individual particles feel a strong effect from the
scalar force, moderately overdense structures collapse
and attract each other as if there were only gravity.

For larger values of b the background phase transition
takes place later and the behavior is more and more similar
to that of standard �CDM.

Inside our Galaxy, the number density today is � �n.
Then, the scalar field is decoupled from matter and is not
detectable via solar system—or laboratory— tests of
General Relativity. For the same reason, the Newton
constant and particle’s masses are not varying now
and have the same values they had at high redshifts z �
�z, in particular, during nucleosynthesis and matter-
radiation decoupling. In this respect, the scalar field be-
haves similarly to the ’’chameleon’’ field introduced in
Ref. [25].

On the other hand, individual matter particles fluctuating
outside the overdense regions, have time-dependent—and
increasing—masses today.
043535
V. DISCUSSION

Models in which DE and DM have extra—nongravita-
tional— interactions have been already investigated in the
literature (see, for instance, [15,17,19,20,26–28]). The
present model differs from these works in two respects.
First of all, in our model, the extra-interaction has been
silent for most of the cosmological history, allowing a close
to standard background evolution and growth of perturba-
tion. By contrast, in the previous literature the coupling
was assumed to be always effective (although evolving, as
in [27]). As a consequence, strong bounds on it were
imposed by CMB and Large Scale Structure ([15,16]).

The second difference is in the scalar field mass, and
then on the scale of perturbations. The requirement of
being on an attractor solution implies a Compton wave-
length of order H�1 , and then basically no scalar field
perturbations on subhorizon scales, much like in the case
of uncoupled quintessence [3]. On the other hand, in this
paper the Compton wavelength of the scalar field is
O	�=Mp
H�1, where � can take values much lower
than Mp (actually, as we see from Fig. 2, the lower � the
better the field follows the moving minimum). The inde-
pendence of the late-time cosmology on the initial con-
ditions is not achieved in this model by an attractor, but by
symmetry. The field is on the symmetric point � � 0 until
the phase transition, and then tracks the moving minimum.

A generic expectation from a phase transition of the type
described in this paper is a modification in the growth of
cosmological perturbations at low redshifts, likely in the
form of an oscillatory behavior of the growth exponent, see
Figs. 4 and 6. However, in order to extract reliable pre-
dictions, more work has to be done on a nonlinear approach
incorporating the physical effect of symmetry restoration
inside high-density regions.
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